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Abstract

This thesis presents a model for the ack-clock inner loop, common to virtually all
Internet congestion control protocols, and analyzes the stability properties of this inner
loop, as well as the stability and fairness properties of several window update mechanisms
built on top of the ack-clock. Aided by the model for the inner-loop, two new congestion
control mechanisms are constructed, for wired and wireless networks.

Internet traffic can be divided into two main types: tcp traffic and real-time traffic.
Sending rates for tcp traffic, e.g., file-sharing, uses window-based congestion control,
and adjust continuously to the network load. The sending rates for real-time traffic, e.g.,
voice over ip, are mostly independent of the network load. The current version of the
Transmission Control Protocol (tcp) results in large queueing delays at bottlenecks, and
poor quality for real-time applications that share a bottleneck link with tcp.

The first contribution is a new model for the dynamic relationship between window
sizes, sending rates, and queue sizes. This system, with window sizes as inputs, and queue
sizes as outputs, is the inner loop at the core of window-based congestion control. The
new model unifies two models that have been widely used in the literature. The dynamics
of this system, including the static gain and the time constant, depend on the amount
of cross traffic which is not subject to congestion control. The model is validated using
ns2 simulations, and it is shown that the system is stable. For moderate cross traffic, the
system convergence time is a couple of roundtrip times.

When introducing a new congestion control protocol, one important question is how
flows using different protocols share resources. The second contribution is an analysis of
the fairness when a flow using tcp Westwood+ is introduced in a network that is also used
by a tcp New Reno flow. It is shown that the sharing of capacity depends on the buffer
size at the bottleneck link. With a buffer size matching the bandwidth-delay product, both
flows get equal shares. If the buffer size is smaller, Westwood+ gets a larger share. In the
limit of zero buffering, it gets all the capacity. If the buffer size is larger, New Reno gets
a larger share. In the limit of very large buffers, it gets 3/4 of the capacity.

The third contribution is a new congestion control mechanism, maintaining small
queues. The overall control structure is similar to the combination of tcp with Active
Queue Management (aqm) and explicit congestion notification, where routers mark some
packets according to a probability which depends on the queue size. The key ideas are to
take advantage of the stability of the inner loop, and to use control laws for setting and
reacting to packet marks that result in more frequent feedback than with aqm. Stability
analysis for the single flow, single bottleneck topology gives a simple stability condition,
which can be used to guide tuning. Simulations, both of the fluid-flow differential equa-
tions, and in the ns2 packet simulator, show that the protocol maintains small queues.
The simulations also indicate that tuning, using a single control parameter per link, is
fairly easy.

The final contribution is a split-connection scheme for downloads to a mobile terminal.
A wireless mobile terminal requests a file from a web server, via a proxy. During the file
transfer, the Radio Network Controller (rnc) informs the proxy about bandwidth changes
over the radio channel, and the current rnc queue length. A novel control mechanism in
the proxy uses this information to adjust the window size. In simulation studies, including
one based on detailed radio-layer simulations, both the user response time and the link
utilization are improved, compared tcp New Reno, Eifel and Snoop, both for a dedicated
channel, and for the shared channel in High-Speed Downlink Packet Access.
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Preface

He does love his numbers
And they run, they run, they run him
In a great big circle
In a circle of infinity

3.1415926535 897932
3846 264 338 3279

Kate Bush, π

Graduate education does not quite follow the general rule that the last 10% of
any work takes 90% of the time. Of the results in this thesis, most were developed
in the last two years, after my licentiate degree. For a long time, I thought that
it would be best to stay outside of the area of congestion control, since it is so
crowded. Searching the science citation index for “Congestion control” gives 333
journal articles published in the period 2006–2007 (excluding December 2007, which
is still pending as I write this).1

During my first years as a PhD student, my main research interest was tcp over
wireless. This is also an area with a lot of people working, but it is also wide area,
with many different and loosely related problems. The main topic in my licentiate
thesis, interactions between link-layer control, e.g., power control, and end-to-end
congestion control, was a reasonably small and comfortable niche.

But in the end, I could not resist the temptation to study congestion control
for the Internet. Like computer science, which is the study of man-made general
purpose computers such as the von Neumann architecture and the Turing machine,
networking research studies the Internet. This is another man-made machine con-
structed in the last decades, which is still growing, both in the number of users2,
and in its influence on everyday life. And congestion control is the single most
important mechanism that prevents this machine from breaking down.

1And if conference papers, technical reports, and the like are included, the numbers are of
course higher. With the same search criteria, scholar.google.com finds 4730 papers.

2Last month, the One Laptop per Child project finally started the mass production of its xo
laptops, for distribution to school children in developing countries.
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Prologue

The Internet

C
ongestion control is one piece of the Internet machinery. But how does it
fit in the larger picture, and how does the Internet really work? A younger
second cousin of mine, Tom, once asked me how life was before the Internet.

Let us meet again in a few years, and continue that conversation.

History

Tom: Could you use the Internet when you went to school?

Niels: No, I got my first account an a machine with a real Internet connection in
October 1992, two years year after I entered university.

Tom: So that was the first time you used email?

Niels: Not quite, I got a student account at the cs department one and a half
year earlier. The computer system for the students was not directly connected to
the Internet, presumably for the protection of the Internet, but one could send and
receive email, both locally, to other students and teachers, and to the outside world.

Since email was the first big application for the network, it was common with
gateways between Internet email, and other systems. I remember having a summer
job in the early 1990s at a telecommunications company. We had email, but no
direct connectivity to the Internet. It was not possible to connect directly to ftp
servers around the world, but some file archives offered an ftp by email service,
which we used.

Tom: So how did people exchange files before the Internet?

Niels: Computer communication was fairly obscure; some people used modems to
dial in to bulletin board systems, and hacker groups would exchange data on floppy
disks sent via postal mail. It was common that computer magazines and books
published program listings, but to try the program, you had to first type it into
your computer by hand.

Tom: When did Sweden get connected to the Internet?
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Niels: I think the first network that was connected was the university network
sunet. A 56 kbit/s satellite link was set up between the Nordic university networks,
and the John von Neumann Center at Princeton, New Jersey. Due to a delay on the
American side of the link, Sweden missed the outbreak of the first Internet worm,
released by Robert Morris on November 2, 19883. The satellite link was operational
a week later4.

Tom: It’s hard imagine how it was before the Internet, I use email and instant
messaging constantly to keep in touch with friends.

Niels: The phone system is of course many decades older than the Internet, so
that’s what people were using to keep in touch. Today, the Internet is used for
everything, not just email and file transfer, but phone calls, radio, film distribution,
etc. Before this convergence, we had a couple of large but separate communication
systems, starting with radio broadcast and the (wired) telephone network, then
television (different systems for terrestrial, satellite and cable), and finally mobile
telephone networks.

Circuit switching vs packet switching

Tom: How does the Internet work, then? What makes the Internet different from
the telephone network?

Niels: The telephone systems were traditionally circuit switched. Originally, when
making a phone call, you had an operator manually patching together a physical
electrical circuit between the two telephones. Later on, this manual patching was
replaced by automatic electromechanical switches, reacting to each digit of the
phone number as you dialed, and then by digital systems.

Tom: This seems easy enough for local calls; there’s a cord from each telephone to
a huge switch board at the telephone switch, and to connect two telephones, you
patch the corresponding two cords together. But how could you patch together a
long distance call?

Niels: For the duration of a call, you need a path reserved through the network,
from one switch to the next. Between neighboring switches, your call might use a
separate cord, a frequency band in a cable using frequency division multiplex, or
certain time slots in digital system with time division. This means that every switch
on the path must be aware of your call, and change their state when the call is set
up or teared down.

Tom: I’ve heard that the Internet is “packet switched”, what does that mean?

Niels: Too see the difference between circuit switching and packet switching, say
you want to transport fuel from the harbor at Värtahamnen to Arlanda airport.

3The worm infected vax computers and Sun workstations. It is guessed to have infected 6 000
out of the roughly 60 000 computers connected to the Internet at the time.

4Kaarina Lehtisalo, The History of nordunet—Twenty-five years of networking cooperation

in the Nordic countries, http://www.nordu.net/history/book.html.
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Routing

One alternative is to construct a pipeline between these two points. A different way
to solve the problem is to load the fuel onto trucks, and let each truck find its way
from the harbor to the airport independently. Pipelines are sure useful in certain
circumstances, but using a general purpose road network is more flexible. You can
freely mix vehicles of different sizes and with different cargo, while you can’t use
the same pipeline system to transport aviation fuel and beer.

Routing

Tom: But unlike trucks, packets have no drivers?

Niels: There have actually been some research on “active networking”, where each
packet contains the intelligence needed for it to find its way through the network5.
But in the Internet, packets are not smart enough to find their way by themselves.

Tom: So when I send a packet over the network, how does the network know where
to send it?

Niels: Each packet includes its source and destination address. These are the ip-
addresses, 32 bits, usually written as, e.g., 130.236.254.1036. Have you ever man-
ually configured the ip address of your computer?

Tom: I think I had to to that sometimes, but that was many years ago, so I don’t
quite remember. Nowadays it’s always automatic. But I remember having to type
in some numbers for the address, and also for something called “netmask” and
“default gateway”, whatever that meant.

Niels: That’s the first step of routing. Your computer needs to know which ad-
dresses belong to computers on the same local network as you, and that’s what
the netmask is; it gives the size of the prefix identifying your local network. On
the Lysator network, the machine where I usually read email has the address
130.236.254.103, and the netmask is 255.255.255.0. That tells the computer
that all addresses starting with 130.236.254. belong to computers on the same
local network. This is the network prefix, and in this case, it’s 24 bits long.

When I send a packet, the ip stack first uses the netmask to check if the desti-
nation address is on the same local network. If it is, the packet can be sent to the
destination directly, without passing through any intermediate routers.

Tom: So that’s what the netmask is for. And the “default gateway”?

Niels: That’s the ip address of a router, which must be located on the local network,
that routes packets to and from the outside world. All packets sent to destinations
beyond your local network, are sent to the default gateway, which then passes them
on to other routers. It’s called “default”, because it is possible to set up more
complex routing rules, and the default gateway is used when no other rule match.

5This goes back at least to the Softnet project in the early 1980s, developed by Jens Zander
and Robert Forchheimer at Linköping University.

6For ip version 6, the addresses are 128 bits.
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Tom: So how does the gateway know what to do with my packets?

Niels: The routing system is more or less automatic. Each router has a couple of
in- and outgoing links. It keeps track of which parts of the network are connected,
directly or indirectly, to each link. Within an organization, routes can be config-
ured manually, or via protocols such as ospf (Open Shortest Path First), which
exchanges routing information with neighboring routers. The ospf protocol finds
the shortest, or lowest cost, path between each pair of routers. Between organiza-
tions, routing depends not only on network topology, but also on private service
agreements between Internet Service Providers (isps), basically, on who is paying
whom. This routing information is exchanged between routers, taking policy into
account, using bgp (Border Gateway Protocol).

No matter which protocol or method is used to configure the routing, the end
result is a routing table, a large lists of network prefixes, and for each prefix, the
outgoing link and neighbor router for that prefix. The destination address of each
incoming packet is looked up in the routing table to find the longest matching
prefix, and then the packet is transmitted to the corresponding router.

Routers close to the network edge often have a default gateway; a neighboring
router which is more central, and which is used for all packets not matching any
other rule. Routers in the core network don’t have any default gateway, and this
core is sometimes called the “default-free zone”.

TCP/IP

Tom: When people talk about tcp/ip, what does that mean? Is it just a more
complicated way to say “Internet”?

Niels: Well, it’s more or less the same thing. At least ip, which simply stands for
the Internet Protocol.

If packet switching is analogous to a general purpose road network, then the ip
protocol is the standardized freight container for intermodal transport. You pack
some goods in a container. Your container is picked up by a truck, then loaded
onto a train to a container terminal, then loaded onto a container ship, unloaded
at some distant harbor, loaded onto another truck or train, and so on. All without
any handling of the cargo inside the container. Before 1970, container transport
suffered from several national or company-specific standards, all incompatible with
each other. Intermodal freight transport took off after the iso standardization of
container sizes around 1970, transforming the world economy in unexpected ways7.

Tom: So there were other packet switching protocols before ip?

Niels: Sure. I’m not very familiar with any of them, but there were many propri-
etary networking protocols, e.g., sna from ibm and decnet from Digital Equipment

7Marc Levinson, The Box—How the shipping container made the world smaller and the world

economy bigger.
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Architecture

Corporation. The x.25 protocol was standardized by ccitt (Comité Consultatif In-
ternational Téléphonique et Télégraphique) in 1976, primarily for use in networks
run by telephone companies. tcp and ip were developed during the 1970s, by the
Defense Advanced Research Projects Agency (darpa) in the United States, as
communication protocols for interconnecting different networks. iso standards for
networking were developed during the 1980s, accepting x.25, but not tcp/ip, as a
part of the Open Systems Interconnection (osi) standard.

Tom: But tcp/ip is still not an iso standard? So what happened with that?

Niels: When nordunet were implementing wide area networking in the late 1980s,
the only part of osi networking standards that was in real use was x.25. And x.25
had both technical and economical problems8. So the choice was between the osi
standards, which were not mature, various proprietary networking technologies, and
tcp/ip9. I imagine the considerations were similar at other organizations planning
or building networks.

The first version of nordunet was a wide area Ethernet that supported all of ip,
decnet and x.25. Some year later, the network was upgraded to a pure ip network,
but still with support for decnet and x.25 on top of ip.

Architecture

Tom: So ip won the protocol war. Was that just due to good timing, or what is it
that makes ip different?

Niels: As the name implies, ip was designed for the interconnection of heteroge-
neous networks. I think it managed to find the right, close to minimal, interfaces for
doing that. Transmission of ip packets is straightforward to implement on top of
virtually any link technology10. And on top of ip, end points can implement more
sophisticated communication and application protocols. The Transmission Control
Protocol (tcp) provides a bidirectional reliable connection between two end points.
Most application protocols you use are specified as working on top of any bidirec-
tional data stream, and are used on top of tcp. Some that don’t need a connection,
or don’t need reliable transmission, can work with ip directly11.

Tom: Isn’t that the obvious way to design a networking protocol?

8Quoting Hans Wallberg, manager of sunet, “x.25 became terribly expensive when usage
grew, since the cost was based on the amount of data transferred. The performance was also
too poor. Even if you had a 64 kbit/s connection you never got more than 2400 bit/s due to all
overhead.”

9The so called “protocol wars” are described in some more detail in Kaarina Lehtisalo’s book,
which is one of my main sources for the history of the early years.

10An experimental specification for the transmission of ip packets with carrier pigeons, rfc
1149, was published on April Fool’s day 1990. A decade later, this specification was implemented
for the first time, in a cooperation between the Linux and bsd User Group in Bergen, and Vesta
Brevdueforening.

11Actually, these protocols usually don’t work with ip directly, but with the udp protocol,
which is a very thin layer on top of the best effort ip packet delivery service.
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Niels: It may seem obvious today. But for earlier networks, the applications and the
link technologies were more tightly coupled. E.g., in the telephone system, all links
and connections were of fixed bandwidth (around 4 kHz for analog transmission and
60 kbit for digital transmission), chosen for supporting a voice service of reasonable
quality. And there were few applications besides voice.

Tom: But now your comparing computer network to the telephone system that is
many decades older. That’s cheating. What if you compare ip to decnet or to the
osi protocols?

Niels: I don’t know many details about how decnet works, but one important
difference is that ip is an open, non-proprietary standard. You can buy devices that
speak ip, network equipment, computers, various gadgets, from a large number of
different companies, and they will work together. As for osi, those protocols were
complex committee products, where everybody’s favorite feature was included. For
example, the osi model specifies two more layers than in tcp/ip, and the osi
network layer supports both datagram-oriented and connection-oriented services.
In tcp/ip, the split between ip and tcp means that the network layer need not be
aware of connections. The abstraction of a connection between two hosts is created
by the tcp-implementation in the end points. This is an example of the end-to-end
principle.

Tom: The “end-to-end principle”? What in the world is that?

Niels: The end-to-end principle states that in a communications system, as much
as possible of the protocol logic and state should be located in the communication
end points. This is important for the scalability of the system, and one of the most
important principles for the architecture of the Internet. In practice, one direct
consequence is that a tcp connection can survive a reboot of routers along the
path, as well as routing changes.

Tom: Quite different from the old telephone system.

Niels: In the telephone system, the telephone devices are simple, and all the com-
plexity is in the network. In the Internet, the network layer is stupid, and instead
the end points have to be quite complex12.

Congestion control

Tom: When driving, I often get stuck in the traffic, waiting and waiting in some
queue. Do packets get stuck too, on the Internet?

Niels: That’s congestion; when there is more traffic than the network can handle.
In the Internet, each router has some incoming and some outgoing links of limited
capacity. For example, if a router has two incoming links where 80 Mbit of packets

12But not as complex as one might think. Adam Dunkel’s tcp stack uip supports 8-bit micro
controllers, and needs about 5 Kbyte for code and a few hundred bytes of ram, depending on the
application.
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arrive every second, and all packets are routed to the same outgoing link, with a
capacity of only 100 Mbit/s, then that router is overloaded. Routers buffer packets
at the outgoing link, so when the router is overloaded, packets are queued up in
that buffer. But unlike traffic queues, the buffer size, and hence the queue size, is
limited. When the limit is reached, arriving packets are not added to the queue,
they are thrown away or “dropped onto the floor”.

Tom: Not quite like road traffic then.

Niels: No, it’s as if there were trapdoors in the roads, located some 100 m before
each intersection. The trapdoor leads to a bottomless hole, and opens automatically
whenever there’s a queue all the way from the trapdoor to the intersection.

Another important difference compared to the road network is the traffic pat-
tern. The bulk of the traffic on the Internet is transfer of fairly large files. A typical
file will be divided into somewhere from a hundred packets for a moderate size
image, to several thousands of packets for larger files. All these packets have the
same source and destination addresses.

Tom: So when my computer sends a file, it transmits a thousand packets straight
away?

Niels: With the earliest versions of tcp, you might almost have done that. The
tcp protocol included flow control from the start; this mechanism lets the receiver
tell the sender how much data the receiver can handle, and the sender must not
send more than that. In the road traffic analogy, you tell the sender that you have
free parking space for only ten trucks, and then the sender will load at most ten
trucks and send them your way. When the trucks have arrived, been unloaded, and
left again, you tell the sender that you have new parking space available.

Tom: So if the receiver has space for a thousand packets, I send that?

Niels: That could cause problems for the network. As soon as the capacity of
the computers connected to the network outgrow the capacity of the routers, the
network suffered “congestion collapse”, with drastically reduced performance. This
was during the Internet’s infancy in the early 1980s13. It became clear that flow
control was not sufficient. It prevents overloading of the receiver, but not overloading
of intermediate routers. Congestion control was needed too.

Tom: So how does that work?

Niels: The sender maintains a limit, called the congestion window, for the number
of packets in-flight in the network, i.e., packets that have been sent but not yet
acknowledged. Say the congestion window is five packets. Then you will have five
packets in-flight somewhere in the network, waiting for an acknowledgement (ack)
saying that a packet has arrived to the destination and exited the network. And
you send a new packet only in response to an ack for some older packet.

Then tcp also has rules for the adjustment of this window size: When the
connection is new, the window size is increased by one packet for each received

13See rfc 896 for a contemporary source
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ack, meaning that you can send two new packets for each received ack. When a
packet is lost, meaning that the network is getting congested, the window size is
cut in half, followed by an increase of one packet per roundtrip time. This style of
congestion control was introduced in tcp around 1988, and it seems to work fairly
well.

Tom: That sounds like really simple rules. Amazing that it works so well. Anyway,
there’s one other thing I don’t understand. You have been talking a lot about ip
and ip-addresses. But you never see any ip-addresses, do you? At least all addresses
I use are human-readable, e.g., wikipedia.org. Are they related in some way?

Niels: That’s the Domain Name System (dns), which is a huge distributed database.
But it’s getting late, so if you’d like me to try to explain how that works, let’s do
that over dinner.

xx



Chapter 1

Introduction

W
indow-based congestion control is an Internet work horse. Up to 90% of
the traffic is managed by the tcp protocol, used for web browsing, file-
sharing, email transmission, and innumerable other applications. The

remaining traffic serves applications such as voice over ip, online gaming, and Do-
main Name System (dns) service. To a first approximation, Internet traffic can be
divided into two types: tcp traffic and real-time traffic.

The tcp traffic uses window-based congestion control, which adapts each flow’s
average sending rate to the flow’s fair share of available resources. The collection
of tcp flows tries to use all available capacity, but it also responds to network
congestion, and will reduce each flow’s sending rate if the network load increases,
or if the capacity in the network is reduced.

The real time traffic uses different mechanisms for congestion control, or none
at all, together with explicit or implicit admission control1. Which means that
the sending rate of a real-time application is mostly independent of the current
network state. The reason that these real-time application has, so far, not caused
any Internet breakdown, is in part due to the admission control, and in part due
to the fact that the typical real-time application does not need high capacity2. In
the current Internet, the quality of real-time applications degrade severely if they
share a bottleneck with tcp flows.

This chapter is organized as follows. First, in Sec. 1.1, we look into the future, to
see what the Internet will be like, and what will be needed to get there. Sec. 1.2 gives
a brief introduction to ip networking and the window-based congestion control of
tcp. In Sec. 1.3, we describe the control objectives for Internet congestion control.
An overview of the contributions in this thesis is given in Sec 1.4. Publications are
listed in Sec. 1.5, and finally, Sec. 1.6 provides the outline for the rest of the thesis.

1For an example of implicit admission control, consider an online game. If delay or packet loss
to a game server becomes too bad due to congestion, the player will likely quit the game and try
at a later time.

2A voice call needs at most 60 kbit/s, so a 100 Mbit/s Ethernet, a common capacity in home
and office networks, can easily accommodate several hundred simultaneous voice calls.
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1. Introduction

Figure 1.1: The improvised headquarters for the emergency response team is located
in the high “Lipstick” building in Gothenburg, at the shore of Göta Älv. Photo,
Painting the sky with lipstick, by Jonas Ahrentorp.

1.1 Motivation

An emergency response scenario

Gothenburg, November 2015. A week ago, the embankments around the harbor
and the city center broke down; they could not hold against the severe autumn
storm, and the higher sea level we have seen in recent years. Since the sea water
flooded several underground tunnels, transformer stations, telephone switches, and
Internet peering centrals, the basic infrastructure is still not working (not to mention
the flooded sewer system).

The city center, roughly from the harbor up to Vasagatan, is flooded. Still, the
area is far from deserted, a few hundred people are working there, local emergency
response personnel, additional professionals from Uddevalla and Copenhagen, to-
gether with volunteers who live or work in the area and decided to stay and help.

The center of all this activity is the well-known “Lipstick” building (Fig 1.1).
When the electricity and the telephone system stopped working, the people working
in one of the offices half-way up in the tower realized that the location was ideal
for wireless communication to large parts of the flooded area. Enabling ad-hoc
networking, they soon got connected to other people living or working nearby, who
were also cut off from the outside world. The network grew to about 150 active
nodes, and soon somebody managed to get in contact with emergency response
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people.
Within the hour, a military helicopter landed on the roof3. The passengers were

a couple of emergency response workers from Mölndal’s fire-station, who brought
with them a microwave link and a small diesel-powered generator, and sufficient
fuel for a couple of days. As soon as the microwave was operational, the ad-hoc
network had a reasonable connection to the Internet.

The network was used primarily for voice calls and email, first locally, and,
once there was connectivity to the outside, to all of the world. People could get
in contact with relatives, and the emergency response people could get in contact
with the people in the area to assess the situation and organize reinforcements.

The next few days, things went smoothly. Evacuation, by boat or helicopter
when necessary, was organized. Patients waiting for evacuation were equipped with
networked pulse oximeters and other sensors, monitored both by local medical staff
and the medical support center at the Sahlgrenska University Hospital. The coor-
dination office moved down to the bottom of the tower, since it proved difficult
to use the temporary generator to power the tower’s elevators. The people from
Uddevalla and Copenhagen arrived, and they started to work, almost not noticing
how their computers automatically joined the communication network. The sup-
port for those who stayed was organized, based around the Lipstick tower: Meals,
temporary hygiene facilities, as well as electrical charging stations for everybody’s
computers. Food and fuel were delivered by boat from Kungälv.

The demands on the network changed gradually during this week. The whole
time, voice and email were the most important applications, but there were also sen-
sor data, transfer of photos and videos documenting the situation, and file-sharing
of all sorts of useful information, including large files with detailed blueprints for
buildings and infrastructure.

This is the first time in Sweden that Internet communication has played such
an important rôle in an emergency situation, but it is not unique in the world. Two
years ago, in. . .

Issues for the evolution of the Internet

There are several key issues that need to be addressed, to make such a network a
working reality.

Ubiquitous wireless networking All devices in this story use wireless network-
ing. All connectivity is subject to large variations in quality and capacity.

Mobile ad-hoc networking To get connectivity between each pair of nodes, ev-
ery node may need to forward packets on behalf of other nodes. The topology
is ever-changing, as the users and their computers move around.

3The helicopter platform was added to the building a few years earlier, when the headquarter
of the Swedish Sea Rescue Society moved from L̊angedrag to new offices in the tower.
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Zero configuration In this story, most of the people are not computer experts.
And those few who are, do not have time to configure the network settings
of all the others. Furthermore, the people involved include people from vari-
ous Swedish and Danish government organizations and private citizens. This
means that there’s no single central it support department that has config-
ured the involved computers in advance. Things must just work.

Mix of real-time traffic and large file transfers The most important appli-
cation on the network is voice calls, which have intrinsic real-time require-
ments. At the same time, the network is shared with other applications, in
particular peer-to-peer file-sharing, which keep the network load close to ca-
pacity. The combination of high load, and capacity variations can easily lead
to congestion, with packet losses and large queueing delays, which may cause
unacceptable quality degradation for the real-time voice calls.

Time varying wireless channels, the changing topology of the ad-hoc network,
and the requirement of minimal configuration, rule out complex quality-of-
service mechanisms. There is no place for service level agreements, in-advance
reservation of resources, complex policy configuration, etc. Simplicity is es-
sential.

All of these issues, except possibly the need for ad-hoc networking, are important
issues also for the everyday Internet in coming years. The central theme in this
thesis concerns the last of these issues. We model the the queueing dynamics in a
network with both traffic subject to window-based congestion control, and real-time
traffic, and analyze its dynamical properties. We can then use model-based design
to construct congestion control protocols that maintain small queueing delay.

By reducing the queueing delay, we can provide high quality for both real-time
applications and peer-to-peer file transfers, and at the same time have full utilization
of available capacity.

1.2 Overview of networking

Network layers

A communication network is a set of links and nodes. The set of nodes can be
divided further into routers, which forward packets between links, and hosts, which
are the communication end points. On the physical layer, common link types are
based on optical fibers, copper cables, or radio transmission. When more than one
node can transmit on the same link, the use of the link is coordinated using some
medium access control. This coordination, together with the conventions for how
to encode an ip-packet for a particular link type, is referred as the link layer. The
service provided by the link layer is the transmission of ip packets between nodes
that are connected to the same link.
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Application

Transport

ip

Link

Physical media

Figure 1.2: The layers of the ip networking model. The ip network is implemented
on top communications links based on many different link technologies. Above ip,
there are a couple of widely used transport protocols, and an innumerable number
of different applications.

To provide global connectivity, forwarding of packets between links is necessary.
Deciding which path each packet should take between its source and destination
is the responsibility of the routing system. Routing, together with the addressing
architecture, are the main services of the network layer. The network layer provides
best effort delivery of ip packets to and from arbitrary nodes in the network.

ip is the underlying infrastructure, shared by all Internet applications. However,
many applications need a more sophisticated communication service than best effort
packet delivery. This is built on top of ip, in the form of transport protocols. Services
provided by transport protocols include

• Addressing of processes running on the same host, sharing the same ip ad-
dress.

• Acknowledgements of received packets, and automatic retransmission of lost
packets.

• The notion of a connection between two processes running on two nodes in
the network.

Widely used transport protocols are the User Datagram Protocol (udp, [97]), and
the Transmission Control Protocol (tcp, [39]). The udp protocol is basically an ip
packet delivery service, but with an extra port number attached to the addresses of
source and destination. The port number identifies a process or application running
on the host.

The most important transport protocol is tcp, which provides for a bidirectional
stream of data between two nodes. The data stream is divided into segments that
are transmitted as ip packets. Sequence numbers and acknowledgements are used, to
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Figure 1.3: Sliding window control. The window size is the amount of outstanding
data. In this example, it is five packets. In the top figure, eight packets have been
transmitted, and acks for the first three packets have been received. The bottom
figure illustrates the situation after the ack for the fourth packet has been received.
One more packet, the ninth, is transmitted, and the window of outstanding data
“slides” forward one packet.

reassemble the stream at the other end, and to detect if packets are lost, reordered
or duplicated by the network. The protocol also implements flow control, which
prevents the sending node from overloading the receiver, and congestion control,
which prevents the sending node from overloading the network. In a recent study
of the traffic mix in Deutsche Telekom’s adsl network [54], more than 90% of
the traffic was using tcp, and a significant proportion thereof was peer-to-peer
file-sharing.

Everything on top of the transport layer is referred to as application layer. There
are innumerable application protocols, from the older telnet protocol and Simple
Mail transfer Protocol (smtp), to the Hypertext Transfer Protocol (http) used
for the World Wide Web and the Session Initiation Protocol (sip) used to set up
ip telephony calls. Some general purpose application protocols, such as Transport
Layer Security (tls, also known as ssl), and the transport part of the Secure Shell
protocol suite, can be thought of as new transport protocols, even though they are
built on top of tcp.

The layering architecture is illustrated in Fig 1.2. This layering, with ip as the
common language, implies that any application can work over any heterogeneous
networking path4. Usually, an application need not be aware of what type of links
it is using, and a link need not be aware of the type of applications that are using it.
This fundamental principle of separation can be compared to Shannon’s separation
of source and channel coding, and the von Neumann computer architecture[64].

Window-based congestion control

tcp uses a sliding window flow control. The window limits the amount of data that
can be sent without waiting for acknowledgement (ack) from the receiver. When

4The model shown here is a simplified version of the osi reference model, with its seven layers.
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the window is constant, this results in the so called “ack-clock”; the timing of each
sent packet is determined by the reception of the ack for an earlier packet. This is
illustrated in Fig. 1.3.

Window-based congestion control was originally motivated by the fluid flow
analogy.

. . . the packet flow is what a physicist would call ‘conservative’: A new
packet isn’t put into the network until an old packet leaves. The physics
of flow predicts that systems with this property should be robust in the
face of congestion.

Van Jacobson, [59]

One can think about the sliding window and the ack clock as a peculiar inner
control loop which determines the sending rate; when the Roundtrip Time (rtt)
fluctuates, the sliding window gives an average sending rate of one full window per
average rtt. The window size is adjusted depending on received acks, and it is
the details of this outer-loop that differ between tcp variants.

The most widely used version of tcp is New Reno, which uses the following
window update rules. As long as there are no packet losses, the window size is
increased by one packet per rtt. And when a packet is lost, the window size is
reduced to one half of its previous value. The linear increase of the window size, in
the absence of packet losses, together with the multiplication by 1/2 when a packet
loss is detected, is called Additive Increase, Multiplicative Decrease (aimd).

This thesis proposes a new model for the queueing dynamics under window-
based congestion control. The dynamic behavior depends on the amount of real-
time, non-congestion controlled, cross-traffic that the network is shared with. The
main novelty in the model is to accurately describe the influence of this cross-traffic,
and to note that this influence is significant, in terms of central system properties
such as gain and time constants.

1.3 Problem statement

The overall goal of congestion control is to optimize the performance in a com-
munication network. This optimization means, roughly, that sending rates at the
data sources should be as high as possible, without overloading the network. The
primary measure of network overload is packet losses; when the arrival rate at a link
exceeds capacity, the corresponding queue starts to build up, and when the queue
is full, packets must be discarded. The bottleneck links in the network should be
fully utilized. The requirement of a small loss rate implies that the average arrival
rate at each bottleneck link should either match the link capacity exactly, or be
very slightly larger.

When the network is shared with real-time traffic, it becomes important not
only to maintain a small packet loss rate, but also to maintain reasonably small
queues, since large queues imply large delays.
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By the term congestion control, we include both the rules for adjusting window
sizes and sending rates which are implemented in end nodes, and all related rules
and mechanisms, such as Active Queue Management schemes (aqm) and Explicit
Congestion Notification (ecn), which are implemented in routers.

Control objectives

Congestion control has been a very active area of research during the last decade.
Still, the current transport control protocol tcp works fairly well. So why change
that which is not broken? To understand that, we must first understand what the
control objectives are:

Avoid network overload: The probability of packet loss due to congestion should
be small.

Efficient resource utilization: All bottleneck links should be fully utilized.

Fair sharing: The congestion control mechanism determines how resources are
shared between users. The sharing should be predictable and satisfy some
reasonable notion of fairness.

React to changes: The network load is constantly varying, there are occasional
routing changes, and some (wireless) links have varying capacity and delay.
The congestion control must react to these changes and adjust the sending
rates.

Small queueing delays: Both large queues and large queue fluctuations can harm
other applications using the network, in particular real-time applications.

Of these objectives, tcp achieves all but the last one, when used over the or-
dinary wired network for which it was designed. For low-power wireless links, and
for links with large propagation delay or large bandwidth-delay product, tcp also
has difficulties achieving efficient resource utilization. We therefore see three main
problems that are being addressed by current tcp research:

TCP over wireless: tcp interprets packet losses as a sign of congestion. If a
wireless link loses some packets due to disturbances on the radio channel,
tcp reduces its sending rate even when there is no real congestion. Many
wireless links tries to avoid this problem by retransmitting lost packets at the
link layer. However, this leads to larger delays and larger delay variations,
which are also problematic for tcp.

High capacity, large delay networks: To use available capacity efficiently, tcp
needs a window size close to or larger than the bandwidth-delay product. In
the basic tcp protocol, the window size is limited to 64 Kbyte, which is quite
small with todays high speed links. A 100 Mbit/s link with 5 ms rtt has a
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bandwidth-delay product of 61 Kbyte. To overcome this problem, one can use
the window scaling option [60].

But even when window scaling is used, so that the window size can grow
to match the bandwidth-delay product, the aimd rules imply that it takes a
large number of rtts for the window size to grow large enough. If also the
rtt is large, this leads to poor throughput.

Reducing queueing delay: Router buffers are usually quite large, on the order
of 100 ms times the link capacity. The additive increase rule implies that
queues at bottleneck links will grow to fill the available buffer. At this point,
the router must drop some packets. When end hosts detect these losses, they
reduce their sending rates, and the queue can start to shrink. This implies
that the queueing delay at a bottleneck will oscillate between a maximum
value on the order of 250 ms, and a minimum value that, among other factors,
depend on the number of flows. These delays are problematic for any real-time
application sharing the same link.

Deployment constraints

Furthermore, for a congestion control algorithm to be deployable over the Internet,
we have additional constraints:

Scalability: The algorithm must work for huge networks, in terms of the number
of nodes, links and data flows. The amount of resources, e.g., memory and
computation power, required in any single node in the network, must not
grow with the size of the network topology, or with the number of concurrent
data flows.

End-to-end principle: As much as possible should be done at the communication
end points. In particular, we cannot require network core to keep any per-flow
state.

Robustness: Parameters such as number of flows, capacities, and delays vary over
ranges of several orders of magnitude, and knowledge of the parameters is very
limited. Hence, the algorithm must work despite severe uncertainty about the
parameters.

Tunability: The number of tuning parameters should be small, and the effect of
each parameter should be predictable and easy to understand. For scalability,
the parameters in each node should be tunable based on local information.
E.g., to tune the parameters of an aqm scheme for a particular link, it should
be sufficient to observe local properties such as the queue size and arrival rate
at that link.

Incremental deployability: A new algorithm must work in the setting that a
subset of end-nodes and routers are upgraded, and flows using the old and
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the new algorithm share resources. It is not feasible to have a flag day when
all end nodes or all routers switch to a new algorithm.

Openness: One of the reasons for the success of the Internet was that the pro-
tocols were free to implement for anyone. Most people in the ietf (Internet
Engineering Task Force) and w3c (World Wide Web Consortium) commu-
nities understand that patent encumbered protocols are not suitable for use
in Internet standards. Patenting a network protocol almost surely guarantees
that the protocol will never see any wide use on the Internet5.

Control theoretic view of congestion control

In control theoretic terms, a mechanism for congestion control of a flow in the
network must somehow estimate the flow’s fair share of the available bandwidth,
and then use a sending rate based on this estimate. The main difficulties in doing
this is that:

• Information about the network state, available at the endpoints, is scarce.

• The value being estimated, the fair share of available capacity, is time-varying
and subject to disturbances.

• Sending rates based on an overestimation of the true value will quickly lead
to queues building up in the network, leading to both packet losses and longer
rtts for those packets that are not lost.

A router in the network can be expected to know the capacities of attached links,
the arrival rate for recent traffic, and the lengths of its queues. But, in the spirit
of the end-to-end principle, routers should not be expected or required to maintain
any per-flow information. The signalling from the network infrastructure to tcp
end nodes is severely limited. The signals available to end nodes are the arrival and
timing of acks, and, if supported by the network, a single bit of explicit congestion
notification (ecn) attached to each ack [101].

Disturbance sources include varying levels of tcp cross-traffic, varying levels
of non-congestion controlled cross-traffic, routing and topology changes, and, for
wireless links, capacity changes due to variations of the radio channel.

1.4 Main thesis contributions

The contributions of this thesis address the modeling, analysis, and design, for
improved congestion control over the Internet.

5For a sad example, see all the great research in secure password authentication. That is an
urgent problem which is technically solved, yet nobody is using the solutions because the entire
area is a patent swamp.
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Figure 1.4: Queue response from ns2 compared to the prediction of three queue
models. The simulation setup consists of a single flow with window-based transmis-
sion control, sharing a single bottleneck with 30% inelastic cross-traffic. At time
t = 10, the window size is increased by five packets.

Modeling

In Chapter 3 we develop and validate an improved model for the feedback system
consisting of a queueing network, and data sources using window-based congestion
control. The window sizes are the system inputs, and the queue sizes are the system
outputs. This model describes the inner-loop of all tcp-like window-based conges-
tion control methods. The main novelty of the model is that it takes into account
that the network is shared with traffic which is not subject to congestion control,
such as video streaming and voice over ip. The amount of such cross-traffic has a
large influence on the dynamics of the system, in particular the gain and the time
constant.

A step response is shown in Fig 1.4. The dashed curves represent two models,
the static model [114] and the integrator model [56, 80], that have been used in the
literature. The dotted curve is the result from ns2 simulations, and the solid curve
is the new model. The amount of cross-traffic is an important parameter for the
dynamics; in this figure, there is 30% cross-traffic.
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Figure 1.5: Normalized throughput for tcp New Reno (increasing curve) and West-
wood+ (decreasing curve), as a function of the buffer size at the bottleneck router.
The topmost almost flat curve is the link utilization.

Analysis

Chapter 4 analyzes the stability properties of the inner-loop in window-based con-
gestion control, as well as the convergence time.

Chapter 5 analyzes the fairness when flows using two different flavors of tcp,
New Reno and Westwood+, compete for bottleneck capacity. This will also give
us an opportunity to look closer at how aimd works, and how it relates to buffer
sizing issues. As seen in Fig 1.5, the sharing depends on the buffer size at the
bottleneck. The two flows share the link equally only when the buffer size equals
the bandwidth-delay product, which in this case is 42 packets.

Design

In Chapter 6, we design a new congestion control mechanism, as an outer-loop
around the inner-loop that was modelled earlier. The aim is to maintain the ef-
ficiency and fairness properties of tcp, but with significantly smaller bottleneck
queues. The key ideas are to take advantage of the stability of the inner-loop, and
to use rules for setting and reacting to packet marks that results in more frequent
feedback than with aqm and ecn. Figure 1.6 shows the response in window size
and queue size to a change in the cross-traffic intensity, for tcp New Reno and for
the new mechanism.
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Figure 1.6: Window size (w) and bottleneck queue size (q) for a short segment
of a simulation with a single bottleneck and a congestion controlled flow sharing
the bottleneck with Poisson cross-traffic. At t = 20 s, the cross-traffic intensity is
increased from 20% to 40% of link capacity. To the left: New Reno. To the right:
The proposed mechanism. Note the different scale on the vertical axis.

Chapter 7 considers file download over the cellular network, and proposes a
control mechanism that takes advantage of cross-layer signalling from the Radio
Network Controller (rnc) in the radio network. The new controller improves user
response time, queueing delay, and the utilization of available radio resources.

1.5 Publications

Congestion control

Modelling and estimation of network roundtrip times, for wired and wireless net-
works, is discussed in:

Krister Jacobsson, Niels Möller, Karl Henrik Johansson, and H̊akan
Hjalmarsson. Some modeling and estimation issues in control of hetero-
geneous networks. In Mathematical Theory of Networks and Systems,
Leuven, 2004.

I was fortunate to spend a couple of months during spring 2006 as a guest at
inria in Sophia Antipolis, working with analysis of tcp Westwood. The results of
this cooperation were published as:

Eitan Altman, Chadi Barakat, S. Mascolo, Niels Möller and J. Sun.
Analysis of tcp Westwood+ in high speed networks. In International
Workshop on Protocols for Fast Long-Distance Networks, Nara, 2006.

Niels Möller, Chadi Barakat, Konstantin Avrachenkov, and Eitan Alt-
man. Inter-protocol fairness between TCP New Reno and TCP West-
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wood+. In Conference on Next Generation Internet Networks, Trond-
heim, 2007.

The results from the latter paper are included in Chapter 5.
Back at kth, I and Krister Jacobsson developed the joint link model for window-

based congestion control, to better capture the dynamic properties of the ack-clock.
The model was first presented in:

Krister Jacobsson, H̊akan Hjalmarsson and Niels Möller. ack-clock dy-
namics in network congestion control—an inner feedback loop with im-
plications on inelastic flow impact. In IEEE Conference on Decision and
Control, San Diego, 2006.

With this improved model for the inner-loop of window-based congestion control,
it was a natural next step to investigate the design of the outer-loop. The result is
the congestion control protocol described in Chapter 6, which is being written up
for journal publication as:

Niels Möller and Karl Henrik Johansson. Congestion control for small
queueing delay. Manuscript in preparation.

TCP over wireless

Modeling of link-layer feedback systems such as power control and link-layer re-
transmissions is studied in:

Niels Möller and Karl Henrik Johansson. Influence of power control and
link-level retransmissions on wireless tcp. In Quality of Future Internet
Services, volume 2811 of Lecture Notes in Computer Science. Springer-
Verlag, Stockholm, 2003.

Carlo Fischione, F. Graziosi, F. Santucci, Niels Möller, Karl Henrik
Johansson, and H̊akan Hjalmarsson. Analysis of tcp over wcdma wire-
less systems under power control, MAI and link level error recovery. In
IWCT, 2005.

Niels Möller, Carlo Fischione, Karl Henrik Johansson, F. Santucci, and
F. Graziosi. Modeling and control of ip transport in cellular radio links.
In IFAC World Congress, Prague, 2005.

Based on these models, the following paper proposes adding carefully chosen ar-
tificial delays to certain packets, to reduce spurious timeout in tcp, and improve
end-to-end performance:

Niels Möller, Karl Henrik Johansson, and H̊akan Hjalmarsson. Making
retransmission delays in wireless links friendlier to tcp. In IEEE CDC,
Bahamas, 2004.
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Publications

These results on wireless links were also presented in my licentiate thesis, and are
not included in the current thesis.

The cross-layer design described in Chapter 7 is a result of cooperation with
Ericsson, producing a series of papers:

Inés Cabrera Molero, Niels Möller, Justus Petersson, Robert Skog, Åke
Arvidsson, Oscar Flärdh, and Karl Henrik Johansson. Cross-layer adap-
tation for tcp-based applications in wcdma systems. In IST Mobile &
Wireless Communications Summit, Dresden, 2005.

Niels Möller, Inés Cabrera Molero, Karl Henrik Johansson, Justus Pe-
tersson, Robert Skog, and Åke Arvidsson. Using radio network feedback
to improve tcp performance over cellular networks. In IEEE Confer-
ence on Decision and Control and European Control Conference, Seville,
2005.

Niels Möller, Åke Arvidsson, Justus Petersson, Carlo Fischione, Robert
Skog, Patrik Karlsson and Karl Henrik Johansson. Supporting end-to-
end applications over hsdpa by cross-layer signalling. In IEEE Wireless
Communications & Networking Conference, Hong Kong, 2007.

Marco Fiorenzi, Daniele Girella, Niels Möller, Åke Arvidsson, Robert
Skog, Justus Petersson, Patrik Karlsson, Carlo Fischione and Karl Hen-
rik Johansson. Enhancing tcp over hsdpa by cross-layer signalling. In
IEEE Globecom, Washington, 2007.

My interest in stability of window-based congestion control was initially motivated
by this project. The stability results in Chapter 4 were presented in:

Niels Möller, Karl Henrik Johansson and Krister Jacobsson. Stability of
window-based queue control, with application to mobile terminal down-
load. In International Symposium on Mathematical Theory of Networks
and Systems, Kyoto, 2006.

The simulation studies presented in Chapter 7 are the work of a large number
of people, including three master of science projects under my supervision,

Inés Cabrera Molero, Radio network feedback to improve TCP utiliza-
tion over wireless links. Master Thesis, kth, 2005.

Marco Fiorenzi, Downlink tcp proxy solutions for interactive gaming
over hsdpa and 3G Networks. Master Thesis, kth, 2007.

Daniele Girella, Downlink tcp proxy solutions over hsdpa with flow
aggregation and user behavior. Master Thesis, kth, 2007.

A journal article on the results of the radio network feedback project is under
preparation.

Niels Möller, Åke Arvidsson, Justus Petersson, Carlo Fischione, Robert
Skog, Patrik Karlsson and Karl Henrik Johansson. Radio Network Feed-
back: Architecture and performance. Manuscript in preparation.
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Other research

I have also had the opportunity to study some problems in the area where computer
science meets computational number theory, which is unrelated to the topic of this
thesis. The following contributions consider the problems of efficient computation
of the greatest common divisor of two very large (10 000 digits or more) integers:

Niels Möller. On Schönhage’s algorithm and subquadratic integer gcd
computation, In Mathematics of Computation (77) 589–607, 2008.

Niels Möller. Robust hgcd with no backup steps. In International Congress
on Mathematical Software, Castro Urdiales, 2006.

1.6 Thesis outline

Chapter 2 describes the principles of tcp/ip and the mathematical tools needed
for understanding Internet congestion control. We also give an overview of current
research in congestion control, and of the issues when using tcp/ip over wireless
links.

In Chapter 3, we develop and validate a model for the feedback system consisting
of a queueing network, and data sources using window-based congestion control.
The window sizes are the system inputs, and the queue sizes are the system outputs,
so this system is the inner-loop of all tcp-like window-based congestion control
methods. The main novelty of the model is that it takes into account that the
network is shared with traffic which is not subject to congestion control, such as
video streaming and voice over ip. Chapter 4 uses this model to analyze the stability
properties, as well as the convergence time.

In Chapter 5, we examine the fairness issue, when a bottleneck link is shared be-
tween flows that use different versions of tcp. This will also give us an opportunity
to look closer at Additive Increase, Multiplicative Decrease, and how it interacts
with buffer sizing issues.

In Chapter 6, a new congestion control mechanism is designed, as an outer-
loop around the inner-loop that was modelled earlier. The aim is to maintain the
efficiency and fairness properties of tcp, but with significantly smaller bottleneck
queues. We establish stability of the control mechanism, in the fluid-flow setting,
and investigate its behavior in packet-level ns2 simulations.

Chapter 7 considers the tcp-over-wireless problem, in particular, file download
over the cellular system, where the link capacity is time-varying. The proposed
solution is a modified outer-loop, which takes advantage of cross-layer signalling
from the radio network.

Finally, Chapter 8 discusses the results, and summarizes what we have learnt
about modeling, analysis and design of congestion control protocols.
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Chapter 2

Background

T
he Internet is competing with the global telecommunications infrastructure
for the title “The biggest machine in the world”1. Understanding how it
works may seem like a daunting task. In this chapter, we start with the

principles of tcp/ip, the work horse protocols of the Internet. Sec. 2.1 describes the
layered Internet architecture, and Sec. 2.2 explains how the tcp protocol works. The
Prologue gives a broader and less formal introduction to the Internet’s architecture
and principles.

After this background, Sec. 2.3 describes the mathematical tools and frameworks
that are used to analyze the system; from detailed models that are used for small
networks, to frameworks that provide an understanding of the structure of large
complex networks. Sec. 2.4 surveys the most important lines of tcp research, with
a focus on window-based protocols.

Of the control objectives, the requirements on fairness and small queueing delays
are related to the system’s equilibrium. In Sec 2.5, we discuss the notion of fairness
of congestion control protocols. In Sec. 2.6, we discuss queueing delay, and the
related area of quality of service.

Finally, in Sec. 2.7, we describe the characteristics of wireless links, and the
issues that arise when using tcp over wireless.

2.1 IP networking and the end-to-end principle

Layered design of communication systems is a modularization technique, where
each layer at a particular node needs to know how to communicate with the layers
directly above and below at the local node, but only to the same layer at remote
nodes. For example, the Internet Protocol (ip) layer (or networking layer) needs to
know how to transmit ip packets using the local link-layer, but it does not need to
know anything about the receiver’s link-layer.

1This phrase was used on Ericsson posters in the 1980’s.
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Application layer
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Figure 2.1: Left: The osi networking stack. Right: The ip networking model.

The Open Systems Interconnection (osi) reference model specifies seven layers,
illustrated to the left in Figure 2.1. From bottom to top: physical layer, link layer,
networking layer, transport layer, session layer, presentation layer and application
layer. ip networks uses a somewhat simpler model. At the core, we have the ip
layer, corresponding to the networking layer of the osi model. The ip layer is a
fairly primitive packet transport service, which provides unreliable best effort packet
delivery between nodes, identified by their ip addresses (32 bits for ip version 4,
128 bits for ip version 6). Packets may be dropped, duplicated or delivered out of
order.

The power of ip, the Inter-network protocol, is that it is used to communi-
cate across heterogeneous networking technologies, such as Ethernet, point-to-point
links, and cellular networks. These different technologies are accommodated as the
abstract notion of a link and a link layer. The link layer is directly below the ip
layer in the networking stack, and it provides ip packet transport between nodes
that share the same link. There are multitude of different link types in the Internet,
and a multitude of transport layer and application layer protocols, but they are all
used with a single packet transport service: ip. This is illustrated to the right in
Figure 2.1.

Above the ip layer, we have the transport layer, where the Transmission Control
Protocol (tcp) is the protocol of primary interest. tcp is responsible for dividing
a data stream into packets, ensure reliable delivery even when the ip layer loses,
reorders, or duplicates packets, and at the same time it senses the state of the
network to avoid overloading it. In the context of ip networking (as opposed to
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the construction of applications and application protocols), everything above the
transport layer is usually referred to as “application layer”, with no subdivision
into session layer, presentation layer, etc.

There are no sophisticated mechanisms for resource reservation or allocation
built in to the ip layer; the normal response for a router or link that is overloaded
is to simply discard the packets it cannot handle, and leave to the communicating
endpoints to sort things out the best they can. This is an important design choice:
The network core is simple, while endpoints must be quite sophisticated in order to
work well together with the network. This design is known as the end-to-end prin-
ciple, and it differs from many earlier network architectures [105, 49]. In particular,
it contrasts to the architecture of traditional wired telephony system, where the
telephone device at an end point can be built of just a dozen analog components.

2.2 Transmission control protocol

As described in Chapter1, two of the main objectives of congestion control is to
keep the load of the network close to the available capacity, and at the same time
share the available capacity fairly between flows. The tcp protocol was developed
in the late 1970s, resulting in the Internet Standard rfc 793 [39]. The principles for
tcp congestion control were developed a few years later, in response to experience
of “congestion collapses” in the Internet [92, 59].

Window-based control

The most important concept in tcp congestion control is that of the congestion
window. The window is the amount of data that has been sent, but for which no
acknowledgement has yet been received. A constant congestion window means that
one new packet is transmitted for each ack that is received.

The sending rate is controlled indirectly by adjusting the congestion window.
The standard way of doing this is called New Reno [5, 45]. It is described in this
section. One common extension is tcp with selective acknowledgements (sack) [88,
18]. Before explaining the control mechanisms, we have to look into how tcp detects
packet loss.

Acknowledgements and loss detection

At the receiving end, acknowledgement packets are sent in response to received data
packets. tcp uses cumulative acknowledgements: Each acknowledgement includes a
sequence number that says that all packets up to that one has been received. Equiv-
alently, the acknowledgement identifies the next packet that the receiver expects to
see.

When packets are received out of order, each received packet results in an ac-
knowledgement, but they will identify the largest sequence number such that all
packets up to that number has been received. E.g., if packets 1, 2, 4, and 5 are
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received, four acknowledgements are generated. The first says “I got packet #1,
I expect packet #2 next”, while the next three acknowledgements all say “I got
packet #2, I expect packet #3 next”. The last two acknowledgements are duplicate
acks, since they are identical to some earlier ack.

When duplicate acks are observed on the sender side, there are several possible
causes: a packet may have been delayed and delivered out-of-order, a packet may
have been lost, or an ack packet may have been duplicated by the network.

Packet losses are detected by the sender in two ways:

• Timeout. If a packet is transmitted and no ack for that packet is received
within the Retransmission Timeout interval (rto), the packet is considered
lost.

• Fast retransmit. If three duplicate acks are received, the “next expected
packet” from these acks is considered lost. Note that this can not happen if
the congestion window is smaller than four packets.

Packets that are lost, as detected by either of these mechanisms, are retransmitted.
Furthermore, congestion control actions are also based on these loss signals, as
described below.

The value for rto is not constant, but based on measured average and variation
of the rtt. It is also modified when a timeout occurs, by the exponential back-off
mechanism.

TCP congestion control state

There are four distinctive states in the tcp congestion control, illustrated in Fig-
ure 2.2, and two state variables related to congestion control: The congestion win-
dow cwnd and the slow start threshold ssthresh. The value of ssthresh determines
the window increase rule; if cwnd < ssthresh, tcp increases cwnd by one packet
for each received ack (slow start state), and if cwnd ≥ ssthresh, tcp increases
the window size by one packet per rtt (congestion avoidance state). Typical initial
values when tcp leaves the idle state and enters the slow start state are a cwnd of
2 packets, and an infinite ssthresh.

We look at the operation of each of the four states in turn.

Slow start

The slow start state is the first state entered when a flow is created, or when a
flow is reactivated after being idle. The slow start state can also be entered as
the result of a timeout. In this state, cwnd is increased by one packet for each
non-duplicate ack. The effect is that for each received ack, two new packets are
transmitted. This implies that the congestion window, and also the sending rate,
increases exponentially, doubling once per rtt.

It may seem strange to refer to an exponential increase of the sending rate as
“slow start”; the reason is that in the early days, tcp used a large window from the
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Figure 2.2: tcp state diagram. Transitions back to the idle state are omitted.

start, and the introduction of the slow start mechanism did slow down connection
startup.

Slow start continues until either

• cwnd > ssthresh, in which case tcp enters the congestion avoidance state,
or

• a timeout occurs, in which case tcp enters the exponential back-off state, or

• three duplicate acks are received, in which case tcp enters the fast recovery
state.

The motivation for the slow start state is that when a new flow enters the
network, and there is a bottleneck link along the path, then the old flows sharing
that link need some time to react and slow down before there is room for the new
flow to send at full speed.

Congestion avoidance

In the congestion avoidance state, cwnd is increased by one packet per rtt (if cwnd
reaches the maximum value, it stays there). This corresponds to a linear increase
in the sending rate. On timeout, tcp enters the exponential back-off state, and on
three duplicate acks, it enters the fast recovery state.

The motivation for this congestion avoidance mechanism is that since tcp does
not know the available capacity, it has to probe the network to see at how high
a rate data can get through. Aggressive probing would make the system unstable,
and a single packet increase seems to work well in practice.
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Exponential back-off

tcp enters the exponential back-off mode after timeout. Several actions are taken
when entering this state:

• The lost packet is retransmitted.

• The state variables are updated by ssthresh← cwnd/2, cwnd← 1 packet.

• The rto value is doubled.

When an ack for the retransmitted packet is received, tcp enters the slow start
phase. The above update of ssthresh implies that, in the absence of further packet
losses, tcp will switch from the slow start phase to the congestion avoidance phase
once cwnd is increased to half its value before the timeout.

If the retransmission timer expires again with no ack for the retransmitted
packet, the packet is repeatedly retransmitted, rto is doubled, and ssthresh is
set to 1 packet [40]. The upper bound for the rto is on the order of one or a few
minutes.

Exponential back-off continues until an acknowledgement for the packet is re-
ceived, in which case tcp enters the slow start phase, or the tcp stack or application
gives up and closes the connection.

The motivation for the exponential back-off mechanism is that timeouts, in par-
ticular repeated timeouts, are a sign of severe network congestion. In order to avoid
congestion collapse, the load on the network must be decreased considerably and
repeatedly, until it reaches a level with a reasonably small packet loss probability.

Fast recovery

tcp enters the fast recovery state after it detects three duplicate acks. When
entering this mode, the first actions of tcp is to retransmit the lost packet, and
set ssthresh ← cwnd/2. The reason for the ssthresh update is arrange so that
the later window increase from cwnd/2 and up will use the additive increase of
congestion avoidance, not slow start.

tcp then continues to send new data at approximately the same rate, one new
packet of data for each received duplicate ack. In rfc 2581 [5], this is described
using a fairly complex procedure that artificially inflates cwnd.

If no ack for the retransmitted packet is received within the rto interval, tcp
enters the exponential back-off state. Otherwise, when an ack for the retransmitted
packet is finally received, tcp sets cwnd = ssthresh, i.e., half the cwnd value at
the start of the recovery procedure, and enters the congestion avoidance state.

If more than one packet is lost within the same window, the original fast recovery
procedure of tcp Reno is limited in that it can recover only one packet per rtt. This
is the main problem addressed by both tcp New Reno [45] and tcp sack [88, 18].

The motivation for the fast recovery mechanism is that the reception of duplicate
acks indicates that the network is able to deliver new data to the receiver. Hence,
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the network is not severely congested, and we can keep inserting new packets into
the network at the same rate as packets are delivered, at least for a while.

On the other hand, the loss of a packet also indicates that the network is on
the border of congestion. At the end of the fast recovery procedure, cwnd is halved.
tcp restarts the probing of the congestion avoidance state at a lower sending rate,
at which it did not get any losses.

It should also be noted that halving the cwnd also implies that tcp will stay
silent for about half an rtt, waiting for acks that reduce the number of outstanding
packets, until the actual number of outstanding packets match the new window size.

The ACK clock

When tcp’s congestion window is kept constant, the sender transmits one new
packet for each received ack. This is referred to as the ack clock. The number of
packets inside the network (be they data packets or acks) is kept constant. The
ack clock is based on the idea that by controlling the number of packets inside the
network, we can control the load of the network.

The average transmission rate is one window of data per rtt. In tcp conges-
tion control, the control signal is the window size, and the actual sending rate is
controlled only indirectly by adjusting the window. This can be seen as a cascaded
control system, where the ack-clock is a fast inner-loop, operating on a per-packet
timescale, which is combined with an outer-loop that adjusts the window size, and
operates on an per-rtt timescale.

2.3 Mathematical models for congestion control

One crucial issue in model-based control design is to select a model with the right
level of detail. The model should capture the important dynamics of the real system,
and at the same time be simple enough for mathematical analysis of the system.
The models for congestion control, and related tools, can be classified as:

Packet-level: A packet-level model accounts for the location of each individual
packet, as the packets are queued and forwarded by the network. The system
state evolves as a series of discrete events, where the events of interest are
arrival and departure of packets, and protocol timeouts.

Fluid flow: A fluid flow model sees the data transport as a continuous fluid, with
no packet boundaries. State variables vary continuously, and are described
using differential equations. In the context of congestion control, fluid flow
models usually do not try to capture all details of the dynamics. Instead, the
state variables represent averages of the true system state, where the average
can be an average over an rtt, or an expected value with respect to stochastic
features of the system.
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Hybrid: In a hybrid model, the evolution of the state is a result of discrete events,
together with continuous changes between events. Typically, a continuous
model is used for the queueing dynamics and maybe for some of the end-host
protocol actions, while protocol actions such as the multiplicative decrease in
tcp is modeled as an discrete event, and a corresponding discontinuous state
update.

In this section, we will describe these in turn. We will also describe the frame-
work of network utility maximization, which is an important tool for analysis and
understanding of large networks.

Packet-level models

For telecommunication networks, there is a long tradition of using queueing and
traffic theory, going back to the work of Erlang in the early 20th century [41].
These are tools for analyzing quality measures such as queueing delay and blocking
probability, given capacity and demand. The theory gives particularly nice results
when the arrival of traffic is a Poisson process. A later development is adversarial
queueing theory [21], where the arrival traffic is not stochastic, but chosen by an
adversary, subject to load constraints.

Web-server admission control is studied in [99], with the central trade-off be-
tween request rejection rate, and response time of the admitted requests. The per-
formance, in terms of blocking probability and delay, of a single server with several
traffic classes, is analyzed in [4].

In [103], it is argued that traffic theory is an essential tool for developing an
Internet with multiple service classes. Still, queueing and traffic theory is best suited
for analysis of mechanisms related to quality-of-service and admission control, which
are of an open-loop character, and more difficult to apply to closed-loop congestion
control. A recent application to tcp/aqm-style congestion control is found in [53].

The properties of interconnected queueing systems, in particular when there are
several service classes, is remarkably complex. A recent preprint [47] proves that
for queueing networks with multiple service classes, a given deterministic arrival
process, and given deterministic service times, stability is an undecidable problem.
I.e., there exists no algorithm that takes as input a description of a queueing net-
work, an arrival process, and an initial state, and determines whether or not the
queue lengths of the system are bounded over time.

The network calculus framework is a development of queueing theory, working
with bounds for the arrival rates and service rates [22, 36, 37]. Network calculus
results give worst-case bounds for properties such as router queue sizes and end-
to-end packet delay, which is useful for quality-of-service problems. However, the
tools for analysis of dynamical systems within the network calculus framework is
much less developed than the theory for dynamical systems described by ordinary
differential equations. This makes it quite intricate to analyze feedback systems. A
network calculus model for tcp is developed in [13], and it needs a fairly heavy
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machinery, working with a large extended state, and exploiting tcp periodicity, in
order to derive results for average properties.

When leaving the realm of analysis, and turning to simulation of queueing net-
works, the most widely used tool is the ns2 network simulator, which keeps track
of each packet as it traverses the network, as well as the protocol actions of com-
munication end points [94]. When deriving theoretical results based on simplified
network models, packet-level simulation as in ns2 is the usual method for validating
the results and its underlying assumptions.

Packet-level models naturally give an accurate description of the packet flow.
There are powerful tools for analyzing expected values as well as worst-case bounds
for properties such as the queueing delay and the probability of loss or blocking.
A drawback is that it is difficult analyze feedback systems, where the arrival rates
depend on the network state, in particular when we are interested not only in the
equilibrium properties, but in the dynamics of the system.

Fluid-flow models

As the name implies, fluid-flow models do not try to describe individual packets, but
view the data streams across the network as continuous flows. All the quantities
of interest, such as sending rates, window sizes, and queue sizes, are treated as
continuous (and often differentiable) functions of time. We start with the fluid-flow
model for a queue.

Example 2.1 (Queue dynamics) Assume that we have packets arriving to a
queue as a Poisson process with time-varying intensity r(t)/m, where r(t) is con-
tinuous and m is the packet size. Also assume that the service times are exponen-
tially distributed with parameter m/c, independent of the arrival process. This is
an M/M/1 queue with arrival rate r(t)/m and service rate c/m.

Let N(t) denote the number of packets in the queue at time t. The amount
of queued data is then q(t) = mN(t). We now fix some t, with q(t) > 0, and
examine the change of the queue size during the interval [t, t + h]. Let Ah be the
number of arriving packets during this interval, then Ah is Poisson distributed with

parameter
∫ t+h
t

r(s)/mds. Let Sh be the number of departing packets during the
same interval. For small h, we can ignore the possibility that the queue becomes
empty, and approximate Sh as Poisson distributed with parameter hc/m.

The change in the queue size is then

q(t+ h)− q(t) = m
(
N(t+ h)−N(t)

)
= mAh −mSh

From this expression we can easily compute the expected value, and, since Ah and
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Sh are assumed independent, we can also compute the variance:

E[q(t+ h)− q(t)] = mEAh −mESh =

∫ t+h

t

r(s) ds− hc

Var[q(t+ h)− q(t)] = m2 VarAh +m2 VarSh = m

∫ t+h

t

r(s) ds+ hcm

If we keep h fixed, and let m→ 0, it follows that

q(t+ h)− q(t)→
∫ t+h

t

r(s) ds− hc

in the L2 sense. If we divide by h and let h→ 0, we find that

dq(t)

dt
= r(t)− c

When q(t) = 0, this equation must be extended with a state constraint,

dq(t)

dt
=

{
r(t)− c q(t) > 0

max(0, r(t)− c) q(t) = 0

This establishes the usual equation for queueing dynamics as the small packet limit
of an M/M/1 queue. �

When modeling tcp, the fluid flow model is not motivated as a limit when the
packet size tends to zero; it is unclear how to scale the protocol actions so that
such a limit makes sense. Instead the fluid flow modelling tries to capture only the
dynamics on a time scale larger than roughly one rtt. The sending rate in such
a fluid flow model can usually be thought of as a moving average of the sending
rate in the real system, where the average is taken over one rtt. When the system
behavior depends on random events, such as mark bits set by some randomized
algorithm, or packet drops that depend on the randomness in cross-traffic, there is
another kind of averaging: The model attempts to track the expected value of the
system state, which may be of different character than actual realizations.

Example 2.2 (TCP New Reno) We now consider the window dynamics of tcp
New Reno. The state variable is the window size w, and the input signal is the
packet loss probability p. Let m denote the packet size. Assume that the rtt is
constant, and denote it by τ . For each rtt one full window of data is transmitted,
consisting of w/m packets. This gives an average inter-packet time T = τm/w. For
each packet, there are two possible window updates:

• With probability 1− p, an ack is received, and the additive increase mecha-
nism grows the window by ∆w = m2/w.
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• With probability p, the packet is lost, and the multiplicative decrease mech-
anism reduces the window size by ∆w = −w/2.

Next, compute the expected value of the window update,

E[∆w] =
(1− p)m2

w
− pw

2

We get the corresponding fluid flow differential equation by using the expression for
the expected rate of change, E[∆w]/T , as the derivative of a continuous function
w(t):

dw

dt
=

1

T
E[∆w] =

(1− p)m
τ

− pw2

2τm

�

To connect the fluid flow model for the queue (Example 2.1) with the above
model for tcp, we need a relation between the window size and the sending rate.
Since one window of data is transmitted per rtt, it is natural to define the fluid-
flow rate as r(t) = w(t)/τ . Then the source dynamics can be rewritten in terms of
this rate, as

dr

dt
=

(1− p)m
τ2

− pr2

2m

This model is used in [80], and a related model, taking signalling delays into account,
is used in [56]. The first term corresponds to the additive increase, and the second
term corresponds to the multiplicative decrease. The equilibrium of this equation
gives well known the tcp throughput formula

r =
m

τ

√
2(1− p)

p
(2.1)

If we substitute the relation r(t) = w(t)/τ into the queue dynamics, we get

dq

dt
=
w(t)

τ
− c (2.2)

This is a model for the dynamical system with the window size as input, and the
queue size as output. If Eq. (2.2) is extended with the time-varying queueing delay,
corresponding to r(t) = w(t)/(τ + q(t)/c), we get the integrator link model. This
model, as well as the simpler Eq. 2.2, does not capture the effect of the ack-
clock. A different model, based on the ack-clock, is the static link model q(t) =
w(t)− cτ [114].

In Chapter 3, we describe and validate the new joint link model, with the fol-
lowing relation between window size and sending rate:

r(t) =
w(t− τ)

τ + q(t− τ)/c +
dw(t)

dt
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This new model unifies the two models, the integrator link model and the static
link model, that are used in the literature.

The advantage of the fluid-flow approach is that we get models in terms of
differential equations, and can use the powerful tools from control theory and dy-
namical systems. The main drawback is that the dynamics of the fluid-flow model
does not capture system behavior on time scales shorter than one rtt, and in the
case of systems with some stochastic components, we also lose information when we
study the expected values only. Nevertheless, fluid-flow modeling, in combination
with validation through experiments or ns2 simulation, is the most widely used
methodology in congestion control research.

Hybrid models

A hybrid system has both a discrete state, and some continuous state variables.
Within each of the discrete states, the continuous state variables evolve according to
some differential equations. Transitions between the discrete states can be triggered
by conditions on the continuous state variables, or by external events, and each
state transition may make discontinuous changes to the otherwise continuous state
variables. One can think a hybrid system as a finite state machine, where each state
is associated with its own dynamical system.

In congestion control, it is natural to model queue dynamics as well as the
additive increase of the window as continuous processes, while queue overflow and
the resulting packet drops can be modeled as a discrete event. A hybrid model
for tcp, including not only congestion avoidance, but also the slow start phase, is
described in [74]. In that paper, the hybrid model is used as a simulation tool, but
it can also be used for analysis [19].

The aimd style of congestion avoidance can be modelled as a hybrid system.
There are discrete congestion events, which correspond to queue overflow, and result
in discontinuous window updates. Between congestion events, window and queue
sizes are modelled using fluid-flow differential equations. Such models are used
in [14, 108], to analyze fairness properties, the statistics of end-to-end throughput,
and rate of convergence.

Hybrid models are a compromise between packet-level models and fluid-flow
models, both in terms of the accuracy of the model, and in terms of the difficulties
in analysis of the models. In this thesis, Chapter 5 uses a hybrid model with discrete
congestion events.

Network utility maximization

All the three modeling approaches described above, packet-level, fluid-flow, and hy-
brid modeling, are practical to use only for relatively small networks, or specialized
topologies. It is difficult to analyze and understand the behavior for a large scale
networks.
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Mathematical models for congestion control

The framework of network utility maximization, pioneered in [65, 79], allows for
the analysis of both static and dynamic properties in large networks with arbitrary
topology.

A convex optimization problem Consider a general network consisting of L
links, each of capacity cℓ > 0, and S sources transmitting data with rate rs. We
describe the network topology using the routing matrix A, defined by

Aℓs =

{
1 if source s uses link ℓ

0 otherwise

Note that a “source” here identifies not only the sending node, but the entire path
through the network. A single node that transmits data to several destinations
corresponds to several sources in this model.

The utility maximization problem associates a utility function Us(rs) to each
source, and tries to maximize the total utility, subject to the capacity constraints on
the links. Let yℓ denote the aggregated traffic arriving at link ℓ, then yℓ =

∑
sAℓsrs.

In vector form, this can be written as

y = Ar

The utility maximization problem can thus be stated as

max
r

∑

s

Us(rs)

s.t. Ar ≤ c
r ≥ 0

The capacity constraints define a convex set, with non-empty interior. If the utility
functions Us are concave, then this is a convex optimization problem with strong
duality, and the optimum is characterized by the Karush-Kuhn-Tucker (kkt) con-
ditions [23],

r ≥ 0 λ ≥ 0 non-negativity

y ≤ c capacity constraint

y = Ar p = ATλ aggregation

ps = U ′
s(rs) gradient condition

0 = λT (c− y) complementary slackness

Here, λℓ is the dual variable or “price” associated with the constraint yℓ ≤ cℓ, and
the aggregated price p = ATλ gives, for each source, the sum of the prices for the
links used by that source.

Furthermore, if the utility functions Us are strictly concave, the optimum rates
are unique, and if in addition rankA = L, then also the dual variables λ are unique.
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Figure 2.3: Distributed congestion control in the utility maximization framework.
The “Sources” block on the left represents all the sources, where each source is a
system with input ps and output rs. The “Links” block on the right represents all
the links, where each link is a system with input yℓ and an output λℓ. Links and
sources are interconnected via the routing matrix A.

For the rank condition to hold, it is necessary (but not sufficient) that S ≥ L, i.e.,
that there are more sources than link. If S ≥ L, one way that the rank condition
can fail to hold is if there are two links that are used by precisely the same sources.
In this case, the individual prices for these two links are not uniquely determined,
but their sum may still be.

Equilibrium properties The relevance of the utility maximization problem
comes from the relation to the equilibrium of distributed congestion control. Con-
sider the system in Fig. 2.3. Source s uses a sending rate rs. Link ℓ sees an arrival
rate yℓ, where the aggregation of source rates is given by y = Ar. Each link then
determines its link price λℓ. These prices are aggregated as p = ATλ, and source s
sees the path price ps. In turn, this price influences the source’s sending rate rs.

Assume that the source dynamics, i.e., the relation between ps and rs, is de-
scribed by the differential equation

ṙs = Fs(rs, ps)

Also assume that the link dynamics, relating λℓ to yℓ, possibly via some internal
state vℓ, is described by the equations

λ̇ℓ = Gℓ(yℓ, vℓ, λℓ)

v̇ℓ = Hℓ(yℓ, vℓ, λℓ)

Then, under certain conditions, the equilibrium conditions for this complex dynam-
ical system is equivalent to a utility maximization problem with a certain utility
function, where the λℓ are the dual variables. This procedure is called “reverse en-
gineering” in [30]. In the literature, it is for some reason usually described using
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discrete time models, even though continuous time is more natural in the context of
fluid flow modeling. For equilibrium properties, there is no fundamental difference
between continuous and discrete time, though.

First, assume that

{
Gℓ(yℓ, vℓ, λℓ) = 0

Hℓ(yℓ, vℓ, λℓ) = 0
=⇒

{
yℓ ≤ cℓ
λℓ(cℓ − yℓ) = 0

(2.3)

Next, assume that Fs(rs, ps) = 0 can be solved for ps,

ps = fs(rs)

and that fs is decreasing. Then the utility function defined by

Us(r) =

∫
fs(r) dr

is concave. It follows that for any equilibrium r, λ, v of the dynamical system, r, λ
are the optimum of the corresponding utility maximization problem. Unfortunately,
this argument by itself does not establish the existence of an equilibrium for the
dynamical system.

To establish existence of the equilibrium, a direct approach is to use a converse
of (2.3). We then need the following additional assumption on G and H: For any
yℓ, λℓ ≥ 0 such that yℓ ≤ cℓ and λℓ(cℓ − yℓ) = 0, there exists some vℓ such that
Gℓ(yℓ, vℓ, λℓ) = 0 and Hℓ(yℓ, vℓ, λℓ) = 0. A more general approach, hinted at in [30],
is to apply Kakutani’s fixed point theorem.

Discussion

In this thesis, fluid-flow models are the primary tools. This makes it possible to use
the theory of dynamical systems and ordinary differential equations. In Chapter 5
we use a hybrid model, with congestion events corresponding to queue overflow and
discontinuities in the window sizes, and between these events, queue and window
sizes evolve continuously, according to the fluid-flow differential equations.

The utility maximization framework is used to get results and insights into the
system behavior for large networks. Furthermore, packet-level ns2 simulations are
used for validation of theoretical results. Packet-level models, including queueing
theory and network calculus, are not used in our analysis, since it seems quite
difficult to apply these tools to feedback systems.

2.4 Related TCP-like protocols

The older members of the tcp family are tcp Tahoe, the first tcp implementation
that included the congestion control mechanisms in [59], and tcp Reno, which
introduced the fast retransmit and fast recovery mechanisms. The protocols are
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Protocol Type Main objective(s)

tcp New Reno [45] Loss-based (The standard tcp protocol)

tcp Vegas [24] Delay-based Higher throughput and re-
duced loss rate.

Fast tcp [115] Delay-based Higher throughput with high
capacity and large delays.

hstcp [43] Loss-based ,,

stcp [66] ,, ,,

bic-tcp [102] ,, ,,

cubic [102] ,, ,,

tcp Africa [69] Loss-delay based ,,

Compound tcp [112] ,, ,,

tcp Illinois [78] ,, ,,

Westwood+ [86] Bandwidth estimation Higher throughput over wire-
less networks. Also proposed
for high capacity and large de-
lay networks.

xcp [63] Extra signalling Higher throughput and faster
convergence with high capac-
ity and high delays. Smaller
queues. Decoupling of conges-
tion control and fairness con-
trol.

Table 2.1: Overview of proposed tcp-like protocols.

named after the corresponding releases of the Berkeley System Distribution (bsd),
in 1988 and 1990, respectively.

Today, tcp New Reno is the most widely used protocol, officially elevated from
Experimental status to a Proposed Standard in 2004 [45]. We will use tcp New
Reno as the base protocol that newer protocols are compared to.

There are three main lines of the research that tries to improve tcp: Improving
performance over links with large bandwidth-delay product, improving performance
over wireless links, and reducing the queueing delay at bottleneck links, thereby
improving quality for real-time applications.

Table 2.1 gives an overview of proposed tcp variants. Each protocol is classified
by the control mechanism, or type of feedback, that it uses, and by the performance
problem in tcp New Reno that it attempts to solve. In this section, we first discuss
delay-based congestion control, followed by an overview of the protocols designed

32



Related tcp-like protocols

for high speed, large delay networks. Outside this classification, we also describe the
area of Active Queue Management (aqm), and rate-based congestion control guided
by the utility maximization framework. Problems and solutions related to tcp over
wireless are postponed until Sec. 2.7. Finally, the eXplicit Control Protocol (xcp,
[63]) does not fit in any of the above groups. It introduces more precise signalling
between senders and routers, and moves part of the congestion control algorithm
from senders to routers.

Delay based congestion control

One line of tcp algorithms, of which tcp Vegas is the most well known, uses the
queueing delay as a feedback signal for the window adjustment.

Proportional fairness To describe delay based congestion control, let τ0
s denote

the roundtrip propagation delay of source s, τs the queuing delay over the entire
path, and rs = ws/(τ

0
s + τs) be the equilibrium sending rate. The queueing delay

τs is used as a feedback signal. For window-based control, it is shown in [89] that
an equilibrium such that

ws − rsτ0
s =

ps

rα−1
s

corresponds to (p, α)-proportionally fair rates. The left hand side represents the
amount of in-flight data that is queued at some router along the path, and the
right hand side can be thought of as a target value for the amount of queued data.
When α > 1, the right-hand side is state-dependent, and unbounded when rs is
small. So the case of α = 1, corresponding to proportional fairness, is the one of
most practical interest.

With this observation it is natural to use the difference ws − rsτ0
s for a window

update law. The control law

ẇs(t) = −κ τ0
s

(τ0
s + τs(t))

ws(t)− rsτ0
s − ps

ws(t)
(2.4)

is suggested in [89], where it is shown that this system is stable, and converges to
a proportionally fair rate allocation. (In the proof, the relation between window
sizes on one hand, and the sending rates and aggregate queueing delays on the
other, is described by a static mapping. This can be seen as an implicit argument
of time-scale separation).

To appreciate this result, consider a source sending data across the network,
and trying to find its fair share of the capacity. Assume the flow traverses a single
bottleneck, and consider two different cases for the competing traffic. In the first
case, the bottleneck is shared with one large flow, and in the second case, the bot-
tleneck is shared with a large number of small flows. In these two cases, the arrival
rate and the queueing delay at the bottleneck router can be the same, although the
fair share of the capacity is very different. So how can the flow distinguish between
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2. Background

these two cases, if it only measures the queueing delay? In the terminology of [89],
the difference ws − rsτ0

s gives a “decoupled fairness criteria”. By monitoring this
value, and adjusting the window size so that the difference converges to, say, three
packets, the rates will converge to a proportional fair sharing of capacity.

TCP Vegas and Fast TCP The design objectives of tcp Vegas were to improve
throughput and reduce packet losses for tcp connections across the Internet [24].
It uses the control law

ẇs(t) =





ms

τ0
s +τs

ws(t)− wsτ
0

s

τ0
s +τs

< α

− ms

τ0
s +τs

ws(t)− wsτ
0

s

τ0
s +τs

> β

where the parameter ms is the packet size (resulting in the same linear increase as
tcp Reno in the absence of congestion), and typical values for the two thresholds α
and β are one and three packets, respectively. For a recent stability result for this
highly non-linear feedback law, see [32]. (tcp Vegas also introduces new mechanisms
for the slow start and for loss detection and recovery, which will not be discussed
further here).

Fast tcp is a design that is inspired by tcp Vegas, but is aimed for solving
tcp’s performance problems over connections with high capacity and long delays,
and hence with a large bandwidth delay product [115]. The window update law is
expressed in discrete time, and can be written as

ws(t+ 1) = ws(t) + γs(αs − rs(t)τs(t))

If we note that rs(t)τs(t), the amount of queued data, is the same as ws(t)−rs(t)τ0
s ,

this looks like a discrete time variant of the control law (2.4), with a slightly simpler
expression for the gain.

Estimating the propagation delay Delay based congestion control is attrac-
tive, because it can achieve fairness, with no other signals than the queueing delay,
which is provided by the network for free. To implement delay-based congestion
control, it is essential to measure the propagation delay τ0

s . In practice, each source
usually sets this to the smallest observed rtt. This is accurate if the propagation
delay is constant and the router buffer is empty when the source starts sending
packets.

However, if for example one flow arrive after another, each flow tries to keep
three packets in the bottleneck queue, and each flow uses the smallest observed
rtt as its estimate of the propagation delay, then the queue will build up. Flows
arriving later will get a larger estimate of the propagation delay than earlier flows,
and hence more capacity than their fair share. This effect is described in [81]. The
discrepancy between real propagation delay and the estimate can be even more
pronounced in case a flow with a delay-based congestion control share a bottleneck
with tcp New Reno, which does not even try to keep the queue size down. For an
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illustration of this effect, see Chapter 5, where the window size and throughput of
tcp Westwood+ depends on its estimation of the propagation delay, even though
it is not a purely delay-based congestion mechanism.

To alleviate the problems with estimation of the propagation delay, one method,
also described in [81], is to combine tcp Vegas with explicit feedback from an
aqm mechanism in the network, in this case Random Exponential Marking. If this
system is tuned so that the queue stays almost empty, all flows can get an accurate
estimate of the propagation delay. This solution to the problems comes with the
cost of reduced link utilization; on the order of 5–10% of the capacity is unused.
As is typical for aqm mechanisms, this system also works better as the number of
flows grow.

Estimating the queueing delay is even more challenging if the rtt contains more
components than a fixed propagation delay and time varying queueing delay, e.g.,
retransmission delays from wireless link or a highly loaded Ethernet link, or changes
to the propagation delay due to mobility and other topology changes. There is little
research done on the topic of delay-based congestion control in the setting of wireless
mobile network. An exception is the study [62], which constructs a delay based
congestion control scheme for commercial cdma (Code Division Multiple Access)
network. In this network, the measured delays include a random component, and
in addition, the packet loss probability is several percent.

High speed, large delay networks

To improve tcp performance when the bandwidth-delay product is large, it is
natural to just make tcp’s increase rule more aggressive. Experimental protocols
include High-Speed tcp (hstcp, [43]) and Scalable tcp (stcp, [66]). However, this
leads to fairness problems when links are shared with tcp Reno.

It is interesting to note that the increase rate for hstcp and stcp grows
as the window grows. As a result, these protocols are in fact most aggres-
sive just at the moment where they are sending at maximum capacity.
Intuitively, this is the time when a protocol should be the least aggressive.

R. King et al., [69]

The bic-tcp algorithm and its successor cubic avoids this problem by keeping
track of wmax, the window size where it previously experienced a packet loss, and
slowing down the window increase as the window size approaches wmax [102]. cubic
is implemented in the Linux kernel since version 2.6.16.

Loss-based congestion control A different approach to back down from an
aggressive window increase rule when the network approaches congestion are the so
called loss-delay based congestion control algorithms. Like cubic, these protocols
try to increase the window size more aggressively than tcp Reno as long as the
network is underutilized, and switch to a behavior similar to Reno’s aimd when the
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network is close to congestion. Delay measurements are used to select the mode of
operation.

tcp Africa uses a slow mode that is identical to tcp Reno, and a fast mode
with an increase rule borrowed from hstcp. To switch between modes, the number
of queued packets is estimated in the same way as in tcp Vegas, and slow mode is
selected when the number of queued packets exceed a threshold [69].

Compound tcp does not have such a discrete switch between modes. Instead,
it uses a rate based on the sum of the congestion window and a delay window,
where the latter is increased rapidly when the network is underutilized [112]. The
multiplicative decrease when a packet loss is detected, is the same as in tcp Reno.
Compound tcp is implemented in Microsoft Windows Vista.

tcp Illinois also has no discrete mode switches. It uses aimd, but with param-
eters that depend on the delay [78]. The window update is parameterized as

w(t+ 1) =

{
w + α/w for each ack

w − βw for each packet loss

The additive increase parameter α and the multiplicative decrease parameter β are
continuous functions of the rtt. The functions are chosen so that when the rtt is
small, interpreted as low congestion, α is large and β is small, and when the rtt
is large, interpreted as a network close to congestion, α is small and β is large.

Active queue management

Active queue management (aqm) refers to control that takes place in network
routers. The input to the control is the arrival rate and queue size for a partic-
ular outgoing link, and the output is a decision on how to mark or drop packets.
Usually the output is applied in a stochastic way; the aqm mechanism selects the
probabilities for marking and dropping packets, and then each forwarded packet is
marked or dropped with the given probability. End hosts will then react to these
signals and adjust their sending rates.

It is natural to think about congestion control as controllers located at the
end hosts, controlling the system of interconnected queues. The sending rates (or
window sizes) are the control signals, the queue sizes in intermediate routers are
the system’s state, and the loss probability and the delay are the measured outputs.
In a way, aqm is the dual approach: The process being controlled is the collection
of end hosts. The control signals are the probabilities for marking and dropping of
packets, and the arrival rates and queue sizes are the measured outputs.

Explicit congestion notification It is preferable if the aqm mechanism can
mark rather than discard selected packets. Packet marking is known as Explicit
Congestion Notification (ecn). Using ecn requires support in end hosts, which are
required to signal that they are ecn-capable, and to react to set marks in the same
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was as to an actual packet loss. ecn uses bits in the ip packet header, and its use
is specified in [101].

There are several motivations for using aqm, corresponding to difference aspects
of quality and performance.

• Reduced packet loss rate.

• Reduced queueing delay and jitter.

• Reduced synchronization between the aimd window fluctuations of different
flows.

• Improved throughput.

In [73], several aqm mechanisms are evaluated, with and without the use of
ecn. The quality measure of this study is user response time for web browsing. The
main results were summarized as follows:

1. For offered loads up to 80% of bottleneck link capacity, no aqm
scheme provides better response times than simple drop-tail fifo
queue management.

2. For loads of 90% of link capacity or greater when ecn is not used,
pi results in a modest improvement over drop-tail and the other
aqm schemes.

3. With ecn, both pi and rem provide significant response time im-
provement at offered loads above 90% of link capacity. Moreover,
at a load of 90% pi and rem with ecn provide response times
competitive to that achieved on an unloaded network.

4. ared with recommended parameter settings consistently resulted in
the poorest response times which was unimproved by the addition
of ecn.

Le et al. [73]

Here, rem stands for Random Exponential Marking [10], pi is Proportional Integral
aqm [57], and ared is Adaptive Random Early Detection [44]. We can conclude
that aqm matters only for links that are highly loaded, and that ecn is essential
to give any significant improvement in terms of user response time.

Most aqm controllers measure the queue length, and use this value as the input
to the controller. It is also possible to use the arrival rate. The control scheme in [110]
uses proportional rate control together with proportional integral control of the
queue length. The relation between rate-based and queue-based aqm mechanisms
is investigated in [109], in the limit of a large number of flows.

Being a dual approach, aqm design usually considers the dynamics at senders to
be given, usually as aimd-style control like with tcp Reno. Many different control
strategies have been tried, e.g, the proportional integral controller. One challenge is
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the severe uncertainty about important parameters such as the number of flows, and
the rtt and window sizes of the end-to-end flows. This has led to interest in robust
control design for tcp/aqm [118, 83, 120], as well as fuzzy control [33, 8, 111].

Rate based congestion control

Much of the recent work on congestion control uses the network utility maximization
framework as guidance for design and analysis, as pioneered in [65, 79]. Proposed
schemes can be classified as

Primal: At the links, the price is a static function of the aggregate arrival rate.
Sending rates at sources are adjusted dynamically.

Dual: At the links, there is a dynamic relationship between the aggregate arrival
rate and the link price. E.g., if the queueing delay is used as the link price,
this is the usual queueing dynamics. At the sources, the sending rates are
determined as a static function of the feedback, i.e., the “aggregate price”
provided by the network.

Primal-dual: These schemes use dynamic control laws at both sources and links.

In the dual algorithm, there is no state at the sources, while for the primal and
the primal-dual algorithms, the state variable at each source is the sending rate.
That the sending rate is controlled directly means that these algorithms do not
use the usual notion of a window size. Stability is a central issue. Stability results
can be local or global, include or ignore signalling delays, and be valid for special
topologies or for arbitrary network topologies.

Stability of primal mechanisms is analyzed in [72, 119], with a focus on the effect
of communication delays.

A dual algorithm is proposed in [95], where it is shown to be locally stable for
arbitrary topologies and delays. For the single-link single-source topology, [96] gives
a proof of global stability, and an improved stability condition on the source gain.

A primal-dual algorithm is studied in [6], which proves stability for an arbitrary
topology in the absence of delay, and for the topology with a single bottleneck link
and several users, where each user can have a different rtt.

A general stability theory for linear systems on a graph is developed in [77].
One of the applications is rate-based congestion control.

Discussion

In this thesis, Chapter 6 considers the design of end-to-end congestion control. The
proposed protocol is close to the tcp/aqm class of proposals, in that it lets routers
mark packets with a marking probability that depends on the queue size. However,
the response to the feedback from the network is additive, like in xcp, rather than
multiplicative as in the usual handling of ecn. The protocol is also related to delay-
based congestion control, in that queue sizes are the primary variables that we want
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to control. One important difference is that we have a per-link tuning knob. These
similarities and differences are discussed further in Sec. 6.3.

2.5 Fairness

Fairness is one of the central equilibrium properties of any congestion control
scheme. It is also one of the control objectives. To quote [89], “Roughly, a fair
scheme is one that does not penalize some users arbitrarily.”. There are several
possible notions of fairness

Max-min fairness A max-min-fair rate vector r∗ is defined as follows. The vector
must be feasible, r∗ ≥ 0 and Ar∗ ≤ c, and have the property that if rs > r∗s
for some other feasible rate vector r and some source s, then there is some
other source s′ such that r∗s′ ≤ r∗s and rs′ < r∗s′ . That is, no rate can be
increased, without simultaneously decreasing some other rate which already
is smaller.

Proportional fairness A rate vector r∗ is proportional fair if it is feasible, and if
for any other feasible rate vector r it holds that

∑

s

rs − r∗s
r∗s

≤ 0

α-fairness Proportional fairness and other fairness notions are generalized as fol-
lows. Let p be a vector of weights, ps > 0, and let α ≥ 1 be a scalar parameter.
A feasible rate vector r∗ is (p, α)-proportional fair, if, for any other feasible
rate vector r, it holds that

∑

s

ps
rs − r∗s
(r∗s)

α
≤ 0

In this definition, α = 1 corresponds to proportional fairness.

There is a nice connection between the notion of α-fairness and the utility
maximization problem. First define a family of scalar, concave functions,

fα(r) =

{
log r α = 1

−r−(α−1) α > 1

Then a rate vector r∗ is (p, α)-proportional fair if and only if it maximizes the
utility function

U(r) =
∑

s

psfα(rs)

Furthermore, in the limit as α → ∞, the maximizer converges to a max-min-fair
rate vector. This correspondence is proved and discussed further in [89].
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If one analyzes a congestion control protocol, using the “reverse engineering”
procedure to find a utility function, the connection between fairness and the shape
of the utility function helps us understand the fairness properties of the protocol. It
has been shown that tcp Reno corresponds to α = 2, while delay based congestion
control mechanism such as tcp Vegas and Fast tcp corresponds to α = 1, i.e.,
proportional fairness [30].

Problems with the notion of fairness

Of the design objectives for congestion control, fairness is the one that is hardest
to define in a precise and universally accepted way. E.g., tcp New Reno gives rates
that are inverse proportional to the rtt. This can be seen as an example of an
arbitrary penalty on users connected with long-delay links. Or it can be seen as
a reasonable weighting, viewing the propagation delay as a crude measure of the
amount of networking resources that the user is claiming a share of.

Security One may think of fairness as a security measure that is intended to
prevent a malicious user from using too much of shared resources, and thus harming
other users who also need their share. From this point of view, leaving enforcement
of fairness to end-to-end congestion control makes no sense.

Building a trusted client in software, and trying to limit the abilities of
a user, on a general purpose computer is doomed to failure. For now,
though, it provides a nice false sense of security.

Bruce Schneier [107]

There is nothing preventing a user from tuning his tcp implementation to be more
aggressive than the standard version, and gain a larger than fair share. It is even
conceivable that operating system vendors could start a war of tweaking tcp pa-
rameters, trying to attract customers to the operating system that gives them the
highest performance (at the expense of users of other operating systems).

Flow-aware networking To move responsibility for fairness from the end hosts
to the networking seems to be against the spirit of the end-to-end principle, in
that it requires core routers to keep track of flows and keep per flow state. The
amount of state needed is however smaller than one might expect. In [71], it is
noted that to implement per-flow fair queueing, the scheduler need only handle the
large flows. And for any link, the number of large flows is limited, which bounds the
state needed for the scheduler. In addition, one bit per flow is needed to distinguish
between large and small flows, and a couple of more bits in order to also support
admission control.

Flow rates vs congestion cost When implementing fairness, the ultimate ob-
jective is fairness between real users. But there is no simple correspondence between
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users and flows, since a user may run several applications each generating several
flows.

We expect to be fair to people, groups of people, institutions, companies—
things the security community would call ‘principals’. But a flow is
merely an information transfer between two applications. Where does
the argument come from that information transfers should have equal
rights? It’s equivalent to claiming food rations are fair because the boxes
are all the same size, irrespective of how many boxes each person gets
or how often they get them. B. Briscoe [25]

In [25], it is argued that defining fairness in terms of flow rates is a fundamen-
tally flawed idea. Instead, fairness should be defined by quantifying the congestion
cost each real user or organization causes for other users of the network, integrated
over time. The notion of congestion cost goes back to Kelly’s application of pro-
portional fairness to the rate per unit charge [65]. The use of ecn-like marking
of packets makes it possible to measure the congestion cost where traffic crosses
an administrative boundary, and then it is possible (although not mandatory) to
charge for the amount of congestion caused. The market price for congestion would
then correspond to the marginal cost of upgrading network capacity.

Discussion

Chapter 5, we analyze the fairness between two different tcp versions, tcp New
Reno and tcp Westwood+. When introducing a new version of a protocol in the
Internet, it is important to understand the consequences for users and applications
using the older version.

In Chapter 6, we use the utility maximization framework and the reverse en-
gineering procedure to understand how resources will be shared. Concluding that
the equilibrium of a distributed congestion control algorithm is the unique maxi-
mum of a maximization problem, with a certain utility function, makes the sharing
of resources predictable and easier to understand. And it also makes it easier to
compare the sharing produced by different protocols. In this way, fairness, and the
related machinery of network utility maximization, is a means rather than an end.

2.6 Reducing queueing delay

Small queueing delays are important for the quality of real-time applications. Since
the aimd control in tcp makes bottleneck queues grow until they overflow, the
quality of real-time applications is degraded when they share a bottleneck with tcp
traffic. For this reason, we consider reduced queueing delays as one of the control
objectives for congestion control. In this section, we describe router buffer sizing,
which has a direct influence on queueing delays, and we give an introduction to the
field of quality of service. Quality of service mechanisms tries to divide the traffic
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into separate classes, depending on application requirements, and treat packets
differently depending on their class. E.g., voice over ip could be given priority over
web browsing which in turn is given priority over batch downloads.

Router buffer sizing

There is a sharp distinction between the transmission queues for bottleneck links
and the queues for non-bottleneck links in the current Internet, with mostly drop-
tail queues. The queue for a non-bottleneck link is naturally almost empty. The
queue for a bottleneck link (or bottleneck queue, for short) on the other hand, fills
up completely. This is a consequence of the simple drop-tail queueing discipline and
the congestion avoidance mechanism of tcp. It is also important to note that the
maximum queue capacity, i.e., the size of a full queue, is usually quite large. The rule
of thumb, documented in rfc 3439 [26], is to use 250 ms times the link capacity,
where 250 ms is a reasonable upper bound on end-to-end rtt on the Internet.
This recommendation implies that the delay across a path in the network is the
propagation delay plus 250 ms for each bottleneck link on the path. Large delays
are undesirable for several reasons, including degraded quality for real-time traffic
(e.g., voice over ip) and interactive traffic (e.g., telnet sessions and multi-player
games). Large delays in the core network are particularly undesirable, which is one
reason why most of the backbone links in the Internet are highly over-provisioned.

For the motivation of the rule of thumb, consider a single bottleneck with ca-
pacity c and buffer size b, and a single tcp flow with roundtrip propagation delay τ ,
divided into forward delay τf between sender and bottleneck, and backward delay
τb from bottleneck to receiver, and back to the sender. When the buffer is full and
the bottleneck queue starts dropping packets, the tcp sender reduces its window
size, i.e., the amount of in-flight data, by half. Of the in-flight data, b packets reside
in the router buffer, and cτ are in transit over some of the links. For the links to
maintain full utilization, the window reduction should correspond to parts or all of
the buffered packets, but leave cτ packets in the network, cτb in transit after the
bottleneck, and cτf in the buffer (to compensate for the lack of packets in in transit
on the links between the sender and the bottleneck). Hence b ≥ cτ is required for
full utilization.

In recent years, the rule of thumb has been questioned [11, 9, 38, 51, 12, 48].
When a large number of flows share a bottleneck, and the flows are not synchronized
(meaning that they do not all reduce their window sizes at the same time), less
buffering is required for full utilization. And furthermore, the loss in utilization is
modest, even for buffers significantly smaller than suggested by the rule of thumb.
For the single flow, single bottleneck scenario, with b = cτ/10, one tenth of the
rule-of-thumb size, the utilization is still roughly 75% [12].
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Quality of service for real-time applications

A real-time network application can be defined roughly as an application whose
quality degrades significantly with network delay. This links real-time to interac-
tivity. Common real-time applications are telephone calls (Voice over ip), video
conferencing, and network games. Even an ssh session could be classified as a real-
time application, since it is annoying to the user if the delay from typing a character
until it is echoed back is noticeable.

Whenever a delay of one or a few seconds is acceptable, the application usu-
ally has no real-time requirements on the network. E.g., most cases of streaming
video have no fundamental real-time requirements, since a delay of one second or
two at the start, used to fill up a large receiver-side play-out buffer, is acceptable.
With a high capacity network, a one second delay will be sufficient to transfer ten
seconds or more of video, and this amount of buffering should be more than suffi-
cient to compensate for both jitter and occasional packet losses. Interactive video
conferencing, and real-time coverage of sports and other events, are the exceptions.

Internet Quality of Service is a large research area, where one of the main
objectives is coexistence of real-time applications and other network applications, all
sharing the same networking infrastructure. Approaches include priority marks on
packets (Differentiated services [93]), end-to-end reservation of resources with some
quality guarantee (Integrated services [116]), and reservation of capacity for traffic
aggregates using Multi Protocol Label Switching (mpls [104]). The latter approach
is in wide use, usually for managing traffic within the single administrative domain
of an Internet Service Provider, and sometimes used for Virtual Private Network
services to their customers, but it is only indirectly addressing end-to-end quality.
An overview of quality-of-service mechanisms is given in [121].

It remains a very difficult problem to provide end-to-end quality guarantees for
traffic over arbitrary networking paths, which uses links and routers belonging to
many different administrative domains.

Two important questions are:

• Are queueing delay or congestion packet losses, in the current or near-future
Internet, a problem for the quality of real-time applications?

• If so, where in the network are the problematic bottlenecks located?

The answers will naturally depend on which application and which parts of the
network are investigated. One study of Voice over ip quality between academic sites
in Europe and the Americas found that quality was generally good, compared to
telecom standards, with some problems for the connections to the Argentinian and
the Turkish measurement site [84]. The average values were 136 ms and 4.1 ms for
the delay and jitter, with a loss probability of 1.8%.

Links in the backbone network are usually over-provisioned, and backbone ca-
pacity is getting less expensive. For example, for the Nordic university network
(nordunet), the cost for backbone capacity and transatlantic lines were more then
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90% of the budget in the late 1990s, reaching an all time high of 20.7 million Euro
in 2000, with a transatlantic capacity of 777 Mbit/s. But since then, the cost has
fallen each year, even though the capacity has continued to grow [75].

When the backbone is over-provisioned, the typical bottleneck links are a user’s
adsl line, or the connection between a company’s high-speed internal network and
the rest of the Internet. For these bottlenecks, quality of service can be provided by
manually giving higher priority for certain real-time applications, or by imposing
capacity limits or traffic shaping for file transfers.

For example, consider Alice and Bob sharing an apartment and an adsl line.
Alice uses a peer-to-peer file-sharing application, such as bittorrent, to transfer large
files over tcp. At the same time, Bob plays Counter Strike, which uses udp. In this
scenario, their adsl router is a bottleneck, and its queue will fill up, increasing the
rtt for all connections by up to several 100 ms, reducing Bob’s chances of survival
considerably. By configuring their router to simply give priority to udp traffic, or by
introducing an artificial bottleneck between Alice’s computer and the adsl router,
at 90% of the capacity, this quality of service problem is solved.

Discussion

The congestion control protocols designed in this thesis, in Chapter 6 and 7, aims
to maintain small queueing delays, and low packet loss rates, as a part of the
congestion control. To do this, sources need some congestion information from the
network besides packet losses; when a packet is lost due to queue overflow, it too late
to prevent the queue from getting large. In Chapter 6, we use congestion feedback
similar to that with aqm and ecn, while in Chapter 7, we use explicit cross-layer
signalling from the link-layer at the bottleneck.

2.7 Wireless links

Until the 1990s, the Internet consisted almost exclusively of wired links, consisting
of copper cables and optical fibers. The occasional point-to-point microwave links
were usually quite reliable high power devices using parabolic antennas, such as the
link at the left of Figure 2.4.

Today, the mobile telephony system is now slowly merging with the Internet
infrastructure. To make the mobile terminal a first class citizen of the Internet,
we need to use tcp and ip all the way out to the terminal. Ideally, the cellular
radio network should just be yet another link-type for ip transmission, where the
details are taken care of in the link-layer; upper layers should not need to know or
care. However, that is easier said than done, because the wireless link available to
the terminal has very different characteristics than the wired links that tcp was
originally designed for.

The operation of a wireless link is much more complex than traditional electrical
or optical links. The various mechanisms used, and the corresponding input and
output signals, are shown in Figure 2.5. On the sending side, at the left in the figure,
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Figure 2.4: Left: Point-to-point microwave link, which connected the student dorm
network in Linköping to the the campus network and the Internet, 1993–1996.
Photo by Kjell Enblom, RydNet. Right: Cell phone tower in Oregon. Photo by
Todd Klassy.

we have a buffer of frames to send, controlled by a scheduler which decides which
frame to transmit in which time slot. Next, a channel coder, adding redundancy
for error correction coding, and a modulator, selecting the modulation scheme and
the particular waveform to use. Finally, a power amplifier and the transmission
antenna.

The disturbances on the radio channel can usually be accurately modelled as a
multiplicative gain disturbance (channel fading) and an additive noise, g and n in
the figure. These are time-varying due to mobility of antennas and obstacles, and
due to the varying level of background noise and interference.

On the right, we have the receiver, consisting of a demodulator that detects
the used waveform, and a decoder that tries to correct symbol errors. Besides the
actual data, the output signals from the receiver are the Signal to Interference Ratio
(sir)2 and a per frame indication saying if the frame could be recovered after error
correction. The available control signals are the transmission power, the sending rate
used by the modulator, the amount of redundancy added by the channel coder, and
the scheduling, i.e., decisions on which frame to transmit at which time, as well as

2The sir compares the power of the signal to the power of the interference from other users.
This is different from the signal to noise ratio, which compares the power of the signal to the
power of the thermal noise. In cdma systems, interference usually dominates over thermal noise.
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Figure 2.5: Wireless link mechanisms. From left to right: Buffer of frames to send,
channel coder, modulator, transmission amplifier, transmission antenna, channel
gain, channel noise, reception antenna, demodulator, and channel decoder.

possibly deciding to stay silent when conditions are too bad.
The figure shows a single wireless link. In practice, we have multiple links oper-

ating in the same area and frequency range. In Chapter 7, the focus is on cellular
architecture, where base stations are distributed geographically, and where each
base station handles a number of mobile terminals.

In a cellular system, the design tradeoffs are quite different for the uplink, i.e.,
transmission from a mobile terminal to the base station, and the downlink, i.e.,
transmissions from the base station to the mobile terminals. In the uplink, capacity
is limited by the interference between mobile terminals, which makes power control
crucial. In the downlink, on the other hand, the base station can use scheduling or
orthogonal modulation to limit the interference between transmissions to individual
terminals. Instead, the downlink capacity is limited by the transmission power of
the base station, and by interference from neighboring base stations.

Wireless link characteristics

When a particular link is used for ip transport, the three most important charac-
teristics of the link are the capacity, the delay, and the loss probability. For wired
links, these are constant, and the loss probability is usually very small. For wireless
links, all three are time-varying, and the statistics depends on the trade-offs made
in the link-layer design. E.g., the introduction of link-layer retransmissions reduces
the loss probability, and pays the price of larger delay and larger delay variations,
while adaptation of the parameters for modulation and forward error correction
can trade capacity for a reduced loss probability.

Communication end-nodes may have some direct knowledge of the link they are
directly attached to, but they primarily observe the characteristics of the entire
network path they are using. With no cross-traffic, the observed capacity would be
the capacity of the smallest link on the path, but with cross-traffic, the observed
capacity depends not only on the links on the path, but also on the cross-traffic,
which in turn depends on other parts of the network topology. The observed delay is
the sum of the delay of each traversed link, and the queuing delay. The observed loss
rate is the combination of the loss rate at each link (links can usually be considered
independent), and congestion losses at any bottlenecks along the path.
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Figure 2.6: Approaches to the tcp over wireless problem.

Application requirements can be formulated in terms of capacity, delay and
loss, for the network path they are using. E.g., for download of large files using
tcp, a small loss probability is of highest importance, followed by high capacity,
while delay is secondary. For an interactive tcp connection, such as a telnet or
ssh session, small loss rate and small delay is important, but not capacity. And
finally, for a real-time video conference application, small delays are of primary
importance, and the application can make its own coding tradeoffs based on the
available capacity and the actual packet loss rate.

TCP over wireless

The tcp congestion control mechanisms were designed to adapt to the type of
disturbances that are common in a wired network, where available bandwidth varies
due to cross-traffic and occasional routing or capacity changes, and delays are caused
by constant propagation delays and queueing delays.

When tcp is used over the cellular infrastructure, the result is often that both
end-to-end throughput and radio link utilization are quite poor. This is because the
dynamic properties of tcp and of wireless links do not fit well together.

The objective of research on the tcp-over-wireless problem is to achieve both
good end-to-end throughput and efficient utilization of the radio resources, prefer-
ably with as small changes to existing infrastructure and protocols as possible.

The wild fauna of proposed solutions to the tcp-over-wireless problem can be
classified as follows:

End-to-end: Improve the tcp-protocol to adapt better to the disturbances from
wireless links.

Link-layer: Design link-layer tradeoffs that results in link properties that plain
tcp handles better.

Cross-layer: Introduce extra signalling, beyond what is provided in the layered
architecture. E.g., signalling from the link-layer at a wireless link, to the
transport layer in a communication end point.
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Split-connection: Introduce a proxy in the wired network, close to the wireless
link. The proxy acts as an endpoint for a tcp connection over the wired
network, and communicates with the wireless terminal using a specialized tcp
version over the wireless part of the network, or even using some completely
different protocol.

These approaches are illustrated in Fig. 2.6. The mechanism described in Chapter 7
falls into the split-connection and cross-layer classes.

End-to-end mechanisms The end-to-end approach intends to improve tcp be-
havior over fairly general classes of wireless links.

The Eifel algorithm adds extra information to packets (using the standard tcp
time-stamp option) to make it possible for the sender to distinguish between ac-
knowledgements for original transmissions and for retransmissions [82]. This infor-
mation makes it possible for the tcp sender to react more intelligently to certain
types of disturbances. In particular, when all packets are delayed for a time longer
than the tcp timeout value but not lost (typical for a short temporary outage in
a link employing local retransmissions), recovery is improved significantly by using
the Eifel algorithm.

The idea of tcp Westwood and Westwood+ is to estimate the available band-
width over the path, based on the timing of received acks [86, 52]. In the absence
of packet losses, Westwood uses the same additive increase as tcp New Reno. But
when a loss is detected, Westwood does not halve its window size, instead it sets
the window size to the estimate of the available bandwidth times the smallest rtt
it has observed so far. The rationale for this choice of window size is that it is
sufficiently small to allow queues on the path to drain, but not smaller.

For wireless links where losses are the primary problem, one natural approach is
to try to detect if a packet loss is due to congestion or to transmission errors [28, 106,
46]. In general, the end-to-end approach leads to interesting estimation problems,
where end nodes use the limited data available, such as ack timing, to extract
information about the network state.

Link-layer mechanisms The link-layer approach tries to model the underlying
radio channel. This model is then used for evaluation, tuning, and design, of link-
layer mechanisms. In the context of tcp over wireless, common quality measures
are user response time and tcp throughput.

Within this class, tcp over links with random errors and no retransmissions is
analyzed in [3]. In [68], tcp throughput over a link is simulated, for various radio
conditions and link-layer retransmission schemes.

There are many important link tradeoffs that have been investigated, including
tcp downlink performance in a Wide-band Code Division Multiple Access (wcdma)
system with joint rate and power adaptation [58], the tradeoff between link-layer
Forward Error Correction (fec) and tcp throughput [31, 16], and the tradeoffs
between fec, link-layer retransmissions, and transmission power [29, 17].
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A hop-by-hop congestion control mechanism is designed and analyzed in [117],
where congestion information is propagated “upstream”, in the reverse direction of
the data flow.

Sometimes, the interaction between link-layer dynamics and tcp gives counter-
intuitive results, e.g., in certain circumstances tcp performance can be improved
by artificially inflating the delay at the wireless link [70, 91].

Split-connection Compared to the problem of improved control at the link-layer
and end-to-end, split-connection is conceptually simple. Instead if a single tcp
connection between end points, the terminal connects to a proxy in the operator’s
network (e.g., for web browsing and file download, this could be an ordinary http
proxy). The proxy connects to the true end node, and forwards data from one
connection to the other.

Another variant of the split-connection approach is called performance enhanc-
ing proxies. Such a proxy does not act as a tcp endpoint, instead, it can insert,
delay or delete packets in the stream, usually acknowledgements from the mobile
terminal [20]. By doing so, the proxy can hide some of the wireless disturbances
from the endpoint on the wired network, or force the end point to react differently
to events on the wireless link.

Berkeley Snoop is a well known example of a performance enhancing proxy,
which tries to maintain end-to-end tcp semantics [15]. It is an agent deployed at
the router in front of a wireless link. The Snoop agent caches unacknowledged tcp
segments and retransmits lost segments locally. Furthermore, it suppresses duplicate
acknowledgements, to avoid triggering the fast retransmit mechanism at the tcp
sender.

Cross-layer mechanisms The end-to-end principle implies that the network
and transport layers in a node can not, or should not, know anything about the
link layers in remote parts of the network (the network layer in a node naturally
has to be aware about the links that are physically attached to the same node).
Architecturally, this is a very sound design, but in some circumstances, in particular
when wireless links are involved, it may lead to suboptimal performance or even
instability.

In [100], it is demonstrated by examples that wireless effects such as interference
between nearby links can make tcp unstable. The congestion control system can
have multiple equilibria, and the equilibrium that corresponds to fair shares may
be unstable.

It is possible to improve the performance by introducing explicit cross-layer
signalling. This term denotes signalling between layers that are separated both
geographically and in networking stack order. Typically, the signalling is between
the transport layer in one or both endpoints, and the link layer attached to an
intermediate radio link. There are at least two types of cross-layer signalling. The
link can inform the transport endpoint of the radio link state, such as the current
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capacity. One example of such radio network feedback is considered in Chapter 7.
It is also possible to let a transport endpoint inform the radio link layer of its
requirements, e.g., the preferred tradeoff between loss rate and delay.

Besides the general observation that a controller can usually do a better job
the more information it has about the process being controlled, another important
reason why cross-layer design is considered, is based on overall deployment issues.
Deploying a new version of tcp is a complex and time consuming process. Stan-
dardization is fairly slow, there are a large number of tcp-implementations that
must be updated, and there are huge number of devices that are attached to the
Internet, which must all be updated or replaced until a new version of tcp can
replace the current version.

For a solution to the tcp-over-wireless problem to be feasible in the short term,
i.e., deployable within a few years, it is essential that it does not require that a
majority of Internet devices be upgraded. It is preferable if upgrades are isolated
to a certain class of devices, e.g., Internet enabled mobile phones, or to a subset of
the network within a single administrative domain, e.g., one operator’s network.

Using cross-layer mechanisms, in particular in combination with a split-con-
nection proxy, provides additional freedom in the design, which can make a huge
difference for the deployability of a solution. Whether or not cross-layer mechanisms
are fundamentally needed for a high performance wireless Internet is an open and
controversial question [27, 64].

2.8 Summary

In this chapter we have reviewed the Internet architecture, the workings of the
tcp protocol, and the mathematical tools used for analysis of congestion control.
We have made an excursion into the jungle of proposed improvements to tcp, for
both wired and wireless networks, and we have looked closer at two of the control
objectives: fairness and small queueing delays. After these preparations, we are
ready for the modeling, analysis and design of window-based congestion control. In
the next chapter, we start with modeling of the mechanism that forms the inner-
loop of all window-based congestion control protocols.

50



Chapter 3

An accurate model for window-based

transmission

These models do not adequately capture the self-clocking effect where a
packet is sent only when an old one is acknowledged, except briefly and
immediately after the congestion window is changed. This automatically
constrains the input rate at a link to the link capacity, after a brief
transient, no matter how large the congestion windows are set.

Wang et al. [114]

W
indow-based congestion control can be seen as cascaded control system
with two feedback loops. The inner-loop determines when each packet
is transmitted, and hence the sending rate. The feedback signal is the

arrival of acks, and the window size is a controller input. The outer-loop adjusts
the window size, based on the received acks and any other available feedback
information from the network. These two loops are illustrated in Fig. 3.1. In this
and the next chapter, the focus is on the behavior of the inner-loop. We view the
window sizes at the senders as the system inputs, and the queue sizes at network
routers as the system outputs.

3.1 Overview

The inner-loop determines the dynamic relations between window size, sending
rate, and queue size. Having a good model for the relation between the window size
and the sending rate (which are coupled via the queueing state in the network) is
motivated by two needs:

• For modeling of the network dynamics, one must fit together the rate-centric
models for the queueing network with the window-centric control laws of tcp.
To do this, the relation between window size and sending rate is an essential
link.
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Figure 3.1: Window-based congestion control viewed as a cascaded control system:
an inner-loop based on the ack-clock and an outer-loop governed by a window
controller.

• When designing the control laws for the outer-loop, it is essential to un-
derstand the dynamic properties of the inner-loop, in particular its stability
properties, and the dominating time constants.

In this chapter we will develop and validate such a model, and the queueing
dynamics it implies. The next chapter will examine the stability properties of this
inner-loop. We will see that the amount of cross-traffic is an important system
parameter, where different levels of cross-traffic give significantly different dynam-
ical properties, in terms of the static gain and the dominating time constant. The
main novelty in our model, is that it captures this influence, and gives accurate
predictions for any level of cross-traffic.

This chapter is organized as follows. Sec. 3.2 describes the underlying model
of the network, and the simplifications and limitations of that model. Sec. 3.3
investigates the relation between window size and sending rate. We describe two
models, the integrator model and the static model, that are used in the literature.
The new joint link model is introduced in Sec. 3.4. By linearization, we investigate
how key system properties depend on the level of cross-traffic, and how the joint
model differs from the earlier models. In Sec. 3.5, we describe validation experiments
for the most basic topology of a single bottleneck link, one flow using with window-
based congestion control, and some cross-traffic that is not subject to any congestion
control. In Sec. 3.6, the model is extended to several flows, with different roundtrip
propagation delays. Finally, in Sec. 3.7, we consider an arbitrary network topology,
and show that the window-based transmission control has a unique equilibrium.

3.2 The network model

Topology

We model the network as a directed graph, with nodes, representing devices at-
tached to the network, and directed edges, representing the communication links.
An example is given in Fig. 3.2. This may seem like an obvious and accurate model,
but it actually ignores that many links are not point-to-point links. Many link types,
in particular wireless networking, but also wired Ethernet, are based on a shared
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S1
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Figure 3.2: An example network graph. In this example, each edge represents two
links, one in each direction. The source node Sk is transmitting data to the desti-
nation node Dk. The five intermediate nodes are routers. The links marked Lj are
potential bottlenecks, in the direction from left to right.

communications medium. Several nodes are connected to the same link, and any
node can transmit to any other node, where the sharing is controlled by the medium
access control. E.g, if two hosts and an access point are connected with a 11 Mbit/s
wireless Ethernet, the actual capacity constraint are quite different than if each
host would have separate up- and down-links to the access point, of 2.75 Mbit/s
each.

This graph model is accurate when the traffic on all bottleneck links are domi-
nated by a single sender and a single receiver. E.g., in the wireless Ethernet example,
if one host downloads a file over wireless Ethernet, and the uplink traffic from that
host, as well as the uplink and downlink traffic for the other host, is small, then it
is a reasonable approximation to model the link as a ≈ 11 Mbit/s directed point to
point link from the access point to the downloading host.

Another approach to handle shared links is to focus on a pair of sender and
receiver nodes, and model all traffic generated by other nodes as contributing to
a time-varying capacity of the channel between the sender and receiver pair of
interest.

Queueing

In the graph model, there is only a single node sending on each link. Each link ℓ
has a finite, possibly time-varying, capacity cℓ. When the arrival rate to the link,
i.e., the proportion of the total arrival rate to the router serving link ℓ, which are
routed to link ℓ, exceeds capacity, the excess arrivals are queued. We denote the
arrival rate as yℓ, and the queue size as qℓ. The queueing dynamics is an integrator,
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Figure 3.3: Example topology with three flows and three bottleneck links.

with a state constraint to ensure that the queue size stays non-negative at all times.

q̇ℓ(t) =

{
yℓ(t)− cℓ qℓ(t) > 0

max(0, yℓ(t)− cℓ) qℓ(t) = 0

The queueing delay, affecting a packet arriving at time t, is qℓ(t)/cℓ (this simple
relation between queue size and delay breaks down if capacity is not constant).

The queued packets are stored in router buffer, of finite size. Under the common
“drop tail” queueing discipline, any packets that arrive when the buffer is already
full, are discarded.

Routing

Packets transmitted by a source node traverses the network, under the control of
the routing system. The combination of network topology and routing is conve-
niently described as a routing matrix (see Sec. 2.3). This is a matrix with one row
for each link in the network, and one column for each data flow. A data flow is char-
acterized by its source node, its destination, and its sending rate. In this model, the
destination node is passive, so we will usually say “source” then we really mean a
flow and a pair of nodes. The sending rate of source s is denoted rs(t).

With this abstract notion of data sources, the routing matrix is defined as

Aℓs =

{
1 if the flow of source s traverses link ℓ

0 otherwise

Links that are known not to be bottlenecks can be omitted.

Example 3.1 (Small network) Consider the network in Fig. 3.2. Assume that
source Sk is sending data to node Dk, using shortest path routing, and that the
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The network model

links marked L1, L2, and L3 are the potential bottlenecks. The routing matrix for
these three data flows and three links is

A =




1 0 0
1 0 1
0 1 1




A corresponding graph is shown in Fig. 3.3. In this view, the intermediate nodes in
the graph now represents individual links, and their corresponding queues. This is
different from the view in Fig. 3.2, where intermediate nodes represents routers.

The routing matrix lets us describe aggregation easily. The arrival rates for the
three links are given by

y1 = r1

y2 = r1 + r3

y3 = r2 + r3

which can be written more concisely in matrix form,

y = Ar (3.1)

�

Eq. (3.1) expresses the aggregation for any network and its corresponding rout-
ing matrix. It says that the arrival rate to link ℓ is the sum of the sending rates
of all sources that uses that link. There are two important simplifications in this
model.

Links are unordered Column s of the routing matrix represents the unordered
set of links traversed by the packets transmitted by source s. But in a real
network, order matters. E.g., consider a flow with sending rate 2 Mbit/s, that
traverses two links of capacity 1 Mbit/s. Then the arrival rate to the first
bottleneck is 2 Mbit/s, but this throttles the rate, so that the arrival rate to
the second bottleneck is only 1 Mbit/s (or less, if the first bottleneck is shared
with other traffic).

The throttling occurs only when the arrival rate to a link exceeds capacity,
and then rates are throttled by a factor cℓ/yℓ. It follows that the discrepancy
is small when the system is close to an equilibrium, where the arrival rate to
each link is either below capacity, or close to the capacity.

No time delays The model does not include any delay between rs and yℓ. Let
τℓs(t) denote the delay from the time a packet is transmitted by source s,
until it arrives at link ℓ. Then τℓs is a sum of propagation delays and the
queueing delays at earlier links, evaluated at the appropriate points in the
past. Then the aggregation can be written as

yℓ(t) =
∑

s;Aℓs=1

rs(t− τℓs)
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3. An accurate model for window-based transmission

Taking the time-varying queueing delay into account leads to severe diffi-
culties. For local analysis, it is reasonable to approximate τℓs as the sum of
propagation delays and stationary queueing delays. With this approximation
of constant delays, the aggregation is linear and time-invariant. It can be ex-
pressed as a modified routing matrix, where all ones are replaced by time-shift
operators. This makes it possible, although still quite difficult, to take delays
into account for local stability analysis over arbitrary topologies.

Cross-traffic

When analyzing congestion control methods, it is useful to divide the system traffic
into two types: Traffic from flows that use congestion control, and other traffic. We
let yℓ denote the aggregation of the congestion controlled flows only, and let x(t)
denote the arrival rate of cross-traffic to each link. This gives the modified equation
for the queueing,

q̇ℓ(t) =

{
yℓ(t) + xℓ(t)− cℓ(t) qℓ(t) > 0

max(0, yℓ(t) + xℓ(t)− cℓ) qℓ(t) = 0

The motivation for this division is that the rate of the cross-traffic is independent
of the queue sizes in the network. E.g., fixed rate voice calls, or streaming video. In
the analysis, we will usually assume that x is constant, and define the parameter
γℓ = 1−xℓ/cℓ, which is the proportion of capacity that is available for the congestion
control flows.

One of the key observations is that the dynamical behavior of the system de-
pends on γ. A 1 Mbit/s link with no cross-traffic (γ = 1) is very different from a
5 Mbit/s link with 80% cross-traffic (γ = 0.2), even though the available capacity
is the same in both cases, γc = 1 Mbit/s.

To illustrate this point, consider Figs. 3.4– 3.7 which show ns2 simulations of
tcp Vegas. We use a single bottleneck, with available capacity γc of 1 Mbit/s, and
different values for γ. For all γ, tcp Vegas makes the queueing delay converge to
the same value, 30 ms, corresponding to the transmission time for three packets at
a rate of 1 Mbit/s. But the dynamics depend on γ: Small gamma gives a longer
time constant, while high γ gives a short time constant and a large overshoot.

3.3 From window size to sending rate

In fluid flow modeling of queueing networks, data rates are the central quantities
of interest. The rate of change of a queue is the difference between the arrival rate
and the link capacity. On the other hand, in the tcp family of congestion control,
the main control variable is the congestion window. The sending rate is determined
indirectly by the window size, under the control of the ack-clock. This can be
described as a cascaded control system, illustrated in Fig. 3.1.
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Figure 3.4: Queue response for tcp Vegas, for γ = 0.2.
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Figure 3.5: Queue response for tcp Vegas, for γ = 0.4.
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Figure 3.6: Queue response for tcp Vegas, for γ = 0.7.
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Figure 3.7: Queue response for tcp Vegas, for γ = 1.0.
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From window size to sending rate

Let us start with the relation between window size and the resulting sending
rate. For equilibrium or average quantities, that relation is simple:

sending rate =
window size

roundtrip time

but the dynamics are more complex than that. Let us first consider what is meant
by “window size”, since there is one important subtlety here. On one hand, we
have the actual amount of in-flight data; packets that have been transmitted but
for which no ack has been received yet. This value will be denoted w(t). On the
other hand, we have the congestion window in tcp, cwnd, which is determined by
the window update mechanism.

There may be a significant discrepancy between w and cwnd. For example,
assume that as some point, both cwnd and w are ten packets, and that cwnd is
reduced instantaneously from ten packets to five. To make w, the actual number
of packets in flight, track this change instantaneously would require annihilation of
five packets that are on their way somewhere else in the network. Obviously, that
will not happen. Instead, the sending rate is reduced to zero, and w will drop by
one packet at a time as acks arrive without any new packets being transmitted.
Mathematically, this discrepancy is caused by the non-negativity constraint on the
sending rate. Also, any upper bound on the sending rate will cause a discrepancy
when cwnd is increased.

When cwnd is used as an input signal to the ack-clock inner-loop, the actual
amount of in-flight data, w will track cwnd as closely as possible given the constraints
on the sending rate. When the rate of change of cwnd is small, the discrepancy will
be small. When using the model, the distinction between w and cwnd will usually
be ignored.

Forward and backward delay

Consider a single sender, maintaining an amount of w(t) in-flight data at time t,
and a sending rate r(t). The data is transmitted over a path with a single bottleneck
link of capacity c, and a roundtrip propagation delay τ . The queue that serves the
bottleneck link is called the bottleneck queue.

The propagation delay can be divided into forward delay τf (the time it takes
for a transmitted packet to arrive to the bottleneck queue) and backward delay τb
(the time it takes for a packet transmitted on the bottleneck link to arrive to the
receiver, and for the corresponding ack to travel back to the sender).

To see the influence of the forward delay, consider two single-bottleneck single-
flow networks, with the same roundtrip propagation delay τ . In the first network,
the forward delay is τf > 0. The sender uses a window size of w1(t) and a sending
rate of r(t). In the second network, the sender is located just before the bottleneck
so that the forward delay is zero. The sender in the second network uses a sending
rate of r2(t) = r(t − τf ). Comparing these two networks, the arrival rate to the

59



3. An accurate model for window-based transmission

bottleneck, in both cases, is r(t− τf ). It follows that the queue size q(t), as well as
the sending rate on the bottleneck link, is identical for both networks.

Then the rates of received acks are also the same in both networks, except for
a time shift due to the difference in backward delay, which is τf . Since the window
size is the difference between transmitted packets and acked packets, it follows
that the window size in the second network is w2(t) = w1(t − τf ). This argument
extends to any flow that traverses a single bottleneck, within a general network
topology with several flows and several bottlenecks.

Proposition 3.2 (Informal) Assume that some flow traverses a single bottleneck,
with a forward delay τf and window size w(t).

(i) The queue size q(t) at the bottleneck is unchanged if the flow is replaced by
a flow with the same roundtrip propagation delay, zero forward delay, and a
window size of w(t− τf )

(ii) Except for this delay in the input signal, the queue dynamics depends only on
the total propagation delay of the flow, not on its subdivision into forward and
backward delay.

Integrator model

In the literature, there are two common ways of expressing the sending rate of this
system. The first approach applies the relation

sending rate =
window size

roundtrip time
,

to the instantaneous rate,

r(t) =
w(t)

τ + q(t− τb)/c
The time delay in the denominator is motivated by causality. Information about
the queue size travels back to the sender with the packets and acks, which are
subject to the propagation delay τb. It also ensures that feedback delay in queueing
dynamics will correspond to the total propagation delay, not just the forward delay.

Together with the integrating queue dynamics, and cross-traffic x(t), one gets
the integrator link model

q̇(t) =
w(t− τf )

τ + q(t− τ)/c + x(t)− c (3.2)

A similar model, generalized to an arbitrary network topology, is described in [80].

The topology is specified by the routing matrix A, equilibrium forward delays τf∗ℓs ,
and propagation round trip delays τs, as

q̇ℓ(t) =
∑

s

Aℓs
ws(t− τfℓs)

τs +
∑
k Aksqk(t− τ

f∗
ℓs )/ck

− cℓ
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From window size to sending rate

In the case of a single flow, single source, this reduces to

q̇(t) =
w(t− τ∗f )

τ + q(t− τ∗f )/c
− c

In this model, τ∗f includes forward propagation delay and equilibrium queueing
delay, but not backward propagation delay, hence this model violates Prop. 3.2.

In [56], the queue dynamics is written as

q̇(t) =
w(t)

τ + q(t)/c
n(t)− c

where n(t) is the number of tcp flows sharing the bottleneck. For n = 1, this is the
same integrator model (3.2) with zero cross-traffic, except for the missing delay.

The models used in [56, 80] boil down to the relation r(t) = w(t)/(τ + q(t)/c),
connecting sending rate and window size, without any delay. It should be noted
that unlike the present chapter, this part of the model is not the main focus in
these papers; the main modeling complexity is in the window update law and the
aqm scheme.

Static link model

The second approach is based on the observation that the window size is the amount
of data that is in transit somewhere in the network. Let us first consider the case
with no cross-traffic, x(t) = 0. Of the data in transit, all but at most cτ must reside
in the queue at the bottleneck link. This leads to the static link model

q(t) = w(t)− cτ
This corresponds to a sending rate of

r(t) = c+ ẇ(t)

This expression for the rate can be understood as follows: Packets are transmitted
onto the bottleneck link with rate c. Then the rate of received acks will also be c,
independent of the window size [114]. So one can read the equation as

r(t) = rate of received acks + ẇ(t)

To extend the static model to the case with cross-traffic, we only consider the
case of constant cross-traffic. Let γ = 1 − x/c, i.e., the proportion of the capacity
that is available. Looking for a static relation between w and q, the corresponding
equations are

q(t) =
w(t)

γ
− cτ

r(t) = γc+
ẇ(t)

γ

This is the only static relation between w and q which gives the correct equilibrium,
r = γcτ and w = γ(cτ + q).
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3. An accurate model for window-based transmission

3.4 New joint link model

The integrator model and the static model are obviously contradictory. It turns
out that the integrator model is accurate when the bottleneck link is dominated by
cross-traffic, while the static model is accurate when the cross-traffic uses only a
small proportion of the capacity. We will now derive a model that is only slightly
more complex, and which is accurate for any level of cross-traffic. We will see that in
the low cross-traffic limit, we recover the static model, while in the high cross-traffic
limit, we recover the integrator model.

Assume we have a single flow traversing a single bottleneck. Consider the trans-
mission at some time t0, and put t1 = t0 + τ + q(t0 + τf)/c. Then the ack for a
packet sent at time t = t0 will return to the sender at time t = t1. Furthermore, at
time t1, the acks for all packets sent before t0 have returned, which means that the
data in flight at time t1 is precisely the data sent during the interval t0 < t ≤ t1.
Mathematically,

w(t1) =

∫ t1

t0

r(s) ds

Rewrite the left hand side as w(t1) = w(t0) +
∫ t1
t0
ẇ(t) dt, and move the integral to

the right-hand side. Then, by the mean value theorem, there exists a point ξ in the
interval t0 ≤ ξ ≤ t1 such that

w(t0) =

∫ t1

t0

(
r(s)− ẇ(s)

)
ds = (t1 − t0)

(
r(ξ)− ẇ(ξ)

)

Solving for r, we get

r(ξ) =
w(t0)

τ + q(t0 + τf)/c
+ ẇ(ξ)

The time delay between q and r is ξ − (t0 + τf). Like ξ, this delay is unknown and
most likely dependent both on t0 and on the initial conditions. To make the model
practical, we need to approximate the delay with a constant, ξ = t0 + ∆. Since
ξ ≤ t1, we require that ∆ ≤ τ + q(t0 + τf)/c. For this bound to be valid for all t0
and all initial conditions, including q(t0 + τf) = 0, we must have ∆ ≤ τ . On the
other hand, causality requires ξ − (t0 + τf) ≥ τb, which implies that ∆ ≥ τ .

This leads us to the approximation ξ = t0 + τ . The resulting equation is

r(t) ≈ w(t− τ)
τ + q(t− τb)/c

+ ẇ(t)

The time delays in the real system include queueing delays, and are hence state-
dependent. Any choice of constant delays in the model is arbitrary to some degree.
The choice of fixed delays in the model is a compromise between simplicity and
accuracy, with causality requirements taken into account.

The delay in the denominator is clearly motivated by causality; τb is the sig-
nalling delay between the queue and the sender. The delay in the numerator may
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at first seem unintuitive; why should there be a signalling delay from the window
size, a direct input to the sender’s transmission control, to the resulting rate? It can
be understood if we interpret the first term as the rate of received acks. This rate
depends on the window size at the time the corresponding data was sent, and the
queue size at the time the data arrived to the queue. The second term represents
additional data that is sent or omitted immediately when w is changed.

If we substitute the rate expression into the queue dynamics, q̇(t) = r(t− τf) +
x(t)− c, we get

q̇(t) =
w(t− τ − τf)
τ + q(t− τ)/c + ẇ(t− τf) + x(t)− c

We call this model the joint link model.

Linearized dynamics

To examine behavior close to the equilibrium, assume that the cross-traffic is con-
stant, and define γ = 1−x/c. This is the proportion of the capacity that is available,
i.e., not used by cross-traffic. Without loss of generality, we can also assume that
τf = 0. We examine the response to small changes in the window size close to an
equilibrium w∗ and q∗. If w∗ ≤ γcτ , then the equilibrium is q∗ = 0, with an active
non-negativity constraint in the equation for q̇(t). To get a non-empty equilibrium
queue, we must require that w∗ > γcτ . In this case, q∗ = w∗/γ − cτ . Also let
τ∗ = τ + q∗/c denote the total rtt in equilibrium.

Put w(t) = w∗ + w̃(t) and q(t) = q∗ + q̃(t). We then get

˙̃q(t) =
w̃(t− τ)− γq̃(t− τ)
τ∗ + q̃(t− τ)/c + ˙̃w(t)

Linearization and transform into the Laplace domain gives the following transfer
function from w̃ to q̃,

G(s) =
e−sτ + τ∗s

γe−sτ + τ∗s

Remarks:

• The static gain is G(s) = 1/γ. I.e., the effect a window change has on the
queue is larger the more cross-traffic there is. This can also be seen directly
from the equilibrium equation, q∗ = w∗/γ − cτ .

• In the limit γ → 1, we get G(s)→ 1, which is the static model.

• The integrator model has the same equilibrium equation, and the correspond-
ing linearization gives the transfer function

Gintegrator(s) =
1

γe−τs + τ∗s

63



3. An accurate model for window-based transmission

This implies that the poles, stability properties, and the static gain, are the
same for the joint model and the integrator model. The difference is that the
joint model has additional zeros.

• The system poles are the roots of γe−sτ + τ∗s. These can be expressed using
Lambert’s function (see Appendix B), as sk = Wk(−γτ/τ∗)/τ , where k enu-
merates the different branches of the function. Stability, and bounds for the
poles, will be considered in the next chapter.

• If γ is small, γ < 1/e (or more generally, if γτ/τ∗ < 1/e), then there are
two real poles, on the negative real axis. The real pole closest to the origin is
s0 = W0(−γτ/τ∗)/τ . Since W0(x) = x + O(x2), the real pole closest to the
origin is located at

s0 =
1

τ
W0

(
−γ τ

τ∗

)
= − γ

τ∗
+O(γ2)

Hence, for small γ, the system time constant is roughly τ∗/γ, or possibly
larger.

3.5 Validation

To validate the new model, we compare it to ns2 simulations of tcp, using a con-
figuration where only the ack-clock inner-loop is active, and the additive increase
and multiplicative decrease mechanisms are disabled.

The simulation scenario used a single-bottleneck topology, with 1 Mbit/s avail-
able capacity (i.e., γc = 1 Mbit/s), and propagation roundtrip time of 50 ms. The
cross-traffic is constant bit rate udp, and both the tcp flow and the cross-traffic
use a packet size of 1500 bytes. The initial window size was chosen to get a queue
size of roughly 20 packets. Figure 3.8 and 3.9 show the response to a positive and
negative step in the window size. We see that for smaller γ, i.e., more cross-traffic,
the resulting change in the queue size is larger, and the time to converge to the new
value is longer.

Now compare these curves to the queue size predicted by the the three models.
In each of Fig 3.10–3.13, the curves are plotted together for one value of γ. We
see that the integrator model is accurate for high cross-traffic (small γ), while the
static model is accurate for low cross-traffic (large γ), the joint model is fairly close
to the ns2 simulation regardless of the intensity of cross-traffic.

Finally, let us revisit the issue of where in the model we should put the time
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Figure 3.8: Queue response to a positive step change in the window size. The window
size is increased by five packets at time t = 10. From top to bottom, the curves
correspond to increasing γ.

delays. Consider the three candidate models:

q̇(t) =
w(t)

τ + q(t)/c
+ ẇ(t)− γc No signalling delay (3.3)

q̇(t) =
w(t)

τ + q(t− τ)/c + ẇ(t)− γc Only q subject to delay (3.4)

q̇(t) =
w(t− τ)

τ + q(t− τ)/c + ẇ(t)− γc Both q and w subject to delay (3.5)

In Fig. 3.14, we see the same step response experiment as in Fig 3.11, together
with the predictions from these three model variants. The model with time delay
for q only, Eq. (3.4), gives worse accuracy then the model with no time delays at
all, Eq. (3.3). So it seems essential to use the same delay for both numerator and
denominator in the expression w/(τ + q/c).

Signalling delays in a system are of fundamental importance both for stability
and for the achievable performance. Since we want results that hold also when
the propagation delay is large, we will prefer to use the model with time delays,
Eq. (3.5). When we need a simpler model, e.g., in order to get closed form solutions,
we will resort to Eq. (3.3), the model without signalling delays, which is a fairly
good approximation.
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Figure 3.9: Queue response to a negative step change in the window size. The
window size is decreased by five packets at time t = 10. From top to bottom, the
curves correspond to decreasing γ.
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Figure 3.10: Queue response from ns2 compared to the prediction of three queue
models, for γ = 0.2.
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Figure 3.11: Queue response from ns2 compared to the prediction of three queue
models, for γ = 0.4.
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Figure 3.12: Queue response from ns2 compared to the prediction of three queue
models, for γ = 0.7.
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Figure 3.13: Queue response from ns2 compared to the prediction of three queue
models, for γ = 1.0. For this scenario, with no cross-traffic, the curves for the static
model and the joint model are the same.

3.6 Multiple flows

In the joint link model for a single flow, we had one flow using window-based control,
sharing the network with cross-traffic. The cross-traffic arrival rate was assumed to
be independent of the queue size. In this section, we extend the model to the case
of single link shared by n flows using window-based control, all with sending rates
depending on the queue size, as well as some cross-traffic.

Figure 3.15 illustrates the topology, for n = 5. For flow k, we have a window
size wk(t), sending rate rk(t), and a roundtrip propagation delay τk. Without loss
of generality, we can assume that the forward delay is zero. The equation

wk(t0 + τk + q(t0)/c) =

∫ t0+τk+q(t0)/c

t0

rk(t) dt

implies

rk(ξ) =
wk(t0)

τk + q(t0)/c
+ ẇk(ξ)

for some ξ with t0 ≤ ξ ≤ t0 + τk + q(t0)/c. Like in the single flow case, the approx-
imation ξ = t0 + τk is a reasonable compromise. The dynamics of the bottleneck
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nalling delays, compared to ns2 simulation. The window size is increased by five
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Figure 3.15: Topology with a single bottleneck shared by several flows.
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Figure 3.16: Behavior with two flows different propagation delays, 50 ms and 200 ms.
For t < 20, the queue is in equilibrium, each flow has a sending rate of 500 kbit/s,
and there is also 1.5 Mbit/s of constant rate cross-traffic (γ = 0.4). At time t = 20,
the window size of the flow with the longer propagation delay is increased by ten
packets.

queue is then given by

q̇(t) =
∑

k

rk(t) + x(t)− c =
∑

k

ẇk(t) +
∑

k

wk(t− τk)
τk + q(t− τk)/c

+ x(t)− c

Flows with the same roundtrip propagation delay behave as a single aggregated
flow, where the rate and the window size of the aggregate are the sums of the rate
and window sizes of the individual flows. With heterogeneous delays, the dynamics
get more complex. In Fig. 3.16, we see the queue response to a change in window
size, for two flows with a factor four difference in rtt. The model is quite close
to the ns2 simulation, although there are some unmodelled oscillations. The the
oscillations seem related to packet bursts, the initial burst when the window is
increased, and repeated bursts when the acks for the previous burst return to the
sender.

When the difference in rtt becomes more extreme, the oscillations are more
pronounced, as seen in Fig. 3.17, with a factor 16 difference in rtt. Introduction
of traffic shaping at the senders, to reduce bursts, may reduce the oscillations and
bring the dynamics closer to that described by the model. The effect of traffic
shaping, and the nature of these oscillations, needs further investigation.
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Figure 3.17: Behavior with two flows with propagation delays that differ by an
order of magnitude, 50 ms and 800 ms. For t < 20, the queue is in equilibrium,
each flow has a sending rate of 500 kbit/s, and there is also 1.5 Mbit/s of constant
rate cross-traffic (γ = 0.4). At time t = 20, the window size of the flow with the
longer propagation delay is increased by ten packets.

3.7 Equilibrium for a general network

In this section, consider a general network consisting of S sources, each sending
data across the network using a fixed window size ws > 0 and a propagation delay
τ0
s , and L links, each with a fixed capacity cℓ > 0. The interconnection of sources

and links is given by the routing matrix A (Sec. 2.3), defined by

Aℓs =

{
1 if source s uses link ℓ

0 otherwise

Let dℓ(t) = qℓ(t)/cℓ denote the queueing delay at link ℓ, and let rs(t) be the sending
rate of source s. The aggregated arrival rates at the links are y = Ar, and the
aggregates queueing delays seen by the sources are τ = AT d. Since we will examine
equilibrium properties only, we can ignore signalling delays. Then the sending rate
for each source is

rs(t) =
ws

τ0
s + τs(t)
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3. An accurate model for window-based transmission

and the queue dynamics at each link is

ḋℓ(t) =

{
yℓ(t)
cℓ
− 1 dℓ(t) > 0

max
(
0, yℓ(t)

cℓ
− 1
)

dℓ(t) = 0
(3.6)

The equilibrium condition ḋℓ = 0 implies that either dℓ = 0 and yℓ ≤ cℓ, or yℓ = cℓ.
Equivalently, in vector notation, y ≤ c and dT (c − y) = 0. To sum up, for each
stationary vector d, with corresponding sending rates r, the equilibrium conditions
can be written as

r ≥ 0 d ≥ 0 non-negativity

y ≤ c capacity constraint

y = Ar τ = AT d aggregation

rs =
ws

τ0
s + τs

rate equation

0 = dT (c− y) complementary slackness

This looks very similar to the kkt conditions for a network utility maximization
problem (Sec. 2.3). If we solve the rate equation for τs, we get

τs =
ws
rs
− τ0

s

Define
Us(rs) = ws log rs − τ0

s rs

This is a strictly concave function. Unlike the utility functions commonly used in
network utility maximization, Us is not increasing for all rs, it has a maximum
at rs = ws/τ

0
s . We thus get equivalence between equilibria of (3.6) and a convex

optimization problem.

Theorem 3.3 For any given windows sizes w > 0, and capacities c > 0, and any
routing matrix A with full row rank, the dynamical system (3.6) has a uniquely
determined equilibrium d∗.

Proof : Consider the utility maximization problem

max
r

∑

s

(ws log rs − τ0
s rs)

s.t. Ar ≤ c
r ≥ 0

The constraints define a convex region, with nonempty interior (since c > 0), and
the objective function is strictly concave (since w > 0). Hence, this is a convex
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optimization problem, with a unique maximizer r∗, characterized by the kkt con-
ditions. We have seen that the kkt conditions are equivalent to the equilibrium
equations for (3.6). For any pair of vectors r∗ and d∗ that satisfy the kkt condi-
tions, d∗ is an equilibrium. This establishes existence of an equilibrium.

For uniqueness, assume that d and d̃ are two equilibria. Together with the
corresponding rates, we get two solutions to the kkt equations. By uniqueness of
the maximizer, r∗ is uniquely determined, i.e., the two equilibria correspond to the
same rates. By the rate equation, the aggregated delay τ is uniquely determined
by r∗. By the aggregation equation, it follows that AT (d− d̃) = 0. This expression
is a linear combination of the rows of A. Since A has full row rank, the rows of
A are linearly independent, and it follows that d = d̃. Hence the equilibrium d∗ is
uniquely determined. �

This theorem is proved in a different manner in [89].

Example 3.4 (Equilibrium queue sizes) Recall the topology in Fig. 3.3. There
are three flows and three links, each with one router queue. The routing matrix for
this network is

A =




1 0 0
1 0 1
0 1 1




Let us assume that all links have the same capacity 10 Mbit/s, and propagation
delay 20 ms, for both data packets and acks. acks are assumed to traverse the
same number of routers and links, but with uncongested queues. Also assume that
the three window sizes are 64 Kbyte = 219 bits. Then the parameters of this system
are

c =




10
10
10


 106 τ0 =




80
40
80


 10−3 w =




1
1
1


 219

Then the equilibrium of the queueing dynamics, Eq. (3.6), is

r =




6.06
6.06
3.94


 106 y =




6.06
10
10


 106 d =




0
6.5
46.5


 10−3

We see that only the links L2 and L3 are bottlenecks. If we reduce the capacity of
L1 to 5 Mbit/s, we get a different solution, where the bottlenecks are L1 and L3.

r =




5
5.92
4.08


 106 y =




5
9.08
10


 106 d =




25.9
0

48.5


 10−3

�
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3. An accurate model for window-based transmission

3.8 Summary

In this chapter, we have proposed and validated modeling of the relationship be-
tween the window size and the sending rate as

r(t) =
w(t− τ)

τ + q(t− τb)/c
+ ẇ(t)

When combined with the integrator queueing dynamics in a single source, single
link topology, the resulting queueing dynamics is

q̇(t) =
w(t− τ − τf)
τ + q(t− τ)/c + ẇ(t− τf) + x(t)− c

This model unifies the integrator model, r(t) = w(t)/(τ +q(t−τ)/c), and the static
model, q(t) = w(t)− cτ .

By comparing all three models to ns2 simulations, we have seen that the inte-
grator model is accurate for a high level of cross-traffic, while the static model is
accurate for a low level of cross-traffic. The new joint model describes the queueing
dynamics accurately for any level of cross-traffic. In Chapter 5, we will also use a
simplified joint model, without signalling delays:

r(t) =
w(t)

τ + q(t)/c
+ ẇ(t) (3.7)

For constant cross-traffic, we use the parameter γ = (c − x)/c. This is the
proportion of the capacity that is available, i.e., not used by cross-traffic. The static
gain from window size to queue size is 1/γ, hence increasing with the amount of
cross-traffic. Since for small γ, the linearized system has a pole located at −γ/τ∗ +
O(γ2), we expect that increased cross-traffic will also make the system slower. In
this formula, τ∗ denotes the total rtt in equilibrium.

In the next chapter, we will analyze the stability of this system, and give bounds
for the convergence time constant.
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Chapter 4

Stability analysis of window-based

transmission

I admire your perverted ingenuity in inventing one definition after the
other as barricades against the falsification of your pet ideas. Why don’t
you just define a polyhedron as a system of polygons for which the equa-
tion V − E + F = 2 holds?

Proofs and Refutations, Imre Lakatos

I
n this chapter, we argue that window-based congestion control is stable. More
precisely, we consider a queueing network, where the sending rate of each traffic
source is determined by the source’s window size and the ack-clock mechanism.

The window sizes are the inputs to the system, and the queue sizes inside the
network are the system outputs. We will also allow for constant-rate cross-traffic
flows.

4.1 Overview

Proving global stability for the most general case, with arbitrary network topology
and arbitrary delays, seems very difficult. Instead we consider the most important
special cases. We have the following results:

• The case of a single bottleneck and a single flow is globally stable, for arbitrary
delays. This is proved in Sec. 4.2. We also discuss the mathematical well-
posedness of the problem, and the convergence time constant.

• The case of a single bottleneck and an arbitrary number of flows with arbitrary
delays, is locally stable. This is proved in Sec. 4.3.

• With an arbitrary network topology, under the approximation of no signalling
delays, the system is globally stable. This is proved in Sec. 4.4
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4. Stability analysis of window-based transmission

These results indicate that neither delays, aggregation, or complex network
topology, leads to any stability problems.

Since we study asymptotic stability with arbitrary but constant inputs, the
direct term ẇ in the joint link model vanishes, and the results are valid also for the
integrator link model.

In Sec.4.5, we prove general theorems on the existence and uniqueness of solu-
tions to differential equations with state constraints. The well-posedness result in
Sec. 4.2 is a direct consequence of one of these theorems. In Sec. 4.6, we derive suf-
ficient stability conditions for certain low-dimensional linear systems with delays.
These results are used in this and later chapters, for proving local stability.

4.2 A single link and a single flow

Well-posedness

We start by looking closer at the differential equation for the queue evolution in the
case of a single flow and a single bottleneck, and the existence and uniqueness of
solutions. The queue dynamics are described by the joint link model from Chapter 3,

q̇(t) =

{
f(t, q(t− τ)) q(t) > 0

max(0, f(t, q(t− τ)) q(t) = 0
(4.1)

f(t, q) = ẇ(t) +
w(t− τ)
τ + q/c

+ x(t)− c

The parameter c > 0 is the link capacity, and τ > 0 is the roundtrip propagation
delay, i.e., excluding the queueing delay q(t)/c. There are two input signals, the
window size w(t) ≥ 0, and the arrival rate of cross-traffic, 0 ≤ x(t) < c.

Theorem 4.1 (Well-posedness) Assume the input signal x(t) is continuous, and
w(t) is continuously differentiable. For any non-negative, right-hand continuous,
bounded and measurable function φ0 on [−τ, 0], Eq. (4.1), together with the initial
condition q(t) = φ0(t) for t ∈ [−τ, 0], has a uniquely determined solution q(t) for
all t ≥ 0.

Proof : Under these assumptions, f and φ0 satisfy the hypothesis of Theorem 4.15,
which is stated and proved in Sec. 4.5. �

Stability

Now restrict attention to the case of a constant input w(t) = w and constant cross-
traffic x(t) = x. Put γ = (c−x)/c; this is the proportion of the capacity that is not
consumed by the cross-traffic. Then there is no longer an explicit time-dependence
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A single link and a single flow

in f , and the dynamics are described by

q̇(t) =

{
f(q(t− τ)) q(t) > 0

max(0, f(q(t− τ)) q(t) = 0
(4.2)

f(q) =
w

τ + q/c
− γc

The equation has a unique equilibrium given by

q∗ = max(0, w/γ − cτ)

The time delay is the source of any complex or unstable dynamics in this system;
if τ = 0, the system is trivially stable.

Theorem 4.2 (Global asymptotic stability) For any non-negative, right-hand
continuous, bounded and measurable function φ0 on [−τ, 0], the solution to Eq. (4.2),
with initial condition q(t) = φ0(t) for t ∈ [−τ, 0], satisfies q(t)→ q∗ as t→∞.

First consider the simplest case, w ≤ γcτ . Then q∗ = 0, and since q̇(t) ≤ 0 for
all t, it follows that this equilibrium is globally asymptotically stable.

For the rest of this section, assume that w > γcτ , so that q∗ > 0. Also put
τ∗ = τ + q∗/c. Then the equation for f can be rewritten once more, as

f(q) = γ
q∗ − q
τ + q/c

Note that this is a strictly decreasing function of q. The stability proof depends
on various bounds on f . The parameter γ plays limited rôle in this proof; in all
inequalities, it will be eliminated using γ ≤ 1.

We first show that the system is stable, under an additional assumption that
trajectories are appropriately bounded.

Lemma 4.3 Assume that q(t) is a solution to Eq. (4.2), and that q(t) satisfies the
bounds 0 < q(t) ≤ 2q∗ for all t ≥ 0. Then q(t)→ q∗ as t→∞.

Proof : Since q(t) > 0 for all t > 0, the non-negativity condition is not active. We
first make a change of variables

v(t) =
q(tτ)− q∗
cτ + q∗

which transforms the equation into

v̇(t) = −κ v(t− 1)

1 + v(t− 1)

where κ = γτ/τ∗ < γ. The bounds 0 < q(t) ≤ 2q∗ imply that |r(t)| ≤ 1 − τ/τ∗ ≤
1− κ.
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4. Stability analysis of window-based transmission

The differential equation can be decomposed as a linear system with a static
non-linear feedback ψ(x).

v̇(t) = −κv(t− 1) + κu(t− 1)

u(t) = −ψ(v(t))

ψ(v) = − v2

1 + v

The transfer function for the linear system with u(t) as input and v(t) as output is

G(s) =
κe−s

s+ κe−s

which is stable (an application of the argument principle gives the necessary and
sufficient stability condition 0 ≤ κ < π/2, which is satisfied).

For |v| ≤ 1− κ, the non-linearity ψ satisfies the sector inequalities

αv2 ≤ vψ(v) ≤ βv2

with

α = −1− κ
2− κ β =

1− κ
κ

Let D(a, b) denote the circular disc in the complex plane, which is centered on
the real axis, and with boundary intersecting the real axis as a and b. According to
the circle criterion [113], a sufficient condition for stability of the feedback system
is that the Nyquist curve z = G(iω) stays inside the disc D(−1/β,−1/α), with a
positive margin.

In our case, this disc is D(−κ/(1− κ), (2− κ)/(1− κ)), centered at z = 1, and
has radius r = 1/(1 − κ) > 1. To see that the Nyquist curve is inside this circle,
with a positive margin, consider the smaller disc D(1 − r, 1), which is tangent to
the original disk at z = 1−r, and tangent to the Nyquist curve at z = 1, illustrated
in Fig 4.1. Define the linear fractional transformation h(z) which maps D(1− r, 1)
onto the unit disc, and keeps the origin fixed,

h(z) =
z

(1− 2κ)z + 2κ

Under this transformation, illustrated in Fig 4.2, we find

h(G(iω)) =
κe−iω

(1− 2κ)κe−iω + 2κ(iω + κe−iω)
=

1

1 + 2iωeiω

|h(G(iω))|2 =
1

|1 + 2iωeiω|2 =
1

1 + 4ω(ω − sinω)
≤ 1

where the final inequality uses the bound sinω ≤ ω. We also see that the curve
touches the unit circle only when ω = 0. Hence, the Nyquist curve is inside D(1−
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Figure 4.1: The Nyquist curve and the discs considered in the proof of Lemma 4.3,
drawn for κ = 0.8. The large dashed circle corresponds to the sector inequalities
for the nonlinearity ψ. The solid curve is the Nyquist curve for G(s). The smaller
circle is constructed so that it is tangent to both.

r, 1), getting close only at 1 (for ω = 0), and it follows that the Nyquist curve is
inside D(1− r, 1 + r) with a positive margin. �

With this result, global asymptotic stability, regardless of initial state, follows
as soon as we have established boundedness.

Lemma 4.4 For each initial state φ0 there exists a T = T (φ0) ≥ 0 such that the
unique solution of Eq. (4.2) satisfies

0 < q(t) ≤ 2q∗ (4.3)

for all t ≥ T .

Proof : We first note the following upper bound for q̇(t):

q̇(t) ≤ q∗/τ

valid for all t ≥ 0.

(i) There exists t0 ≥ τ such that q(t0) ≤ 2q∗.

Assume to the contrary that no such t0 exists; then q(t) > 2q∗ for all t ≥ τ .
Since q(t− τ) > q∗ implies that q̇(t) < 0, we see that q̇(t) ≤ 0 for all t ≥ 2τ .
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Figure 4.2: The Nyquist curve under the mapping h(z), which maps the smaller
circle from Fig 4.1 onto the unit circle, leaving the origin fixed.

This means that q(t) is a decreasing function bounded below by 2q∗, hence
converging to some limit no smaller than 2q∗. The limit value must be a
stationary point, but the only stationary point is q∗. This contradiction proves
the first step.

(ii) q(t) ≤ 2q∗ for all t ≥ t0.
It is sufficient to prove that q(t) ≤ 2q∗ for t0 ≤ t ≤ t0 +τ ; then the rest follows
by induction.

In case q(t0) ≤ q∗, the results follows directly from the bound on q̇: for all
t0 ≤ t ≤ t0 + τ we have

q(t) ≤ q(t0) + (t− t0)q∗/τ ≤ 2q∗

Otherwise, q(t0) > q∗. Put q(t0) = (1+ξ)q∗, with 0 < ξ ≤ 1. Again, the key is
the bound on q̇. We have q(t−τ) ≥ q(t0)+(t−t0−τ)q∗/τ = (ξ+(t−t0)/τ)q∗ >
0. To use this, express q(t) in terms of the integral from t0 to t,

q(t) = q(t0) +

∫ t

t0

q̇(u) du = (1 + ξ)q∗ + γ

∫ t

t0

q∗ − q(u− τ)
τ + q(u− τ)/c du

By substituting the bound for q(u − τ) in the numerator of the integrand,
and replacing the integration interval by the set where the new integrand is
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non-negative, we get

q(t) ≤ (1 + ξ)q∗ + γq∗
∫ t−t0

0

1− ξ − u/τ
τ + q(t0 + u− τ)/c du

≤ (1 + ξ)q∗ + q∗
∫ (1−ξ)τ

0

1− ξ − u/τ
τ + q(t0 + u− τ)/c du

≤ (1 + ξ)q∗ + q∗
∫ (1−ξ)τ

0

(
1− ξ
τ
− u

τ2

)
du

=

(
1 + ξ +

(1− ξ)2
2

)
q∗ =

3 + ξ2

2
q∗ ≤ 2q∗

(iii) There exists a t1 such that q(t) > 0 for all t > t1.

Put t1 = t0 + τ . By induction, it is sufficient to show that q(t) > 0 for
t1 < t ≤ t1 + τ . From the previous step we know that q(t − τ) ≤ 2q∗ for all
t in the interval t1 ≤ t ≤ t1 + τ . This implies a lower bound on q̇(t) on the
same interval. Recall that the function f(q) is decreasing. Then

q̇(t) ≥ f(q(t)) = γ
q∗ − q(t− τ)
τ + q(t− τ)/c) ≥ −γ

q∗

τ + 2q∗/c
> −q

∗

τ

(Without the upper bound on q, we have the lower bound q̇ > −c, which is not
as useful). The result now follows using an argument similar to the previous
step, but here we have strict inequalities. In case q(t1) ≥ q∗, it follows directly
that

q(t) > q(t1)− (t− t1)q∗/τ ≥ 0

Otherwise, q(t1) < q∗. Put q(t1) = (1−ξ)q∗, with 0 < ξ ≤ 1. We get q(t−τ) ≤
q(t1)+(t1−t+τ)q∗/τ = (2−ξ−(t−t1)/τ)q∗, with equality only when t = t1+τ .
It then follows that

q(t) = q(t1) +

∫ t

t1

q̇(u) = (1− ξ)q∗ + γ

∫ t

t1

q∗ − q(u− τ)
τ + q(u− τ)/c du

> (1− ξ)q∗ + γq∗
∫ t−t1

0

ξ − 1 + u/τ

τ + q(t1 + u− τ)/c du

≥ (1− ξ)q∗ − γq∗
∫ (1−ξ)τ

0

1− ξ − u/τ
τ + q(t1 + u− τ)/c du

≥ (1− ξ)q∗ − q∗
∫ (1−ξ)τ

0

(
1− ξ
τ
− u

τ2

)
du

=

(
1− ξ − (1− ξ)2

2

)
q∗ = (1− ξ2)q

∗

2
≥ 0

Hence, choose any T > t1, and the lemma is true. �
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Combining these Lemma 4.3 and 4.4, it follows that Theorem 4.2 holds.
Remarks:

(i) Since q̇(t) > −c for all t ≥ 0, we can not hope for global exponential stability.

(ii) The strict inequality q(t) > 0 is essential, since it means that the non-
negativity constraint in the system equation, Eq 4.2, does not affect the tra-
jectory for t ≥ T .

(iii) Actually, we see that the non-negativity constraint can get activated only in
two ways: For 0 ≤ t ≤ τ , some initial conditions can force q(t) = 0. For t ≥ τ ,
the queue can get empty only if the initial queue is large and the capacity is
large enough, but in this case q(t) = 0 is possible only during the first interval
of length τ when q(t) ≤ 2q∗.

Convergence time

We have seen that the system consisting of a single link and a single bottleneck is
globally stable. When using cascade control, it is essential that the inner-loop is
significantly faster than the outer-loop.

This section derives an upper bound for the time constant of the inner-loop. It
can be used to aid the design of the window update mechanism of the outer-loop.
The main result of the section can be summarized as, for arbitrary capacities and
delays, transmission control based on the ack-clock ensures that the sending rate
and the bottleneck queue size converge within a small number of rtts.

We concentrate on the convergence rate for small variations, using a linearization
of the queue dynamics. Note that since the link serving the queue is of finite capacity,
we can not expect to have exponential convergence for arbitrary large initial values.

The linearized dynamics were studied in Sec. 3.4, where we derived the transfer
function

G(s) =
e−sτ + τ∗s

γe−sτ + τ∗s

The system poles are the solution to the equation

τ∗s+ γe−sτ = 0

Let z = τs, and κ = γτ/τ∗. Rewrite the equation as

z = −κe−z (4.4)

The poles can be expressed as pj = Wj(−κ), where j enumerates the branches of
Lambert’s function. Figure 4.3 shows the first few poles, −3 ≤ j ≤ 2, for some
values of κ. Since the system is stable, we know that Re z < 0 for all solutions
to (4.4). Numerically, it appears that the pole W0(−κ) is the one closest to the
real axis, and hence dominating for the dynamics. But since we do not have a strict
proof for that, our next goal is instead to find a bound σ such that Re z ≤ −σ for all
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Figure 4.3: The first seven system poles, for κ = 0.1, 1/e, 0.7, and 1.0. For κ = 1/e,
there is a double pole at -1.

solutions to (4.4). Then all transients of the system are bounded by the exponential
Ce−σt/τ , which means that the system’s convergence time constant is at most τ/σ.

Assume that z = −x+ iy, x > 0, is a pole of the system. Substitution into (4.4)
yields

−x+ iy = z = −κe−z = −κexe−iy (4.5)

First, we derive a bound for |y| in terms of x. We have

|y| < |z| = κex

Assume that x ≤ log(π/(2κ)), so that both left and right hand side of this equation
lie in the interval [0, π/2], where the cos function is decreasing. Then

cos |y| > cos(κex)

Next, use this to bound the real part of Equation (4.5),

x = κex cos y > κex cos(κex) (4.6)

Define σ as the smallest positive solution to

u = κeu cos(κeu)

Since the right hand side is zero for u = log(π/(2κ)), it follows by continuity
that σ < log(π/(2κ)). Hence x ≤ σ leads to a contradiction, and it follows that
Re z < −σ for all solutions to (4.4).
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Figure 4.4: The solid curve is the bound σ, as a function of κ. The dotted curve is
−ReW0(−κ), i.e., the distance from the imaginary axis to the pole corresponding
to the W0 branch of Lambert’s function.

Figure 4.4 shows σ as a function of κ. In the same figure, the dotted curve also
shows the negative real part of the pole associated with the W0 branch. If κ ≥ 1/4,
e.g., if γ ≥ 1/2 and τ/τ∗ ≥ 1/2, then σ ≥ 0.298, and the system time constant is at
most 3.35τ . These conditions correspond to a typical network configuration where
queueing delay is no greater than the propagation delay, and at most half of the
capacity is used by inelastic cross-traffic.

When κ→ 0, also σ → 0 and the time constant tends to infinity. Let us examine
the two factors in κ = γτ/τ∗. When γ → 0, we can expect the system to become
very slow, no matter how we measure it. However, when τ/τ∗ is small, i.e., when
the queueing delay is large in comparison to the propagation delay, and τ∗ ≫ τ ,
it makes sense to measure the time constant in terms of τ∗. The convergence time
constant is bounded by τ∗/µ, where µ is defined by

µ =
στ∗

τ

Figure 4.5 shows µ, as a function of τ/τ∗, for some different values of γ. Note that
for small values of γ, the minimum is attained for τ/τ∗ = 0, i.e., when the queueing
delay approaches infinity. Figure 4.6 shows the minimum µ as a function of γ. Note
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Figure 4.5: For the five values γ = 0.1, 0.3, 0.5, 0.7, and 0.9, this figure shows µ
as a function of τ/τ∗. The value of µ is related to the time constant expressed in
units of τ∗.

that this curve is linear, µ ≈ γ, for small γ.
We summarize these findings as a proposition.

Proposition 4.5 (Convergence time) Consider the system

q̇(t) =
w

τ + q(t− τ)/c − γc

where c > 0 is the link capacity, τ > 0 the queueing delay, w is a constant window
size, and the parameter γ is the proportion of the capacity which is not used by
cross-traffic. Assume that w > cτ , so that the equilibrium queue size q∗ is positive,

q∗ =
w

γ
− cτ > 0.

Also define the equilibrium rtt τ∗ = τ+q∗/c, and put κ = γτ/τ∗. Let T denote the
time constant of the linearized system close to the equilibrium. Then the following
holds.

(i) If κ > 1/4, which is a typical network configuration, then T < 3.4τ .
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Figure 4.6: The minimum value of µ, as a function of γ. Note that the function is
linear for small γ.

(ii) If γ ≤ 1/2, then T < τ∗/γ. This bound is actually tight for small γ, since one
of the poles is located at W0(−γτ/τ∗)/τ = −γ/τ∗ +O(γ2) (see Sec. 3.4).

(iii) For all a γ > 0.3, T < 3.4τ∗.

When γ > 0.3, convergence time is always bounded by 3.4τ∗, the total rtt
including queueing. Furthermore, for typical configurations, the same bound is valid
also if τ∗ is replaced by τ , the propagation roundtrip delay. In the extreme case of
small γ, the convergence time is large, inversely proportional to γ.

For typical network paths, with an rtt of at most a few 100 ms, we can expect
convergence time on the order of 1 s. This can be compared to the convergence
time of proposed outer-loops, such as tcp with aqm, with a convergence time of
20–60 s [56], and Fast tcp, with convergence times up to several minutes [115].

Let us compare this time constant bound to our earlier simulation experiments,
in Fig. 3.8. In these scenarios, we had an available capacity γc = 1 Mbit/s and a
propagation roundtrip delay of 50 ms. At t = 10 s, the window size was increased by
five packets, from an initial value corresponding to queue size close to 20 packets.
the new equilibrium queue size is 5/γ packets.

For the scenario with γ = 0.2, we have κ = 0.11 (computed for the equilibrium
queue size and delay after the window change). For the time constant bound, we
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Figure 4.7: Queue response to a step change in the window size, for γ = 0.2. The
dotted curves illustrate a first order filter with the predicted time constant 0.41 s.
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Figure 4.8: Queue response to a step change in the window size, for γ = 0.4. The
dotted curves illustrate a first order filter with the predicted time constant 0.30 s.
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Figure 4.9: Queue response to a step change in the window size, for γ = 0.7. The
dotted curves illustrate a first order filter with the predicted time constant 0.24 s.

get σ/τ = 0.41 s. Figure 4.7 compares the predicted time constant to the ns2

simulation. The bound σ/τ is very close to the actual convergence speed.
For the scenarios with γ = 0.4 and γ = 0.7 we get a predicted convergence time

of 0.30 s and 0.24 s, respectively. These are illustrated in Figs. 4.8 and 4.9. When
γ gets close to 1, the bound becomes very conservative. The reason is that σ is
computed from the system poles only, and we get pole-zero cancellation when γ
approaches 1. For γ = 1, the joint link model reduces to the static link model, with
no dynamics, and then q converges within a single rtt.

4.3 Multiple flows

So far, we have considered a single flow subject to window-based flow control, shar-
ing a single bottleneck link with some constant rate cross-traffic. A large proportion
of such cross-traffic leads to a larger static gain from window size to queue size, and
larger time constants. What if some of that “cross-traffic” is also using window-
based congestion control? That is the scenario considered in this section.

We have n flows, each with a constant window size wk and a roundtrip propaga-
tion delay τk. They share a bottleneck of capacity c with cross-traffic at a constant
rate (1− γ)c. The model in Sec. 3.6 gives the following queue dynamics:

q̇(t) =
∑

k

wk
τk + q(t− τk)/c

− γc
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We also have a non-negativity constraint, forcing q(t) ≥ 0.

Theorem 4.6 For arbitrary wk > 0, τk > 0, c > 0 and 0 < γ ≤ 1, the dynamical
system

q̇(t) =





∑

k

wk
τk + q(t− τk)/c

− γc q(t) > 0

max

(
0,
∑

k

wk
τk + q(t− τk)/c

− γc
)

q(t) = 0

has a unique equilibrium q∗ ≥ 0, which is locally stable.

Proof : Start with the simplest case. Assume that
∑ wk

τk
≤ γc

Then q∗ = 0 is the unique equilibrium of the system. Furthermore, q̇(t) ≤ 0 for all
t. Hence q(t) is a non-increasing function bounded below by zero. It must converge
to some limit as t →∞. The limit must be an equilibrium of the system, hence it
is zero.

The remaining, more interesting, case is that
∑
wk/τk > γc. Then the system

has a unique equilibrium q∗ > 0 characterized by
∑

k

wk
τk + q∗/c

= γc

We then have

q̇(t) =
∑

k

wk
τk + q(t− τk)/c

− γc

=
∑

k

(
wk

τk + q(t− τk)/c
− wk
τk + q∗/c

)

=
∑

k

wk
(
q∗ − q(t− τk)

)
/c(

τk + q(t− τk)/c
)(
τk + q∗/c

)

Now put q(t) = q∗ + q̃(t) and linearize, to get

˙̃q(t) = −
∑

k

cwk
(cτk + q∗)2

q̃(t− τk)

We now use Theorem 4.17, which says that ẋ(t) = −
∑
αkx(t−τk) is stable provided∑

αkτk ≤ 1. Put αk = cwk/(cτk + q∗)2. We have
∑

k

αkτk =
∑

k

cτk
cτk + q∗︸ ︷︷ ︸

<1

wk
cτk + q∗

<
∑

k

wk
cτk + q∗

= γ ≤ 1

By Theorem 4.17, the linearized system is stable, and hence the non-linear system
is locally stable. �
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4. Stability analysis of window-based transmission

4.4 Stability for a general network topology

Now consider a general network topology, described by a routing matrix A (See
Sec. 2.3). Each source uses a fixed window size wk and has a roundtrip propagation
delay τ0

s > 0. For the links, we use the queueing delay as state variables, denoted
dℓ, rather than the queue size. Link capacities are denoted cℓ.

For the sending rate at each source, we use the simplified model without sig-
nalling delays,

rs(t) =
ws

τ0
s + τs(t)

where τ = AT d is the aggregated queueing delay.
At each link, the aggregated arrival rate is y = Ar (this ignores the issue that a

sources sending rate may be throttled at an earlier bottleneck). The queueing delay
is dℓ = qℓ/cℓ, and the differential equation for d is

ḋℓ(t) =

{
yℓ(t)
cℓ
− 1 dℓ(t) > 0

max
(
0, yℓ(t)

cℓ
− 1
)

dℓ(t) = 0

Theorem 4.7 Assume that w > 0, c > 0, and that A has full row rank. Then the
queue dynamics are globally asymptotically stable.

Proof : Define the function

V (d) = cT d−
∑

s

ws log(τ0
s +ATs d)

where As denotes the column of A corresponding to source s, so that ATs d = τs.
Then the gradient of V is

∇V = c−
∑

s

ws
τ0
s +ATs d

As = c−
∑

s

Asrs = c−Ar = c− y

and the Hessian matrix is

H(V ) =
∑

s

ws
(τ0
s +ATs d)

2
AsA

T
s

The assumption that A has full rank implies that H(V ) is positive definite. Too see
this, examine that uTH(V )u for an arbitrary vector u. We get

uTH(V )u =
∑

s

ws
(τ0
s +ATs d)

2

︸ ︷︷ ︸
>0

(
ATs u

)2 ≥ 0

So H(V ) is clearly positive semidefinite. To see that it is positive definite, assume
that uTH(V )u = 0. Then ATs u = 0 for each s, or ATu = 0. Since A has full row
rank, this implies that u = 0.
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Differential equations with state constraints

Since H(V ) is positive definite, it is clear that V is a strictly convex function,
on the convex set d ≥ 0. Since V (d) is bounded from below, and V (d)→∞ when
d→∞, V has a unique global minimizer d∗.

Since d∗ is a minimizer d, then for each ℓ, either d∗ℓ = 0 and ∂V (d∗)/∂dℓ > 0
or ∂V (d∗)/∂dℓ = 0. This is equivalent to the equilibrium condition, yℓ ≤ cℓ and
dℓ(cℓ − yℓ) = 0. Hence d∗ is an equilibrium for the dynamical system.

We also have

dV (d(t))

dt
= ∇V · ḋ =

∑

ℓ
dℓ>0

or yℓ>cℓ

−(cℓ − yℓ)2 ≤ 0

with strict inequality for all d 6= d∗. By the strict convexity of V , it follows that the
function V (d) − V (d∗) is a Lyapunov function for the system [67], and it follows
that the equilibrium d∗ is globally asymptotically stable. �

4.5 Differential equations with state constraints

In this and coming chapters, we use differential equations of the form

ẋk(t) =

{
fk(t, x(t)) xk(t) > 0

max(0, fk(t, x(t))) xk(t) = 0

xk(0) = x∗

as well as the time-delayed differential equation

ẋk(t) =

{
fk(t, x(t− 1)) xk(t) > 0

max(0, fk(t, x(t− 1))) xk(t) = 0

xk(t) = φk(t) for −1 ≤ t ≤ 0

The state x is constrained to the set xk ≥ 0 for all k. In this section, we prove
existence and uniqueness of solutions for differential equations of these forms. Even
if the functions fk are very regular, the right hand side has a discontinuity at the
boundary, which violates the Lipschitz condition in standard proofs of existence
and uniqueness of solutions.

One way to think about such a system is as a hybrid system, where the discrete
state specifies which of the constraints are active, i.e., at each time t, the discrete
state gives the set of k such that xk = 0 and fk < 0. There are some drawbacks
with this approach:

• The number of discrete states is exponential, 2n, where n is the number of
continuous states, i.e., the dimension of x.
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4. Stability analysis of window-based transmission

• Let tk be the sequence of switching times, i.e., times when the set of active
constraints change. This sequence may have limit points, so called Zeno be-
havior. It is not obvious if limit points can be excluded, or what additional
requirements one would have to place on the functions fk and, in the time
delayed case, on the initial condition.

• It is difficult, given the state at a time t, to determine which constraints
really are active. In the borderline case that both xk and fk are zero, the
corresponding constraint may or may not be active.

The main idea of our proofs is to construct candidate solutions by ignoring
the constraints, and use a projection procedure to ensure that the constraints are
satisfied. The projection procedure is carefully defined so that it does not try to
enumerate the intervals where the constraints are active, thereby avoiding any prob-
lems with limit points or Zeno behavior. In particular for the time-delayed equation,
trajectories like x(t) = (t− 1/2)2 max(0, sin2(1/(t− 1/2)) may be possible for some
initial condition φ. This trajectory is continuously differentiable, still zero on in-
finitely many intervals, accumulating at t = 1/2.

Right-hand derivatives

The solutions to the ordinary differential equations are continuously differentiable.
But for differential equations with state constraints, we need a slightly relaxed
notion of “solution”. A solution is required to be continuous and right-hand differ-
entiable for all t ≥ 0. In this section, we use the convention that d/dt and the dot
symbol denotes right-hand differentiation.

The right hand derivative of a function x(t) is defined by

ẋ(t) = lim
h→0+

x(t+ h)− x(t)
h

when this limit exists. The definition has meaning only for t such that x is defined
on the interval [t, t+ ǫ] for some ǫ > 0. E.g,. if x is defined on the interval a ≤ t ≤ b,
the limit makes no sense at the right edge, t = b, but only for a ≤ t < b. When
we say that ẋ exists for all t, we mean that the limit exists at all t where it has
meaning. Existence of this limit implies that

x(t+ h) = x(t) + (ẋ(t) + r(h))h

where r(h)→ 0 as h→ 0+.
Since the properties of right-hand differentiable functions are usually not treated

in any detail in standard calculus books, we state and prove the most important
properties here. We assume that all functions are defined on some finite or infinite
interval, that they are continuous, and that the right-hand derivative exists for all
t. These assumptions are not repeated for each proposition.
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Proposition 4.8 If ẋ(t) > 0 for all t, then x(t) is strictly increasing.

Proof : Let t1 and t2 be arbitrary, with t2 > t1, and consider the restriction of x to
the closed interval t1 ≤ t ≤ t2. Since x is continuous, it has a maximum value on
this interval. Let M = maxx(t). For all t, t1 ≤ t < t2, and all small enough h, we
have

x(t+ h) = x(t) +
(
ẋ(t) + r(h)

)
h > x(t)

This shows that x(t) < x(t+ h) ≤M . The only point where M can be achieved is
therefore the right end point, so we have

x(t2) = M > x(t)

for all t1 ≤ t < t. In particular, x(t2) > x(t1), which concludes the proof. �

Proposition 4.9 If ẋ(t) ≥ 0 for all t, then x(t) is increasing.

Proof : Let ǫ > 0. Put y(t) = x(t) + ǫt. Then ẏ(t) = ẋ(t) + ǫ > 0, and it follows
that y is strictly increasing. Consider two arbitrary points t2 > t1. Then

x(t2)− x(t1) = y(t2)− ǫt2 − y(t1) + ǫt1 > −ǫ(t2 − t1).

Since ǫ was arbitrary, we must have x(t2)− x(t1) ≥ 0. �

Proposition 4.10 If ẋ(t) = 0, on some interval, then x(t) is constant on that
interval.

Proof : Both x(t) and −x(t) are increasing. �

Proposition 4.11 (Mean value theorem) Let t2 > t1. Then there exists a ξ,
with t1 ≤ ξ < t2, such that

ẋ(ξ) ≥ x(t2)− x(t1)
t2 − t1

Proof : Define

K =
x(t2)− x(t1)

t2 − t1
Assume that no such ξ exists. Then ẋ(t) < K for all t1 ≤ t < t2. Put y(t) =
K (t− t1)−x(t). Then ẏ(t) > 0 on the interval, and y is strictly increasing. But we
also have y(t1) = y(t2) = −x(t1). This contradiction concludes the proof. �

93



4. Stability analysis of window-based transmission

A projection operator

We will use the following projection operator P . Let φ be a continuous function on
some interval 0 ≤ t ≤ T , with φ(0) ≥ 0. Assume that φ has bounded descent,

0 ≤ t ≤ s ≤ T =⇒ φ(s)− φ(t) ≥ −M (s− t)

for some constant M . Let Sφ be the set of continuous functions u such that

(i) u(0) ≥ 0

(ii) 0 ≤ t ≤ s ≤ T =⇒ 0 ≤ u(s)− u(t) ≤M (s− t)

(iii) φ(t) + u(t) ≥ 0 for all 0 ≤ t ≤ T .

Since M t ∈ Sφ, the set is non-empty. The functions are also bounded below, by
zero. Then the point-wise infimum is well defined, and we can define

uφ(t) = inf
u∈Sφ

u(t)

The bound (ii) implies that uφ is continuous. By the minimality of uφ, it also follows
that uφ depends only on φ, not on the particular value of M .

We can now define the projection operator P by

(Pφ)(t) = φ(t) + uφ(t)

Lemma 4.12 The projection operator P has the following properties.

(i) P (φ)(t) ≥ 0

(ii) P (φ)(0) = φ(0)

(iii) ‖P (φ)− P (ψ)‖ ≤ 2‖φ− ψ‖, where ‖ · ‖ denotes the supremum norm.

Proof : (i) follows directly from the definition of Sφ. For (ii), note that M t ∈ Sφ.
Then uφ(0) = 0 by minimality.

To prove (iii), define Sφ and Sψ using some common, large enough, M . Since

ψ(t) + ‖φ− ψ‖+ uφ(t) ≥ φ(t) + uφ(t) ≥ 0

we see that uφ+‖φ−ψ‖ ∈ Sψ. Hence uψ(t) ≤ uφ(t)+‖φ−ψ‖ for all t. By switching
the roles of φ and ψ, we find that

‖uφ − uψ‖ ≤ ‖φ− ψ‖
|P (φ)(t)− P (ψ)(t)| =

∣∣φ(t) + uφ(t)− (ψ(t) + uψ(t))
∣∣

≤ ‖φ− ψ‖+ ‖uφ − uψ‖
≤ 2‖φ− ψ‖

Since this is valid for all t, (iii) follows. �
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Differential equations with state constraints

Lemma 4.13 Assume that φ is continuous, and equal to the integral of some right-
hand continuous and integrable function f ,

φ(t) = φ0 +

∫ t

0

f(s) ds

Also assume that f is bounded below, f(t) ≥ −M . Then

(i) uφ(t+ h)− uφ(t) ≤
∫ t+h
t
|f(s)| ds for h > 0.

(ii) P (φ) is right-hand differentiable, with

d

dt
P (φ)(t) =

{
f(t) P (φ)(t) > 0

max(0, f(t) P (φ)(t) = 0
(4.7)

Proof : (i) follows from the minimality of uφ. To prove (ii), put ψ = P (φ) = φ+uφ
and consider an arbitrary t. There are a couple of different cases, related to the
non-negativity constraint ψ ≥ 0.

• If ψ(t) > 0, then it follows from continuity of ψ and the minimality of uφ that

uφ is constant in a neighborhood of t. Then u̇φ(t) = 0 and ψ̇(t) = f .

• If ψ(t) = 0 and f > 0, then the right-hand continuity of f imply that φ is
strictly increasing in some non-empty interval [t, t + ǫ]. It follows from the
minimality of uφ that uφ is constant in this interval, and hence its right-hand

derivative is zero. So also in this case, ψ̇(t) = f(t), recalling that the dot
denotes right-hand differentiation.

• If ψ(t) = 0 and f < 0, then φ is strictly decreasing in some interval [t, t+ ǫ].
Minimality of uφ now implies that ψ(t) is zero in this interval, and hence the
right-hand derivative is zero.

• Finally, consider the case ψ(t) = 0 and f = 0. By (i),

uφ(t+ h)− uφ(t)
h

≤ 1

h

∫ t+h

t

|f(s)|ds

for h > 0. Let h → 0 from the right. By the right-hand continuity of f , the
limit is f(t) = 0, and hence u̇φ(t) = 0 and also ψ̇(t) = 0.

It follows that the right-hand derivative exists, for all t, and that Eq. (4.7) is valid.
�
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Existence and uniqueness

We can now prove existence and uniqueness. We first consider the special case that
the right-hand side depends on the state only via the non-negativity condition.

Theorem 4.14 Assume that f(t) is measurable, bounded, and right-hand contin-
uous for 0 ≤ t ≤ T . Assume that x0 ≥ 0. Then the exists a unique continuous and
right-hand differentiable x(t) such that

ẋ(t) =

{
f(t) x(t) > 0

max(0, f(t)) x(t) = 0

x(0) = x0

Proof : First define the candidate solution

x̃(t) = x0 +

∫ t

0

f(s) ds

By the assumptions on f , x̃ is clearly continuous and right-hand differentiable1. If
it also happens to be non-negative, we can set x(t) = x̃(t). In the general case, let

x = P x̃ = x̃+ ux̃

It is clear that x(0) = x0. An application of Lemma 4.13 shows that x(t) satisfies
the differential equation. To prove uniqueness, assume that y is any solution to the
differential equation. Define

u(t) = y(t)− x̃(t)
By assumption, ẏ (the right-hand derivative) exists at all t. Then also u̇ exists, and

u̇(t) = ẏ(t)− ˙̃x(t) =

{
0 y(t) > 0

max(−f(t), 0) y(t) = 0

Then 0 ≤ u̇(t) ≤ M for all t. Since we also have u(0) = 0 and x̃ + u = y ≥ 0, it
follows that u ∈ Sx̃, and hence u(t) ≥ ux̃(t) for all t. Consider the difference

d(t) = y(t)− x(t) = u(t)− ux̃(t) ≥ 0

Assume that we have strict inequality at some point, d(t1) > 0, with t1 > 0. Apply
the mean value theorem, Prop. 4.11, to the function d(t)2. It follows that there
exists a ξ, with 0 ≤ ξ < t1 such that

2d(ξ)ḋ(ξ) ≥ d(t1)
2

t1
> 0

1The assumption that f is bounded above is needed only to ensure that x̃ is continuous. The
assumption that f is bounded below was needed to show that Sφ is non-empty, and that the
infimum uφ is continuous.
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Since we know that d(ξ) ≥ 0, it follows that d(ξ) > 0 and ḋ(ξ) > 0. It now follows
that y(ξ) = x(ξ) + d(ξ) > 0, so that the inequality constraint is not active at t = ξ.
Hence

ẏ(ξ) = f(ξ)

But on the other hand, ḋ(ξ) > 0 implies that u̇(ξ) > 0, so that

ẏ(ξ) = ˙̃x(ξ) + u̇(ξ) > f(ξ)

This contradiction proves that y(t) = x(t) for all t. �

We are now ready to handle the time-delayed system.

Theorem 4.15 Assume that fk are continuous and that φk are non-negative, in-
tegrable, bounded, and right-hand continuous. Then there exists a unique x such
that

ẋk(t) =

{
fk(t, x(t− 1)) xk(t) > 0

max(0, fk(t, x(t− 1))) xk(t) = 0

for t ≥ 0, with initial condition xk(t) = φk(t) for −1 ≤ t ≤ 0.

Proof : It is clearly sufficient to show that there exists a unique solution for 0 ≤
t ≤ 1 which is continuous and non-negative; then existence and uniqueness for all
t ≥ 0 follows by induction. Furthermore, on this interval, the differential equation
can be re written as

ẋk(t) =

{
fk(t, φ(t− 1)) xk(t) > 0

max(0, fk(t, φ(t− 1))) xk(t) = 0

xk(0) = φk(0)

This means that there is no coupling between the different states, except via the
given initial condition φ. Furthermore, the assumptions on fk and φk imply that
the functions fk(t, φ(t− 1)) are bounded, integrable, and right-hand continuous on
the interval 0 ≤ t ≤ 1. Hence Lemma 4.14 can be applied to each xk, and existence
and uniqueness on the interval 0 ≤ t ≤ 1 follows. �

To handle the equation without time delay is a little more complicated, since
we have a direct coupling between the different states. The idea of the proof is to
use a Picard iteration with a projection in each step. Define the function sequence
φ(j) by

φ
(0)
k (t) = x∗k

φ̃
(j+1)
k (t) = x∗k +

∫ t

0

fk
(
φ(j)(s)

)
ds

φ(j+1) = P
(
φ̃(j+1)

)
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4. Stability analysis of window-based transmission

The theorem below shows that the mapping φ(j) 7→ φ(j+1), on a suitable interval, is
a contraction, and that the fix-point is the unique solution to the given differential
equation.

Theorem 4.16 Assume that fk are continuous in t and Lipschitz continuous in x,
i.e., there exists some constant C such that |fk(t, x) − fk(t, y)| ≤ Cmaxℓ |xℓ − yℓ|
for all x, y, t, and k. Then, for any initial condition x∗, with x∗k ≥ 0, there exists
a unique x such that

ẋk(t) =

{
fk(t, x(t)) if xk(t) > 0

max(0, fk(t, x(t))) if xk = 0

xk(0) = x∗

for all t ≥ 0

Proof : Select T = 1/(3C). It is clearly sufficient to prove that the there exists
a unique solution for 0 ≤ t ≤ T ; since T does not depend on t or on the initial
condition, existence and uniqueness for all t ≥ 0 follows by induction.

We use the Banach space V of continuous functions mapping the interval 0 ≤
t ≤ T into {x ∈ Rn;xk ≥ 0}, using the supremum norm defined by

|φ(t)|∞ = max
k
|φk(t)|

‖φ‖ = sup
t
|φ(t)|∞ = sup

t,k
|φk(t)|

We define an operator F mapping V into itself. ψ = F (φ) is defined by letting ψk
be the uniquely defined solution to

ψ̇k(t) =

{
fk(t, φ(t)) ψk(t) > 0

max(0, fk(t, φ(t))) ψk(t) = 0

ψk(0) = x∗k

Since φ and fk are assumed continuous, the function fk(t, φ(t)) is continuous and
hence integrable and bounded on the closed interval 0 ≤ t ≤ T . By Lemma 4.14, F
is well defined. Recalling the construction in that proof, F can be decomposed as
F (φ) = P (G(φ)), where G is the usual Picard iteration operator,

Gk(φ)(t) = x∗k +

∫ t

0

fk(φ(s)) ds

and P is the projection operator in Lemma 4.12, applied independently to each
Gk(φ).

Since Gk(φ) is differentiable, with

dGk(φ)(t)

dt
= fk(φ(t))
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an application of Lemma 4.13, gives

dFk(φ)(t)

dt
=

{
fk(φ(t)) Fk(φ)(t) > 0

max(0, fk(φ(t))) Fk(φ)(t) = 0

Together with F (φ)(0) = φ(0), this shows that x satisfies the differential equation
if and only if x = Fx. The final step of the proof is to show that such a fixed point
exists and that it is unique.

Consider two functions φ and ψ in V .

|Gk(φ)(t)−Gk(ψ)(t)| =
∣∣∣∣
∫ t

0

(
fk(s, φ(s))− fk(s, ψ(s))

)
ds

∣∣∣∣

≤
∫ t

0

∣∣fk(s, φ(s))− fk(s, ψ(s))
∣∣ ds

≤
∫ t

0

Cmax
ℓ
|φℓ(s)− ψℓ(s)|ds

≤ C t ‖φ− ψ‖

Since C t ≤ C T = 1/3, it follows that

‖G(φ)−G(ψ)‖ ≤ 1

3
‖φ− ψ‖

and by Lemma 4.12, part (iii)

‖F (φ)− F (ψ)‖ = ‖P (G(φ))− P (G(ψ))‖ ≤ 2‖G(φ)−G(ψ)‖ ≤ 2

3
‖φ− ψ‖

This proves that F is a contraction. By the Banach fixed point theorem, there exists
a unique fix-point; a function x ∈ V such that Fx = x. �

4.6 Stability for some linear time-delay system

If α > 0 and τ > 0, then the scalar system

ẋ(t) = −αx(t− τ)

is asymptotically stable if and only of ατ < π/2. In this section, we derive sufficient
stability conditions for a couple of related systems.

Scalar system with multiple delays

Theorem 4.17 If αk > 0, τk > 0 and
∑
k αkτk ≤ 1, then the delayed differential

equation

ẋ(t) = −
∑

k

αkx(t− τk)

is globally asymptotically stable.
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4. Stability analysis of window-based transmission

Proof : The characteristic function is f(s) = s +
∑
αke

−sτk , which is an entire
function. The condition

∑
k αkτk ≤ 1 implies that

Im f(iω) = w −
∑

αk sin τkω > w −
∑

αkτkω ≥ 0

for all w > 0. Furthermore, f(0) > 0. An application of the argument principle,
using the standard contour around the right half plane, proves that f(s) has all
zeros in the left half plane. �

Two-dimensional systems

We first consider the case where both states are subject to a delay,

ẋ(t) = −Ax(t− 1) A =

(
a11 a12

a21 a22

)

The corresponding system, without delay, is stable if and only if both the trace and
the determinant are positive. Furthermore, if there is no cross coupling, a12 = 0 or
a21 = 0, the system is stable provided that the diagonal elements lie in the interval
0 < a11, a22 < π/2.

Theorem 4.18 Let D = detA = a11a22 − a12a21 and R = trA = a11 + a22, and
assume that

0 < R,D

D ≤ R/2

D +
π

2
R ≤ π2

4

Then the system

ẋ(t) = −Ax(t− 1)

is globally asymptotically stable.

Proof : Form the characteristic function,

f(s) = det(sI +Ae−s) = s2 +Rse−s +De−2s

Apply the principle of variation to the characteristic function of this delayed differ-
ential equation, using the standard contour around the right half-plane. We have

f(iω) = −ω2 +Rω sinω +D cos 2ω

+ iω cosω

(
R− 2D

sinω

ω

)
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Since R ≥ 2D, Im f(iω) > 0 for all 0 < ω < π/2. Furthermore, for all ω > 0, we
have

Re f(iω) < −ω2 +Rω +D

The right hand side is a quadratic, with maximum at R/2 < π/2. Hence, for all
ω ≥ π/2, we have

Re f(iω) < −π
2

4
+
π

2
R+D ≤ 0

We see that for any ω > 0 at least one of the inequalities Im f(iω) > 0 or Re f(iω) <
0 holds. This means that the curve avoids the fourth quadrant. Since we also have
f(0) = D > 0, it follows that the curve does not encircle, nor pass through, the
origin. By the argument variation principle, f(s) does not have any roots in the
right half-plane, and hence the system is stable. �

Corollary 4.19 Assume that

0 < R,D

τ2D ≤ τR/2

τ2D +
τπ

2
R ≤ π2

4

Then the system
ẋ(t) = −Ax(t− τ)

is stable.

Proof : Make the change of variable s = t/τ . Then

dx

ds
(s) = −τAx(s− 1)

and we only need to note that det τA = τ2 detA and tr τA = τ trA. �

Next, we consider a system with a particular structure which we will need in
Chapter 6.

Theorem 4.20 Let A, B, C and D be positive, and assume that

A ≤ 1

BD ≤ C ≤ D ≤ 1

Then the system

ẋ(t) = −
(
A 0
A 0

)
x(t)−

(
0 B
−D B + C

)
x(t− 1)

is globally asymptotically stable.

101



4. Stability analysis of window-based transmission

Proof : Form the characteristic function

f(s) = s2 +As+
(
AC + (B + C)s

)
e−s +BDe−2s

We use the standard contour around the right half-plane. Put s = iω, then

f(iω) = −ω2 + (B + C)ω sinω +AC cosω +BD cos 2ω

+ iω

{
A+ (B + C) cosω −AC sinω

ω
−BD sin 2ω

ω

}

Consider the interval 0 < ω ≤ π/2. Then

Im f(iω)

ω
= A

(
1− C sinω

ω

)
+ (B + C) cosω − 2BD cosω

sinω

ω

> (C +B − 2BD) cosω ≥ B(1−D) cosω ≥ 0

We also have f(0) = AC + BD > 0. Next, consider the real part, and ω ≥ π/2.
First, assume that π/2 ≤ ω ≤ π. Then cosω ≤ 0, and sinω ≥ 0, so that

Re f(iω) = −ω2 + (B + C)ω sinω +AC cosω +BD cos 2ω

≤ −ω2 + (B +D)ω sinω +BD cos 2ω

Now, fix an ω in the interval. We have two cases: If ω sinω ≥ cos 2ω, then the
largest value is attained when B = D = 1, and

Re f(iω) ≤ −ω2 + 2ω sinω + cos 2ω = (cosω − sinω + ω)(cosω + sinω − ω) < 0

For the final inequality, the second factor is clearly negative, and the first factor is
positive, since cosω − sinω + ω ≥ −

√
2 + π/2 > 0. Otherwise, if ω sinω < cos 2ω,

then the maximum value is attained in the limit as B = 1 and D → 0, or vice versa.
Hence

Re f(iω) ≤ −ω2 + ω sinω = ω(sinω − ω) < 0

This shows that Re f(iω) < 0 for all π/2 ≤ ω < π. Finally, assume that ω ≥ π.
Then

Re f(iω) = −ω2 + (B + C)ω sinω +AC cosω +BD cos 2ω

≤ −ω2 + 2ω + 2 = −(ω − 1)2 + 3

≤ −(π − 1)2 + 3 < 0

Since f(0) = AC+BD > 0, and f(iω) avoids the fourth quadrant for all ω > 0,
it follows that the curve does not encircle, nor pass through, the origin. By the
argument variation principle, f(s) does not have any roots in the right half-plane,
and hence the system is stable. �

102



Summary

4.7 Summary

We have investigated the stability properties of the ack-clock mechanism, which
is the inner-loop in window-based congestion control. Using the joint link model
from the previous chapter, stability has been rigorously proven in three different
settings: We have global asymptotic stability for the single link topology with a
single flow and arbitrary delays, we have local asymptotic stability for the single
link topology with multiple flows and arbitrary heterogeneous delays, and we have
global asymptotic stability for an arbitrary topology but with no signalling delays.

For the single link, single flow topology, we also give bounds for the convergence
time, and we see that convergence time depends not only on the propagation delay
and the equilibrium queue delay, but also on the amount of cross-traffic.

Beyond the application to window-based congestion control, we have also stated
and proved two general theorems on the existence and uniqueness of solutions to
differential equations with state constraints, with or without delays. Finally, we have
derived sufficient conditions for the stability of certain types of linear time-delayed
systems of low dimension.
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Chapter 5

Analysis of inter-protocol fairness

W
hen evaluating proposed tcp improvements, one important issue is that
of fairness, and in particular fairness in a mixed environment where the
old and new tcp versions coexist and share the same resources. This

chapter studies the inter-protocol fairness between tcp Westwood+ and tcp New
Reno. As tcp Westwood+ can reduce the congestion window less than tcp New
Reno, one might suspect that tcp Westwood+ takes a larger share of the available
resources. On the other hand, it is known that tcp New Reno under-utilizes the
bandwidth in the case of small buffer sizes. So does tcp Westwood+ just take this
unused part of the bandwidth?

This chapter is organized as follows. Sec. 5.1 gives an introduction to the problem
and related work. The system model is described in Sec. 5.2. Sec. 5.3 derives our
analytical throughput results. In Sec. 5.4 discusses the results, and presents ns2

simulations. We also propose a simple modification to Westwood+, to improve
fairness over networks with large buffers.

5.1 Introduction

In [87], the impact of the buffer size on the performance of tcp Westwood+ was
studied, and it was shown that unlike tcp New Reno, Westwood+ can achieve
full link utilization with arbitrarily small link buffers. This makes Westwood+ an
interesting alternative, not only for the wireless networks for which it was originally
designed, but also for networks with large bandwidth delay product, where tcp
New Reno needs large router buffers in order to achieve full link utilization. Since
the performance of New Reno and Westwood+ depends on the buffer size in very
different ways, one can expect that the buffer size at the bottleneck will be one of
the most important parameters in the analysis.

The problem of the choice of the buffer size for regular tcp traffic has drawn
significant attention [11, 9, 38, 51, 12, 48]. Here we show that the router buffer size
has a significant influence not only on the efficiency of the network but also on the
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fairness between different tcp versions. In particular, we show that in order for tcp
Westwood+ to take a fair share of the available bandwidth, one needs to choose the
buffer size of the bottleneck router not smaller than half of the bandwidth-delay
product.

The performance of tcp Westwood+ over channels with loss and delay processes
that are independent was studied in [7]. For the current fairness study, packet losses
are due to congestion, and hence we can no longer assume that the loss process is
independent of the window sizes.

We provide a model that describes the interaction of flows using tcp Westwood+
and tcp New Reno, with the bottleneck router buffer. Since queueing delays and
packet losses due to congestion are coupled to the queue and window sizes, it
becomes necessary to take queue and buffer size into account. This is in contrast
to the paper [7], which analyzes tcp Westwood+ over channels where the loss and
delay processes are independent. The evolution of the window sizes of both flows
is modelled as a hybrid system [55], with a continuous increase between congestion
events, and discontinuous reductions at the congestion event. This model lets us
calculate analytically the throughput for the flows for any buffer size. The results
are also validated using ns2 simulations.

Both the analytical model and simulations give the same results: If the buffer
size equals the bandwidth-delay product, tcp Westwood+ and tcp New Reno will
share available capacity equally. For smaller buffers, Westwood+ wins the battle for
capacity, and for larger buffers, tcp New Reno wins. Furthermore, we show that
the results are only sensitive to a single parameter: the ratio between the buffer
size and the bandwidth delay product. Finally, we propose a simple modification
to tcp Westwood+ that makes tcp Westwood+ efficient even in the case of large
buffers.

5.2 System model

We use a hybrid fluid flow model for a network with two competing tcp sources:
tcp New Reno and tcp Westwood+. They share a single bottleneck router with
a drop-tail buffer of size b and with transmission capacity c. The state variables of
interest are the queue size q(t) at the bottleneck router and the congestion window
sizes wi(t), i = 1, 2, of each tcp source. We assign index 1 to the tcp New Reno flow
and index 2 to the tcp Westwood+ flow. The variable q(t) is regarded as continuous
and wi(t) as piece-wise continuous. The average sending rate of each source is one
full window of data per round trip time, where the round trip time consists of a
constant propagation delay τi and a queueing delay q(t)/c that is determined by
the current queue size. The window size corresponds to the amount of data that a
source has transmitted, but not yet received any acknowledgment (ack) for.

For the window dynamics, we focus on the congestion avoidance mode of tcp.
As described in Sec. 2.2, congestion avoidance in tcp New Reno is based on additive
increase / multiplicative decrease: The window is increased by one packet per round
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trip time as long as acks are received. When a packet loss is detected, the window
size is set to one half of the value before the loss.

In tcp Westwood+ [86], the additive increase is the same. The difference is
that the multiplicative decrease is replaced by a different mechanism based on
estimation of the available bandwidth and of the propagation delay. The original
motivation was to improve tcp performance over wireless links, with a significant
rate of losses that are due to transmission errors rather than congestion. When
Westwood+ detects a packet loss, it sets its window size to the product of the
estimated bandwidth before the loss, and the end-to-end propagation delay. The
idea is that this window size is sufficiently small to allow queues on the path to
drain, but not smaller.

The propagation delay estimate is simple: it is just the minimum observed round
trip time. As long as at least one packet has been sent when the queue is close to
empty, this estimate is accurate. The bandwidth estimation is more complex. We
have to refer to the Westwood literature for the details [86], but the main idea is to
obtain “bandwidth samples” from the stream of acks, and form the estimate by
low-pass filtering of these samples. The first proposed version of Westwood formed
a bandwidth sample for each ack, while Westwood+ collects a round trip time
worth of acks before forming a bandwidth sample. The estimation process and the
resulting bias is analyzed in [61].

For the sending rate, we use the joint model for window-based transmission
(Chapter 3), the sending rate for congestion control schemes such as tcp New
Reno and tcp Westwood+ is

ri(t) =
wi(t)

τi + q(t)/c
+

dwi(t)

dt
(5.1)

Here, we use the simplified joint link model, without no signalling delays, Eq. 3.7.
The evolution of the window sizes is governed by the additive increase of tcp’s
congestion avoidance mode, which is the same for both New Reno and Westwood+.
The window is increased by one packet, mi bytes, each rtt.

dwi(t)

dt
=

mi

τi + q(t)/c
. (5.2)

The queue size is related to the sending rates by dq(t)/dt =
∑
ri(t) − c, or,

substituting (5.1) and (5.2)

dq(t)

dt
=
∑

i

wi(t) +mi

τi + q(t)/c
− c. (5.3)

The above equation ignores signaling delays, but it includes the dependence on the
queue size, via the rtt τi+q(t)/c. Since the queue size must be non-negative, (5.3)
is valid only when q(t) > 0 or the right hand side is positive; otherwise dq/dt = 0.

At the congestion event, the flow or flows that lose packets make a discontinuous
change in its window size. For tcp New Reno, w1(t

∗ + 0) = w1(t
∗ − 0)/2. For
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tcp Westwood+, w2(t
∗ + 0) = rttminĉ2, where ĉ2 is the estimate of the flow’s

bandwidth, and rttmin is the smallest observed rtt.
For tcp Westwood+, there are several issues with how this should be modeled.

• rttmin: This is intended to be the round trip delay, excluding queueing de-
lay. So it makes sense to put rttmin = τ . But on the other hand, if the
Westwood+ flow is started when the bottleneck is already loaded, Westwood
cannot observe τ , and it may be more accurate to set rttmin = τ+min q(t)/c.

• ĉ2: The bandwidth is “sampled” once per round trip time, and then these
samples are low-pass filtered to form a smoother estimate. The simplest model
is to put ĉ2 = r2(t

∗ − 0) = w2(t
∗ − 0)/(τ + b/c). This is an assumption of

optimistic estimation, and it neglects the delay and the bias which are present
in the real filter.

With rttmin = τ and ĉ2 = w2(t
∗ − 0)/(τ + b/c), it follows that w2(t

∗ + 0) =
βw2(t

∗ − 0), with the constant β = cτ/(cτ + b).

5.3 Analysis

To analyze the system evolution, we use separate models for the evolution between
congestion events, and for the congestion events. A congestion event is a short
period of time when the router queue is full, and one or more packets are dropped.
Finally, we put these two models together to find the stationary behavior, and the
corresponding throughput.

System evolution between congestion events

Assume that a congestion event ends at time t = 0. At this time q(0) = b, i.e., the
buffer is full, and the window sizes are given by the initial conditions wi(0) = w0

i .
After a congestion event, the evolution of the rates and the queue can be divided

into three phases.

Phase 1: During the first phase, the total rate, r1 + r2, is smaller than c, and
increasing. In this phase, the queue is shrinking, and it may even become
empty.

Phase 2: During the second phase (which is present only for small buffer sizes), the
queue is empty, and sending rates are increasing. During the second phase,
the link is under-utilized, and the phase ends when the total sending rate
reaches the link capacity, r1 + r2 = c.

Phase 3: During the third phase, the ack-clock mechanism forces the total send-
ing rate to stay essentially constant, slightly larger than capacity, r1 + r2 =
c+(m1 +m2)/(τ + q/c). The growing windows result in a growing queue, not
increasing sending rates. The third phase is terminated by the next congestion
event, which happens when the queue size reaches the buffer size, q(t) = b.
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The objective of the analysis in this subsection is to find the smallest t∗ > 0
such that q(t∗) = b, and to express t∗ and the corresponding window sizes wi(t

∗)
as functions of the initial window sizes w0

i . These functions are needed in Sec. 5.3,
when deriving the evolution over a large number of congestion events.

When investigating fairness between two flows, using τ1 6= τ2 would introduce
a prejudice, favoring one of the flows against the other. To give the two flow equal
opportunities, we assume τ1 = τ2 = τ . This assumption lets us introduce a virtual
time, which can be thought of as measuring time in number of round trips. This
tool makes it possible to find explicit solutions to the differential equations.

Virtual time s is defined by dt = (τ + q(t)/c) ds. This change of variables
transforms Equations (5.3) and (5.2) into

dwi(s)

ds
= mi (5.4)

dq(s)

ds
= −q(s)− cτ +

∑

i

(wi(s) +mi) (5.5)

The second equation is still valid only when q(s) > 0 or the right hand side is
positive. Consider initial conditions wi(0) = w0

i , and q(0) = q0. Introduce the
notation W = w0

1 + w0
2 and M = m1 +m2. Then the solution can be written as

wi(s) = w0
i + smi (5.6)

q(s) = q0e
−s + (W − cτ)(1− e−s) +Ms (5.7)

Looking more closely at this solution q(s), it can be divided into a transient, related
to the initial buffer q0 and a new “equilibrium size” W − cτ , and a linear growth
with rate M . Asymptotically, for large s, we have q(s) ≈ W + Ms − cτ , i.e., the
queue is the difference between the total window size and the bandwidth-delay
product cτ .

Let s∗ denote the virtual time corresponding to t∗, i.e., the next congestion
event. Given s∗, the amount of data that is transmitted up to time t∗, Di, can be
computed as follows. First solve (5.4), which gives,

Di =

∫ t∗

0

r(t) dt =

∫ t∗

0

wi(t) +mi

τ + q(t)/c
dt

=

∫ s∗

0

(w0
i + (s+ 1)mi) ds = s∗

(
w0
i +mi +

mis
∗

2

) (5.8)

This says roughly that the amount of data is the number of round trips, s∗, times
the average window size. Here, the “average” is not a proper time average, but
an average with respect to the virtual time s. We will compute the throughput as
Di/t

∗. The calculation of s∗ and t∗ depends on the buffer size.
In general, t∗ can computed given q(s) and s∗, by integrating

t∗ =

∫ t∗

0

dt =

∫ s∗

0

dt

ds
ds = Ts∗ +

1

c

∫ s∗

0

q(s) ds
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The calculations in absolute time, t, are simplified by the remarkable fact that (5.2)
and (5.3) can be solved for q in terms of w. Substitution of (5.2) into (5.3) gives

dq(t)

dt
= −c+

∑

i

wi(t) +mi

mi
· dwi(t)

dt

=
d

dt

{
−ct+

∑

i

1

2mi
(wi(t) +mi)

2

}

Integrating, we get

q(t2)− q(t1) = −c(t2 − t1) +
1

2

∑

i

(wi(t2) +mi)
2 − (wi(t1) +m1)

2

mi

For any time interval, during which the queue stays non-empty, this allows us to
compute the length of the interval given only the initial and final state,

t2 − t1 =
1

c

{
q(t1)− q(t2) +

1

2

∑

i

(wi(t2) +mi)
2 − (wi(t1) +mi)

2

mi

}
(5.9)

The expressions for the time interval, t2 − t1, and for the amount of data, Di, will
be used to compute the throughput as Di/(t2 − t1).

Full utilization The link will be fully utilized if and only if q(t) > 0 for all time
(except possible for an isolated instant). In other words, the second phase is empty.
This section derives conditions on the initial conditions for this to happen.

Substitution of the initial condition q0 = b into (5.7) gives

q(s) = be−s + (W − cτ)(1− e−s) +Ms (5.10)

This equation is valid only as long as q > 0, since the differential equation does not
model queue underflow.

Proposition 5.1 (Link utilization) Let c > 0, τ > 0 and b > 0 denote the link
capacity, the propagation delay, and the buffer size, respectively. Consider the queue
evolution just after a congestion event at time s = 0, with q(0) = b. Let W be the
sum of the flows’ window sizes just after a congestion event, W = w0

1 +w0
2, and let

M = m1 +m2. There are three possible cases, depending on the parameters and the
initial condition, which can be characterized as follows.

(i) If W +M ≥ cτ + b, then q(s) > b for all s > 0. Such initial conditions violate
the assumption that the previous congestion event ended at s = 0.

(ii) Otherwise, the link is fully utilized if and only if one of the following inequal-
ities hold

W +M ≥ cτ (5.11)

b

M
≥ exp

(
cτ −W −M

M

)
− cτ −W

M
(5.12)
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Proof : Differentiation of Eq. (5.10) gives

dq(s)

ds
= (W − cτ − b)e−s +M = (W +M − cτ − b)e−s +M (1− e−s)

If W +M ≥ cτ + b, then this expression is positive for all s > 0, and hence q(s) is
strictly increasing. This proves (i).

So assume that W + M < cτ + b. Then we see that q̇(0) < 0, and q(s) has a
unique minimum at

s0 = log
cτ + b−W

M
> 0

We have full utilization if and only this minimum value q(s0) is non-negative. By
substituting s0 into (5.10), we see that q(s0) ≥ 0 is equivalent to Eq. (5.12). To see
that also (5.11) implies full utilization, rewrite Eq. (5.10) as

q(s) = be−s + (W +M − cτ)(1− e−s) +M
(
e−s + s− 1

)

Since e−s + s− 1 ≥ 0 for all s, we see that W +M − cτ ≥ 0 implies q(s) > 0.
�

Large buffer If the buffer is “large”, i.e., the condition in Prop. 5.1 is satisfied,
then the queue never underflows, and we can find s∗ by putting q(s) = b in (5.10).
The solution can be expressed in terms of Lambert’s function, described in Sec. B.
We use the two real branches, denoted W0 and W−1.

Proposition 5.2 Assume that the full-utilization condition of Prop. 5.1 is satisfied,
and use the same notation. Assume that q(0) = b. Define

t∗ = min
t
{t > 0|q(t) = b}

and let s∗ be the corresponding event in virtual time s. Then the values of s∗ and
t∗ are given by

s∗ = s̃+W0

(
−s̃e−s̃

)
(5.13)

t∗ =
s∗

c

(
W +M +

Ms∗

2

)
(5.14)

where s̃ is defined by

s̃ =
cτ + b−W

M

Proof : Put q(s) = b in (5.10). After some simplifications, this equality implies

(s− s̃)es−s̃ = −s̃e−s̃

This equation has two real solutions, the trivial one s = 0, and a second solution
which can be expressed using the W0 function, resulting in (5.13). With this value
for s∗, (5.14) follows from (5.9). �
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The throughput can be computed from (5.8),

Di

t∗
= c

w0
i +mi +mis

∗/2

W +M +Ms∗/2

As expected, with full utilization, the total throughput, (D1 + D2)/t
∗, equals c.

If the first flow has larger initial window size than the second, w0
1 > w0

2, and the
same or larger packet size, m1 ≥ m2, then the first flow gets a larger share of the
capacity.

Small buffers When computing the throughput for a small buffer, we must han-
dle the three phases separately, since neither the differential equation for q, nor the
time interval equation (5.9), is valid during the second phase, when the queue is
empty and the link is under-utilized.

Proposition 5.3 When the full-utilization condition of Prop. 5.1 is not satisfied,
the values of s∗ and t∗ are given by

s∗ =
cτ + b−W

M
= s̃− 1 (5.15)

t∗ = τ (s̃− 1) +
b2

2cM
+
s1
c

(
W +M − cτ +

s1
2
M
)

(5.16)

where s1 is defined by

s1 =
cτ −W
M

+W−1

(
−cτ + b−W

M
exp

(
−cτ −W

M

))

Proof : Denote the duration of the three phases, in absolute time and virtual time,
by t1, t2, t3, s1, s2, and s3. We handle one phase at a time.

The first phase: We find s1 by putting q(s1) = 0 in (5.10) and solving for s1.
We get

(
s1 −

cτ −W
M

)
exp

(
s1 −

cτ −W
M

)
= −cτ + b−W

M
exp

(
−cτ −W

M

)

By assumption, the full utilization conditions are not satisfied. Since (5.11) does
not hold, we have cτ −W > 0, and the right hand side is negative. Since (5.12)
does not hold, the right hand side is larger than −1/e. The equation then has two
real solutions, from the two real branches W0 and W−1. The one of interest to us
is the smallest one, which gives

s1 =
cτ −W
M

+W−1

(
−cτ + b−W

M
exp

(
−cτ −W

M

))

The time-interval equation, (5.9), gives

t1 =
1

c

(
b+ s1(W +M +M

s1
2

)
)
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The second phase: Throughout this phase, q(0) = 0. The phase starts with∑
wi(s1) = W+s1M < cτ−M , and ends when

∑
wi(s1+s2) = W+(s1+s−2)M =

cτ −M . It follows that

s2 =
cτ −W −M

M
− s1

t2 = τs2 = −τ − τW−1

(
−cτ + b−W

M
exp

(
−cτ −W

M

))

The third phase: We now solve the queue dynamics with the initial conditions∑
wi(s1 + s2) = cτ − M and q(s1 + s2) = 0. With these initial condition, the

solution (5.7) reduces to
q(s1 + s2 + s) = Ms

The phase ends when q(s1 + s2 + s) = b. This gives s3 = b/M . The time-interval
equation, (5.9), gives

t3 =
bτ

M
+

b2

2cM
− b

c

Finally, addition of the values for each phase gives

s∗ = s1 + s2 + s3 =
cτ + b−W −M

M
= s̃− 1

t∗ = τ
cτ + b−W −M

M
+

b2

2cM
+
s1
c

(
W +M − cτ +

s1
2
M
)

�

Throughput Propositions 5.1–5.3 let us compute t∗ and s∗ as functions of the
initial window sizes. With these values, the data volume Di follows from (5.8), and
the throughput Di/t

∗ for each flow can be computed as

Di

t∗
=
s∗(w0

i +mi +mis
∗/2)

t∗

For reference in the next section, we define the functions s̃(W ) and s∗(W ) as
follows:

s̃(W ) =
cτ + b−W

M
(5.17)

s∗(W ) =

{
s̃+W0

(
−s̃e−s̃

)
full utilization

s̃− 1 otherwise
(5.18)

System evolution at congestion events

The previous section analyzed the queue evolution between congestion events. To
find the average throughput over a longer time, we need to know the stationary
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behavior that results from a large number of congestion events. We first consider
what happens at the single congestion event at time t = t∗.

A congestion event means one or more packet is lost. As described in Sec. 5.2,
New Reno’s window update at a packet loss is w1(t

∗ + 0) = 0.5w1(t
∗ − 0), and

Westwood’s window update at a packet loss is w2(t
∗ + 0) = βw2(t

∗ − 0), where
β = cτ/(cτ + b).

Then, an important issue is which flow loses packets at a congestion event. It
could be one of the flows, or both. In the tcp fairness literature, it is common to
use stochastic modeling for this (see e.g., [14, 76]).

Under the fairly general assumption that the probabilities of the different possi-
ble outcomes at a congestion event depends only on the window sizes of the involved
flows just prior to the congestion, the evolution can be described as a Markov chain.
Let Xk denote the vector of the two window sizes just after a congestion event.
If the first flow uses tcp New Reno and the second uses tcp Westwood+, the
evolution can be described as

Xk+1 = LkG(Xk) (5.19)

In this equation

G

(
w1

w2

)
=

(
w1

w2

)
+ s∗(w1 + w2)

(
m1

m2

)

represents the window growth between congestion events, and the function s∗(W )
is defined by (5.18). The actual packet loss is represented by the random variable
matrix Lk. Each Lk takes one out of three possible values,

LBoth =

(
1/2 0
0 β

)
LReno =

(
1/2 0
0 1

)
LWestwood =

(
1 0
0 β

)

Of the three outcomes, LBoth represents a loss event where each flow loses a packet,
LReno represents an event where only the first flow loses a packet, and LWestwood

represents an event where only the second flow loses a packet.
If we make the further assumption that the probability distribution of Lk de-

pends only on the state Xk, i.e.,

P(Lk = L|Xk,Xk−1, . . . ,X0, Lk−1, Lk−2, . . . , L0) = P(Lk = L|Xk)

then (5.19) clearly describes a Markov chain.
To gain insight into the problem, and to be able to solve it analytically, we have

to make a few simplifying assumptions and approximations. Our first assumption is
that flows are fully synchronized, i.e., that at every congestion event, both flows lose
packets. This means that Lk = LBoth for all k, and it actually makes the process
fully deterministic.

The second simplification is dropping the non-linear terms of the function s∗(w1, w2).
The W0(· · · )-term in Eq. (5.18) is bounded; it always lies between -1 and 0. So by
replacing s∗ with s̃− 1/2, the error in G(Xk) is at most half a packet.
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To give both flows equal opportunities, we also put m1 = m2 = m. The result
is the following approximation of the evolution of the state Xk.

Xk+1 = LBoth

(
Xk +m

(
s̃(Xk

1 ,X
k
2 )− 1/2

) (1
1

))

=

(
1/4 −1/4
−β/2 β/2

)
Xk + (cτ + b−m)

(
1/4
β/2

) (5.20)

Proposition 5.4 Let the capacity be c, the propagation delay τ , packet size m, and
b the size of the router buffer. Define β = cτ/(cτ + b). Then, for arbitrary initial
values X0, the iteration of Eq. 5.20 converges to limit value X∗, given by

X∗ =
cτ + b−m

3− 2β

(
1− β
β

)
(5.21)

Proof : Since β < 1, the matrix has all eigenvalues within the unit circle, which
implies that the iteration converges. The limit value can be computed as

X∗ =

(
I −

(
1/4 −1/4
−β/2 β/2

))−1

(cτ + b−m)

(
1/4
β/2

)

=
cτ + b−m

3− 2β

(
1− β
β

)

�

To find the throughput for both flows in the stationary regime, we plug in the
window sizes X∗ as the initial window sizes in the procedure of Sec. 5.3.

Limits

Let us study the fairness in the limiting cases when buffers are very small or very
large. Of particular interest is the throughput ratio

D2

D1
=

2w0
2 +m(s∗ + 1)

2w0
1 +m(s∗ + 1)

Proposition 5.5 In the limit as b → ∞, Westwood+ gets one quarter of the ca-
pacity, while New Reno gets three quarters. In the limit as b → 0 and m → 0,
Westwood+ gets all the capacity, and New Reno gets 0.

Proof : For the large buffer case, note that cτ + b = cτ/β. We parameterize the
expressions in terms of β, and let β → 0. We have from (5.21) that

(
w0

1

w0
2

)
= X∗ =

1

3

(
cτ/β +O(1)
cτ +O(β)

)
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and W = cτ/(3β) +O(1). It is clear that we have full utilization, and we get

s∗ =
cτ

3mβ
+O(1)

Finally,
D2

D1
=

2w0
2 +m(s∗ + 1)

2w0
1 +m(s∗ + 1)

=
1/3 +O(β)

2/3 + 1/3 +O(β)
→ 1

3

For the small buffer case, simply letting b → 0 would give W → cτ −m. Then
W + M − cτ − b → −m < 0, which violates part (i) of Prop. 5.1. The smallest
possible b can be found by solving

b2 +

(
cτ +

5m

2

)
b− mcτ

2

So in general, both b and the ration D2/D1 depends on the relation between m
and cτ . Here, we handle only the usual case that m ≪ cτ . We put b = m, and let
m→ 0. Then

W +M = cτ +
6m2

cτ + 3m

and it follows that W +M > cτ , so that we have full utilization, and that W +M <
cτ + b = cτ +m for all m < cτ/3. We also have the limits

s̃ = 1 +
1

2

cτ − 3m

cτ + 3m
→ 3/2

s∗ = s̃+W0(−s̃e−s̃)→ 0.874

Furthermore, Eq. (5.21) also implies that w0
1 → 0 and w0

2 → cτ . It follows that

D2

D1
=

2w0
2 +m(s∗ + 1)

2w0
1 +m(s∗ + 1)

grows to ∞ as m→ 0. �

This result is different from what one could obtain by using the throughput
formulas for the average throughput with tcp New Reno, TReno, and the average
throughput with Westwood+, TWestwood, as given in [52]:

TReno =
1

rtt

√
2(1− p)

p
, TWestwood =

√
1− p
pτqrtt

.

In these equations, p is the average loss probability, τq is the average queueing delay,
and rtt = τ + τq is the average round-trip time. Let us form the throughput ratio:

TWestwood

TReno
=

1√
2

√
1 +

τ

τq
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D
10 Mbit/s

15 ms
R

100 Mbit/s

10 ms
S1

100 Mbit/s

10 ms
S2

Figure 5.1: Experimental setup. Parameter values correspond to scenario #1.

We see that this ratio predicts fairness when τq = τ , i.e., when the average queuing
delay equals the propagation delay. This is slightly different from our model, which
predicts fairness when the maximum queuing delay, b/c, equals the propagation
delay.

In the small buffer limit, τq → 0, the ratio tends to infinity. So here we have
perfect agreement. In the large buffer limit, τq → ∞, the ratio tends to 1/

√
2,

significantly higher than the prediction 1/3 from our analysis. The simulation results
presented in the next section will support our analysis in predicting the trend of
the throughput ratio for large buffers. Our explanation for this discrepancy is in
the random loss assumption made by the square root formula, which does not hold
in our setting.

5.4 Results and discussion

Theoretical results

We use the network topology illustrated in Fig. 5.1. There are two source nodes,
S1 (New Reno) and S2 (Westwood+), sending data to a single destination node,
D. There is one intermediate router, R, and the link between the router and the
destination is the network’s bottleneck. For the bottleneck link, we use two values
for the capacity c, 1 Mbit/s and 10 Mbit/s, and two different values of the prop-
agation delay, corresponding to round trip propagation delay τ of 50 and 200 ms.
Table 5.1 shows the parameter values for the four scenarios, and the corresponding
bandwidth-delay product. Both sources use a packet size of 1500 bytes. For all sce-
narios, we vary the buffer size of the router between 2 packets and roughly twice
the bandwidth-delay product, 2cτ .

The resulting throughputs according to the analysis of Sec. 5.3, for scenario #1,
is shown in Fig. 5.2. The solid line represents tcp New Reno, and the dashed line
represents tcp Westwood+. The topmost dotted curve is the sum of the normalized
throughputs, i.e, the link utilization. In [87] it was shown that Westwood+ achieves
almost full utilization for arbitrary small buffer sizes, so it is not surprising that
tcp Westwood+ dominates over New Reno for small buffer sizes. When the buffer
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Scenario # c [Mbit/s] τ [ms] cτ [packets]
0 1 50 4.2
1 10 50 42
2 1 200 16.7
3 10 200 167

Table 5.1: Network parameters for four different scenarios

size equals the bandwidth-delay product, both flows get the same throughput. This
is expected from the model, since for this buffer size, β = 1/2, both flows use the
same decrease factor after a loss, and both elements of X∗ are equal.

For larger buffer sizes, Westwood+ suffers from its estimation of rttmin. It uses
the smallest observed rtt, 50 ms, even though in stationarity, the buffer never gets
empty, and the actual rtt stays significantly higher than Westwood’s rttmin at all
times. This forces Westwood+ to reduce its window size, after a packet loss, even
more than New Reno does.

In Fig. 5.3, the corresponding curves for all four scenarios are shown in the same
figure. To aid the comparison, the horizontal axis has been scaled so that for each
scenario, 1 corresponds to the bandwidth-delay product. The theoretical through-
put curves for all four scenarios are plotted on top of each other, the increasing
curve represents New Reno, the decreasing curve represents Westwood+, and the
uppermost curve close to one is the utilization. The curves for the four scenarios are
barely distinguishable. Scenario #3, with the largest bandwidth-delay product, is
shown with solid curves, and for this we see that the link is slightly under-utilized
for buffer sizes significantly smaller than the bandwidth-delay product. We can con-
clude that the single variable defined by b/(cτ) determines the bandwidth sharing
between tcp Westwood+ and tcp New Reno.

Simulation results and validation

To validate the present model and the assumptions (such as fluid flow approach
and full synchronization), we simulate the same scenarios using ns2, and compare
these results to the theoretically computed values. We assign random start times
to the two flows, measure the actual throughput for a long transmission, excluding
transients at flow startup, and average over several realizations. The results, with
95% confidence intervals, are shown in Fig. 5.4–5.7. The vertical axis corresponds
to the normalized throughput and the horizontal axis corresponds to the buffer
size in packets. The ns2 simulations are displayed for New Reno with marks ×,
Westwood+ with marks +, and their sum with marks ◦. The curves show the
theoretical results.

The ns2 simulation and the analysis give throughput values that match remark-
ably well, except for very small buffer sizes (b < 5). The most likely cause of the
mismatch for small values of b is the fluid model approach.
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Figure 5.2: Throughput (normalized so that 1.0 is the link capacity) as a function
of buffer size, for scenario #1.
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Figure 5.3: Normalized throughput as a function of normalized buffer size, b/(cτ).
The theoretical throughput curves for all four scenarios are plotted together. The
solid curves corresponds to scenario #3, with the largest bandwidth-delay product.
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Figure 5.4: Validation for scenario #0. Throughput as a function of buffer size.
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Figure 5.5: Validation for scenario #1. Throughput as a function of buffer size.
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Figure 5.6: Validation for scenario #2. Throughput as a function of buffer size.
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Figure 5.7: Validation for scenario #3. Throughput as a function of buffer size.

121



5. Analysis of inter-protocol fairness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120

T
hr

ou
gh

pu
t [

ca
pa

ci
ty

]

Buffer size [packets]

Utilization
New Reno

Westwood+

Figure 5.8: This figure shows the result for scenario #1, (c.f., Fig. 5.5), but with
the start of the Westwood+ flow delayed around 50 s.

Consider the ratio between Westwood+ and New Reno throughput. As can be
seen in the figure, the ratio decreases as the buffer size is increased and it tends
to 1/3 rather than the 1/

√
2 that one obtains by application of the “square root

formulas” in [52].
For tcp Westwood+ to function properly, it needs to estimate rttmin. It shares

this requirement with delay based congestion control methods such as tcp Vegas
and Fast tcp. If a Westwood+ flow is started at a time when the bottleneck link is
highly loaded, the buffer may stay close to full for the whole duration of the flow.
Then, in effect, part of the queueing delay will be erroneously accounted for as
propagation delay, which results in an overestimation of the real bandwidth delay
product and hence in a less dramatic reduction of the congestion window. In this
case, the disadvantage that Westwood+ has when competing with New Reno over
large buffer, is actually reduced. This is illustrated in Fig. 5.8, which shows the
result of a simulation of scenario #1 (c.f., Fig. 5.5), with the only difference being
that the start of the Westwood+ flow is delayed around 50 seconds so that the
tcp New Reno flow gets enough time to fill the buffer. For the larger buffer sizes,
Westwood’s rttmin estimate has values up to 80ms, to be compared to the true
round trip propagation delay of 50ms.

Furthermore, when the number of flows over the bottleneck links is increased,
it becomes less probable that the router buffer empties. Thus, also in this case,
one can expect the rttmin estimate to include some of the queueing delay. And
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Figure 5.9: The performance of tcp Westwood+ in scenario #1 after our modifi-
cation - Normalized throughput vs. normalized buffer size (b/(cτ)).

consequently, the disadvantage of Westwood+ can be expected to be reduced when
more flows are multiplexed.

Fairness with large buffers

To improve fairness in the large buffer case, the window decrease of Westwood+
in response to a packet loss could be modified, so that the new window is never
set to a value smaller than half of the previous value. In other words, modify
Westwood+ to never decrease its window more than New Reno would have done.
To validate this claim, we modified the Westwood+ code in ns2 accordingly and
rerun the simulation for scenario #1. The results are presented in Fig. 5.9. Clearly,
for buffers larger than the bandwidth delay product when it is very probable that
tcp Westwood+ divides its window by more than 2, our modification solves the
unfairness problem. At the same time, the performance of both protocols for buffers
smaller than the bandwidth delay product stays the same.

Fairness with small buffers

For successful deployment of tcp Westwood+ as a general purpose congestion
control mechanism over the Internet without significant negative effects on New
Reno flows, it seems prudent not to set the size of buffers in routers to small values.
It is known (see e.g., [11, 12]) that for small buffers, tcp New Reno under-utilizes
the available bandwidth at the bottleneck link. In contrast, tcp Westwood+ is able
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Figure 5.10: The normalized throughput of tcp New Reno when competing with
either tcp New Reno or tcp Westwood+ as a function of the normalized buffer
size.

to utilize all available bandwidth even when the buffers are small. Then one can ask
the following question: Does tcp Westwood+ takes only unused bandwidth when
it competes with tcp New Reno, or does it steal some bandwidth from New Reno?

To answer this question, we consider two tcp New Reno flows instead of the mix
of tcp Westwood+ and tcp New Reno and we vary the ratio between the buffer
size and the bandwidth delay product. The results are depicted in Fig. 5.10. In this
figure, we plot normalized throughput of tcp New Reno when the competing tcp
connection is either tcp New Reno or tcp Westwood+. The two topmost curves
correspond to link utilization. We can read in this figure that when two tcp New
Reno flows compete for the available bandwidth and the bottleneck buffer is small,
the link is not fully utilized, as expected. The figure demonstrates that tcp New
Reno does suffer from the presence of tcp Westwood+ flow when the buffer size is
smaller than the bandwidth-delay product. For buffers larger than the bandwidth
delay product, regular tcp realizes better performances after the introduction of
tcp Westwood+.

5.5 Summary

In this chapter, we studied analytically and by the means of ns2 simulations, the
inter-protocol fairness between tcp Westwood+ and tcp New Reno. Until the
present, the effect of the introduction of tcp Westwood+ on tcp New Reno was not
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thoroughly investigated. We explained why these protocols when they compete for
available bandwidth get different shares. Our main conclusion is that the bandwidth
sharing only depends on the ratio between the buffer size at the bottleneck router
and the bandwidth delay product. In particular, if the ratio is smaller than one,
tcp Westwood+ takes more bandwidth. And if the ratio is greater than one, then
it is tcp New Reno that gets the larger part.

The introduction of tcp Westwood+ allows to solve the well known problem
of network under-utilization by regular tcp when buffer sizes in routers are set to
small values. Unfortunately, this gain in the utilization comes at the expense of
regular tcp which loses some of its throughput.

Inspired by our results, we proposed a simple modification to tcp Westwood+
that solves the unfairness problem for large buffer sizes. For small buffers, the
unfairness problem is still open.
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Chapter 6

A new congestion control protocol

C
ongestion control has been a very active area of research during the last
decade. Many new algorithms have been proposed. Since tcp seems to work
reasonably well in practice, most proposals are in the form of smaller modi-

fications to tcp. Still, few of the proposals have seen wide-spread deployment on the
Internet, and most of those that have been deployed, e.g., ecn [101], sack [88, 18],
and window scaling [60], are designed primarily using “common sense” arguments,
rather than precise mathematical analysis.

This chapter develops a new congestion control mechanism. This mechanism
provides for small and stable queues at bottlenecks, reasonable convergence times,
and proportional fairness. This chapter is organized as follows. Sec. 6.1 reviews the
control objectives, and the way standard tcp tries to achieve them. Our proposed
protocol is described in Sec. 6.2, and Sec 6.3 discusses similarities and differences
to related protocols.

Sec. 6.4 develops and analyzes a fluid flow model for the protocol, using a single
link, single flow topology, and the joint link model to describe the inner-loop. We
derive the equilibrium values of window size and queue size, and prove local stability.
We get a very simple stability condition.

Sec 6.5 presents simulations of the fluid-flow model, and investigates the influ-
ence of the different parameters in the system and in the controller. In Sec. 6.6,
we consider the equilibrium properties for an arbitrary topology, and see that the
protocol is approximately proportional fair. The utility weights are similar to tcp’s;
a ratio between packet size and propagation delay.

In Sec 6.7, we present simulation results from an ns2 implementation of the
protocol, for topologies with one or several bottlenecks. Finally, we summarize our
results and outline further work in Sec. 6.8.
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6.1 Introduction

Requirements

Let us step back and review the control objectives for Internet congestion control,
and how they are met by tcp. Our main focus is on the congestion avoidance phase
of tcp, not the startup phase.

Avoid network overload: This is the most important objective, and it is achieved
by tcp, as witnessed by the fact that the Internet has not suffered congestion
collapse since the introduction of tcp congestion control in the late 1980s.

tcp controls the size of each flow, but it does not control the number of flows.
There are extreme scenarios where the number of flows become very large,
while the throughput of each flow becomes very small, less than a packet per
rtt. For example, assume that a crowd of users are arriving with a rate of
one user per second, and that each user tries to download a 2 Mbyte file from
a web server. Then the traffic demand on that server is almost 17 Mbit/s. If
the capacity is smaller, e.g., if there is a 10 Mbit/s bottleneck link connecting
the server to the Internet, then the number of flows grow without bound, and
so does the users’ download time. In such a scenario, congestion control is
not effective. Mechanisms that limit the number of flows are called admission
control.

Efficient utilization: tcp usually achieves full utilization of bottleneck links,
since the additive increase keeps growing the sending rate until some link
on the path becomes a bottleneck. The problematic cases are short-lived
flows and paths with very large bandwidth-delay product. There is also one
somewhat hidden inefficiency: Congestion on backbone links would lead to
large queueing delays and severe quality degradation, in particular for non-
tcp real-time traffic. As a consequence, most backbone links are highly over-
provisioned, or use complex quality-of-service mechanisms to protect non-tcp
traffic. If tcp were friendlier to the bottlenecks, those resources could be spent
elsewhere in the network.

Fair sharing: Competing tcp flows share available resources, with some favoring
of flows with short rtt and large packet size.

So how does tcp implement fairness between flows? The additive increase
means that in the absence of packet losses, each flow keeps increasing its
sending rate. The increase depends on packet size and rtt, but it is inde-
pendent of the flow size. Eventually, the additive increase ensures that some
bottleneck will drop packets due to queue overflow.

Among the flows sharing a bottleneck, the packet loss probability is the same
for all flows. This implies that the total number of packet losses are distributed
in proportion to flow size; a flow of five packets per second will suffer on
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average five times as many packet losses per unit time as a flow of only one
packet per second. Each flow reacts to a packet loss by reducing its sending
rate. Since the reduction is multiplicative, a large flow not only suffers a
larger number of packet losses per unit time than a small flow, the reduction in
sending rate will also be larger than for the small flow. As the cycle of additive
increase and multiplicative decrease goes on, the average rates converge to the
fair shares.

React to changes: The tcp steady state is that each flow keeps an average send-
ing rate equal to the flow’s fair share of the capacity (for some definition
of “fair”). Changes to both network load and network topology can be in-
terpreted as changes to this fair share. From this point of view, congestion
control is a distributed estimation problem, where the objective is to estimate
each flow’s fair share.

Reaction to an increased capacity or fair share is limited by the additive
increase mechanism, while the multiplicative decrease gives a fast response
to the packet losses that result when capacity is decreased or traffic load is
increased.

Small queueing delays: tcp does not attempt to minimize the queue size. Bot-
tleneck routers will drop packets due to overflow of the router buffer. Further-
more, the buffer size is usually large, the old rule of thumb for buffer sizing
corresponds to a queueing delay on the order of 200 ms when the buffer is
close to full [26].

A simple approach to reduce queueing delay is to reduce the buffer size by
one or a few orders of magnitude, compared to the old rule of thumb [9, 48].
Small buffers may however lead to lead to high packet loss rates and high
variability in tcp throughput [38]. Another, more sophisticated, approach is
to use aqm. The most widely implemented aqm scheme being Random Early
Detection (red). Good tuning of the parameters of aqm schemes, and red
in particular, is challenging [33, 56]. Both these approaches work best when
there are a large number of tcp flows sharing the bottleneck, and they are
less useful when there are only one or a couple of flows, e.g., in the scenario
where two users or applications share an adsl line.

Maintaining small queues does not necessarily mean that the system must be
stable (i.e., that sending rates and queue sizes converge to equilibrium values).
It is acceptable if queues exhibit oscillations or even chaotic behavior, as long
as the oscillations are small.

For a new congestion control scheme to be deployable over the Internet, there
are some additional constraints (see also Sec 1.3 for some more details) that must
be taken into account.

Scalability: The algorithm must work for huge networks.
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Figure 6.1: Control structure for the congestion control protocol.

End-to-end principle: As far as possible, protocol state should belong to the
communication end points.

Robustness: Parameters such as number of flows, capacities, and delays vary over
ranges of several orders of magnitude, and knowledge of the parameters is very
limited. Hence, the algorithm must work despite severe uncertainty about the
parameters.

Tunability: The number of tuning parameters should be small, and the effect of
each parameter should be predictable and easy to understand.

Incremental deployability: A new algorithm must work in the setting that a
subset of end-nodes and routers are upgraded, and flows using the old and
the new algorithm share resources.

Openness: The protocols and mechanisms must be free to implement for anyone.

6.2 Protocol design

From the above objectives and constraints, we are looking for a new congestion
control mechanism, which addresses the main shortcoming of tcp, i.e., the large
queueing delays at bottlenecks. We intend to have no packet losses in normal op-
eration, and instead rely on congestion feedback generated by the network. The
proposed scheme is structurally very similar to standard tcp/aqm, with some sub-
tle but crucial differences in the handling at both end hosts and routers. The control
structure is illustrated in Fig. 6.1. In this section we describe and motivate the de-
sign choices.

Window-based control

The ack-clock is a simple and efficient per-packet rule which controls the sending
rate. Since this inner-loop is stable, for arbitrary propagation delay in the network
(see Chapter 4), we keep the ack-clock inner-loop, and just modify the window
control. This gives the cascaded control structure in Fig. 6.1.
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Additive increase

The lack of feedback in the absence of congestion, and the desire to have efficient
utilization of resources, requires some mechanism that keeps the sending rates grow-
ing in the absence of congestion. This growth rate is going to be one of the system
parameters, and for stability reasons, it makes sense to scale it down with the rtt.
Hence, we also keep the additive increase part of tcp: in the absence of congestion,
increase sending rates by m bytes per rtt, where m is a system parameter. Using
only a linear increase seems prudent when there is some reason to expect that the
system is close to congestion, or that the current sending rate is close the the fair
share. (When we believe that the current rate is much smaller than our fair share,
in particular when a flow is new, with a small initial window, a more aggressive
increase rule may be used. However, the current analysis does not include any such
slow-start like mechanisms.)

With the flow analogy in mind, additive increase can be thought of as a pressure
applied by the sources, which forces more fluid into the system, filling up the pipes,
and when the pipes are full, the pressure causes queues to grow.

So for an effective congestion control, we must design a way for the queues to
impose a back-pressure on the fluid.

Additive decrease

With the multiplicative decrease mechanism of tcp New Reno, feedback is a rel-
atively rare event, and the response to each feedback event is strong. If the aver-
age window size of a flow is n packets, varying between 2n/3 and 4n/3, then the
loss probability per packet is 3/(2n2) (see also the “square root formula” for tcp
throughput, Eq. (2.1)), and the rate of losses per unit time is one loss per 2n/3
rtts.

Hence, the sender will operate for many rtts between feedback events, growing
its window according to the additive increase law. For drop tail queues, this is the
reason large buffers are necessary for high utilization. The long interval between
feedback events is a consequence of the combination of additive increase and mul-
tiplicative decrease. The average intervals are long also when using aqm and ecn
in the routers.

We aim for more frequent signalling, on the average of one feedback event per
rtt. To get there, we need a softer response to each event: For each received ack
carrying a congestion indication, the window size is decreased by one packet. To
use a feedback signal that is added to the sender’s congestion window is similar in
spirit to xcp [63], although we use much lighter signalling. With this rule, senders
will no longer operate in open-loop for long time periods.

Another important benefit is that from a router’s point of view, the system be-
comes more predictable. Under the one-packet decrease rule, when a router decides
to set a mark bit, the effect is that one packet less will be arriving a round-trip
time later. For comparison, consider aqm with ecn and multiplicative decrease,
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where the corresponding flow will halve its window. Since the window size is un-
known, in this case both the timing and the magnitude of the effect is unknown.
With the one-packet decrease rule, the magnitude of the response is known, only
the round-trip time is uncertain.

Information contents The design of the marking rule is related to the research
on control under information constraints. This field tries to link together fundamen-
tal control properties, such as the Bode sensitivity integral, information theoretic
properties, such as channel capacity and mutual information, and estimation theory
notions such as the Fischer information [85, 35].

What is the information contents in the feedback bits? Consider a mark bit y
which is set by the network, with probability p for a one and 1− p for a zero. The
probability p is a function of the network state that we would like to estimate. If
p is modelled as a stochastic variable with probability density function fp(p), then
the mutual information between y and p, denoted I(y, p), is given by

I(y, p) = h(E[p])− E[h(p)]

where

h(p) = −(p lg p+ (1− p) lg(1− p))

and lg denotes logarithm to base 2. The concavity of h(p) implies I(y, p) ≥ 0. (More
details are provided in Appendix A). The amount of information thus depends on
the distribution of p.

When the output y is used for feedback, p will depend on the network state
which in turn depends on y. The author is not aware of any tools to compute the
distribution of p in this setting. We can however get some insight by investigating a
simpler estimation problem. Assume that p is uniformly distributed in the interval
[0, pmax]. The resulting mutual information, as a function of pmax, is shown in
Fig. 6.2. For small pmax, we have I(y, p) ≈ 0.14 pmax.

From this, one can get a crude estimate of the actual amount of feedback in-
formation. Consider a window w corresponding to n = w/m packets, with some
moderately large n, and assume an average marking probability of once per rtt,
E[p] = 1/n. Model the lack of information about p as a uniform distribution in
[0, 2/n]. Then the mark bit in each received ack provides approximately 0.28/n
bits of information about p. In each rtt, we receive n acks, and hence we get 0.28
bits of information.

In contrast, consider the same average window size of n packets, and a marking
probability E[p] = 3/(2n2), as for tcp New Reno with a network supporting aqm
and ecn. Then we get only 0.42/n bits of information per rtt using the same
calculation. To conclude, we see that the amount of feedback information available
to the controller is higher with frequent feedback.
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Figure 6.2: Mutual information for a uniformly distributed marking probability.

Congestion feedback

The amount of signalling that can be sent from the network to the sources is
limited. One common approach is to piggyback a congestion indication on packets
forwarded to the receiver, which copies the information into the corresponding
acknowledgment and sends it back. One subtle advantage with this approach is that
if the congestion signal is lost, that implies that a data packet (or acknowledgment)
is lost too, which is going to be noticed by the sender. This is unlike the source
quench messages that were used in the early days of tcp, and transmitted as
independent icmp (Internet Control Message Protocol) packets.

We will assume that we can allocate one bit of information in the packet header,
analogous to the standardized ecn bits. The main difference to ecn is that the
response we are defining for the sender is different, and also the rules for setting
the bit are different.

The main reason to introduce this feedback is to get a signal that is proportional
to flow size, and hence useful for fairness. Only bottleneck routers should add marks
to forwarded packets, for several reasons

• The state of non-bottlenecks is generally not interesting enough to spend
signalling resources on.

• There are usually a small number of bottlenecks along a given path. Combin-
ing the signalling from several routers is somewhat difficult both for imple-
mentation and for analysis, so the smaller the number, the better.
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• For deployment, it is desirable that the new congestion control can be deployed
by upgrading only bottleneck routers, and leave the large number of non-
bottleneck routers unchanged.

One important consequence is that a network where no link is fully utilized will
generate no packet marks. We thus get no quantitative information about how close
the network is to full utilization.

Marking rule

It is important that the feedback rule uses a minimal number of parameters; one of
the problems with current aqm is that the algorithms are difficult to tune so that
they work well. We are going to consider rules with a single parameter.

For good control performance, delay is important. If the state is estimated using
an explicit observer (at either sender or router), time constants must be kept small.
For this reason, there is limited room for sophisticated estimation in the router. On
the other hand, it is also impractical to base the feedback on instantaneous arrival
rate; if a router receives a burst of a few packets back to back at a rate much higher
than capacity, but the queue is empty before the arrival of this burst, that is no
reason to signal to all sources using the queue that it has become congested.

As a compromise, we generate feedback from the instantaneous queue size. There
are two reasons for this:

• The queueing delay is the primary value we want to control.

• The queue dynamics provides about the right amount of low-pass filtering of
the arrival rate: The queue absorbs small fluctuations, and only if a distur-
bance is large enough to result in a significant change in the queue size, it is
relevant for congestion control.

We will describe the feedback process as a stochastic procedure, where each
packet is marked with some probability p that depends on the current queue size.
The marking must not necessarily be implemented in a stochastic way, e.g., it may
be possible to ensure that the right proportion of packets are marked, using virtual
queues and some fully deterministic rules. In the latter case, the marking process
will still appear to be stochastic when observed by sources, given that the cross-
traffic is random.

The feedback to be attached to a packet can, in principle, be attached at any
time the packet is in the queue. In practice, the most common alternatives are to
mark packets either at arrival to the queue, or just before they are transmitted. In
the analysis, we will assume that packets are marked at exit from the queue, since
this minimizes the signalling delay. Marking packets at arrival has the advantage
of giving a higher correlation between the marks seen by a flow and the burstiness
of that particular flow.
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Relation to other protocols

We choose the simple one-parameter rule

p(q) =
q

q0 + q

where the q0 parameter corresponds to the size of a severely congested queue, where
50% of the packets are marked, and hence q0 can be much larger than the desired
queue size. A large q0 implies a small gain from q to p.

Another candidate was the function

palt(q) =

{
0 q ≤ q0
q−q0
q q > q0

Since the equilibrium size at a bottleneck corresponds to a non-zero marking prob-
ability, the equilibrium queue size with the palt rule will always be larger than q0.
This means that q0 must be of the same order as the desired queue size, i.e., small.
From simulations with palt and a small q0, it may happen that the system oscillates
with peak queue size just above q0, and then the high gain causes a significant
decrease in the sending rate. The effect is that the system spends much of the time
in the dead zone, in effect in open loop for long periods of time, just like tcp New
Reno.

The problem with palt is not the dead-zone per se (looking close to an equilib-
rium, the dead zone has the same effect as a small additional propagation delay),
but the high gain.

Incremental deployability

It is easy to make the sources fall back to tcp New Reno when some bottleneck
on the path does not implement the new mechanisms. If we keep the rule that
the window size is halved when a packet loss is detected, then we keep tcp New
Reno’s behavior both in the case that some bottleneck router on the path does not
implement the packet marking scheme, and in the case of severe congestion.

To make routers handle a mix of older tcp versions and the new scheme is a
little more difficult. One possibility is to use an additional bit in the packet header
to distinguish between flows that implement the new scheme and flows that do not
(analogous how the same issue is handled with ecn), and use separate queues for
the two classes.

These deployment issues are not addressed in detail in this thesis.

6.3 Relation to other protocols

As already mentioned, the signalling structure is the same as in standard tcp/aqm.
The new protocol is also related to delay-based congestion control, in particular
tcp Vegas, in that small queue sizes is a design objective. However, delay feedback
is used only in the inner-loop, i.e., the ack-clock, while the outer-loop adjusts the
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window size based on explicit feedback from the network. So in the cascaded control
structure, the two loops use different feedback signals. Another important difference
is that there is a per-link tuning knob. If a particular link needs a higher average
queue size, e.g., due to a traffic mixed with larger fluctuations in the arrival rate,
or a time varying capacity, the average queue size can be increased by local tuning.

A cascaded control structure is also used in [89]: The controller adjusts the win-
dow size, and then the corresponding sending rates and queue sizes are determined
by the window sizes. The novelty in this work is that we take into account the
dynamic properties of the relationship between window sizes and queue sizes, using
the joint link model from Chapter 3.

The control structure is similar to that in primal-dual congestion control schemes,
although window-based rather than rate-based. One difference is that there are two
different signals that are fed back from the network to the sources: Delay, and a
congestion indication. For this reason, the protocol does not fit easily into the util-
ity maximization framework. This problem is shared with the family of loss-delay
based congestion control.

We use a congestion indication, which, when it arrives to a source, is added to
the source’s congestion window. This is unlike the standard ecn mechanism, where
sources are expected to treat the arrival of a congestion indication in the same way
as a packet loss, and react by halving the window size. Additive feedback is used
in the xcp protocol [63], but we use much lighter signalling.

6.4 Analysis

System model

For the stability analysis, we focus on the simplest topology, with a single source
and a single bottleneck. Without loss of generality, we can assume that the forward
delay, i.e., the time taken for a transmitted packet to arrive to the bottleneck queue,
is zero. The queue dynamics, from Chapter 3, are

q̇(t) =
w(t− τ)

τ + q(t− τ)/c + ẇ(t) + x(t)− c

This equation is valid only as long as q(t) > 0; if q(t) = 0 and the right hand side
is negative, then the queue stays in the empty state and dq(t) = 0.

In the router, packets are marked with probability given by

p(q) =
q

q0 + q

The window update law uses additive update of one packet per rtt in the
absence of marks. The packet size is denoted m. When marks are received, the
window size is decreased with the corresponding amount. The expected number of
received marks is np, where n is the window size in units of packets, n = w/m, and
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p is the marking probability. For each received mark, the window size is reduced
by m, so that the expected reduction during one rtt is wp. In the continuous time
fluid flow model, this can be expressed as

ẇ(t) =
m− p

(
q(t− τ)

)
w(t)

τ + q(t− τ)/c

Put together, this gives the following system equations for the state variables w(t)
and q(t):

ẇ(t) =
1

τ + q(t− τ)/c

(
m− q(t− τ)

q0 + q(t− τ) w(t)

)

q̇(t) =
w(t− τ)

τ + q(t− τ)/c +
1

τ + q(t− τ)/c

(
m− q(t− τ)

q0 + q(t− τ) w(t)

)
+ x(t)− c

(6.1)

Equilibrium

For constant cross-traffic, put γ = (c−x)/c. The equilibrium is the solution w∗ and
q∗ of the equations

mq0 = q∗(w∗ −m)

w∗ = γ(q∗ + cτ)
(6.2)

For any positive parameters, a unique equilibrium exists, given by the intersection
of the line w(q) = γcτ+γq, and the curve w(q) = m+mq0/q. It is clear that q∗ > 0
and w∗ > max(m, γcτ).

The equilibrium equations can be solved explicitly:

w∗ =
γcτ +m

2
+

√
(γcτ −m)2

4
+ γq0m

q∗ = −γcτ −m
2γ

+
1

γ

√
(γcτ −m)2

4
+ γq0m

In particular, for large q0, both q∗ and w∗ grow as
√
q0. We can also solve for q0 in

terms of q∗,

q0 = q∗
(
γ(cτ + q∗)

m
− 1

)

To get an equilibrium queue of one packet, q∗ = m, then requires that

q0 = γcτ + γm−m ≤ cτ

So it should be a reasonable small-buffer tuning to put q0 = cτ ; this choice gives
w∗ = γcτ +m and q∗ = m/γ.
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Stability analysis

In this section, we study the system behavior close to the equilibrium.

Theorem 6.1 Let c > 0 be the bottleneck capacity, τ > 0 the propagation delay,
and m > 0 the packet size. Assume that the control parameter q0 is chosen so that
q0 ≥ cτ , and that the cross-traffic is constant and below capacity, x(t) = x < c.
Then the system (6.1), describing the queueing and window dynamics, is locally
asymptotically stable.

Proof : Define γ = (c− x)/c, and let q∗ and w∗ denote the equilibrium values, i.e.,
the solutions to Eq. (6.2). Put q(t) = q∗ + q̃(t) and w(t) = w∗ + w̃(t), and assume
that q̃ > −q∗, so that the queue does not underflow. Ignoring higher order terms,
the linearized system is

˙̃w(t) =
1

τ + q∗/c

(
− q∗

q0 + q∗
w̃(t)− q0w

∗

(q0 + q∗)2
q̃(t− τ)

)

˙̃q(t) =
1

τ + q∗/c

(
− q∗

q0 + q∗
w̃(t) + w̃(t− τ)−

(
γ +

q0w
∗

(q0 + q∗)2

)
q̃(t− τ)

)

Scale time, by the change of variables

v(t) =

(
w̃(τ t)
q̃(τ t)

)

Then the system is of the form

v̇(t) = −
(
A 0
A 0

)
v(t)−

(
0 B
−D B + C

)
v(t− 1)

where

A =
τ

τ + q∗/c

q∗

q0 + q∗

B =
τ

τ + q∗/c

q0w
∗

(q0 + q∗)2

C = γ
τ

τ + q∗/c

D =
τ

τ + q∗/c

Since w∗ = γc(τ + q∗/c), the assumption q0 ≥ cτ implies that

B =
τ

τ + q∗/c

q0w
∗

(q0 + q∗)2
=

q0
q0 + q∗

γcτ

q0 + q∗
< γ

It is then clear that 0 < A < 1 and BD < C ≤ D < 1. Stability of the linearized
system now follows from Theorem 4.20. Then the equilibrium of the non-linear is
locally asymptotically stable. �
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Figure 6.3: The evolution of the window size, for γ = 0.3, 0.5, 0.7, and 0.9.

6.5 Flow-level simulation

To get a better understanding of the dynamics, and to see the influence of the
system parameters τ and γ, and the design parameter q0, we perform a series of
simulations based on the fluid-flow system model (6.1).

As base values, consider a 10 Mbit/s link, with a roundtrip propagation delay
of 50 ms, and with 30% non-responsive cross-traffic (i.e. γ = 0.7). The packet size
is 1500 bytes, and we set the control parameter q0 to 150 packets. For comparison,
the bandwidth delay product is 42 packets for the base delay, and 250 packets for
a larger delay of 300 ms. We will then vary the parameters γ, τ and q0 in turn. For
all the simulations, the initial conditions are q(t) = 0 and w(t) = w∗ for t ≤ 0.

We first vary γ. We have seen in Chapter 4.2 that the time constant of the
inner-loop grow large when γ is decreased. In Figs. 6.3 and 6.4, we see that also
the dynamics of the closed loop window control gets slower as γ is made smaller,
i.e., when the amount of cross-traffic is increased. We can also see that when γ is
decreased, the equilibrium queue grows, while the equilibrium window size shrinks.

Next, consider the influence of the propagation delay τ . In Figs. 6.5 and 6.6
we see the dynamics when the delay is increased from 50 ms up to 300 ms. By
Theorem 6.1, the system is locally stable provided τ ≤ q0/c = 180 ms. From the
curves corresponding to a propagation delay of 50 ms and 100 ms, the system
is stable with a convergence time of about 5 times the propagation delay. For
200 ms delay, the system is still stable, but with much slower convergence. Finally,
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Figure 6.4: The evolution of the queue size, for γ = 0.3, 0.5, 0.7, and 0.9.
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Figure 6.5: The evolution of the window size, for τ = 0.05, 0.1, 0.2, and 0.3. To aid
comparison, the vertical axis shows the deviation from the equilibrium (w∗ increases
with τ), and the horizontal axis is in units of τ .
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Figure 6.6: The evolution of the queue size, for τ = 0.05, 0.1, 0.2, and 0.3. To aid
comparison, the horizontal axis is in units of τ .

for 300 ms delay, the system approaches a limit cycle where the queue oscillates
between zero and approximately two packets. Since the cycle includes an interval
when the queue is empty, there is also a slight underutilization of the link in the
scenario with 300 ms delay.

For all the values of τ considered here, stable or unstable, the size of transients
and oscillations in the queue size are at most a couple of packets. For τ even larger
than 300 ms, both the oscillations and the utilization would get smaller, and q0
must be increased to recover full utilization.

In Figs. 6.7 and 6.8, we see the influence of the design parameter q0. By Theo-
rem 6.1, the system is stable when q0 ≥ 42 packets. We see that increasing q0 makes
the system less oscillatory, and the equilibrium values for the window size and the
queue size larger. For q0 = 40 packets, the system converges slowly. For the smallest
value, q0 = 10 packets, the system is unstable and converges to a limit cycle. The
amplitude of this limit cycle is quite small, in comparison to the transients for sta-
ble choices of q0. So from a practical perspective, the main problem caused by this
instability is a waste of resources, since the queue gets empty which implies under-
utilization of the bottleneck link, not large delay and delay fluctuations degrading
the quality of real-time applications.

Finally, we examine the dependence on the propagation delay τ , when the de-
sign parameter q0 is scaled with τ . Figures 6.9 and 6.10 show the dynamics for a
propagation delay τ from 100 ms up to 3 s, when q0 = cτ . The equilibrium window
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Figure 6.7: The evolution of the window size, for q0 = 10, 40, 70, and 100.
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cτ . To aid comparison, the vertical axis shows the deviation from the equilibrium
(w∗ increases with τ), and the horizontal axis is in units of τ .
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Figure 6.10: The evolution of the queue size, for τ = 0.1, 0.3, 1.0, and 3.0, and
q0 = cτ . To aid comparison, the horizontal axis is in units of τ .
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6. A new congestion control protocol

size w∗ grows with τ , but except for this, increasing τ corresponds only to a scaling
of the time axis. The system is somewhat oscillatory. Increasing q0 to 1.5cτ or 2cτ
would reduce the oscillations. We also see that the convergence time is on the order
of 20τ . For comparison, by Prop. 4.5, the convergence time of the inner-loop is
bounded by 3.4τ .

Tuning

These simulations indicate that tuning q0 is reasonably simple. A too small q0
causes underutilization and moderate queue oscillations. A too large q0 results in
an unnecessarily large stationary queue, but since q∗ = O(

√
q0) for large q0, q0 can

be a few times too large with no severe effects. So simple tuning rules, along the
following lines, can be used:

• Set q0 at each link to roughly the largest expected bandwidth-delay product
of any flow using the link. (This procedure is very similar to the traditional
rule-of-thumb of router buffer sizing).

• If oscillations that cause queue underflow are observed, increase q0 by a factor
of two.

• If the queue has a significant stationary queue, decrease q0 by 30%.

Finally, note that the dynamics of the congestion control mechanisms is not the
only consideration in the tuning of q0. The queue must also absorb any stochastic
fluctuations in the arrival rate, so if there are large fluctuations, a larger stationary
queue is needed, and hence a larger q0.

6.6 Fairness

In this section, we consider the equilibrium properties in a general network of links
and sources using the proposed scheme. We use the notation from the utility max-
imization framework (Sec. 2.3). At each source, we have a window size ws and a
sending rate rs. At each link, we have a queueing delay dℓ.

The network topology is described by a routing matrix A, and the roundtrip
propagation delay τ0

s for each source. Sources are aggregated as y = Ar, and the
delays are aggregated as τ = AT d.

Since we will be concerned with equilibrium properties, rather than the actual
dynamics, time delays do not matter and are omitted in the formulas. The sending
rate and the basic link and source dynamics are given by

rs =
ws

τ0
s + τs

+ ẇs

ḋℓ =

{
yℓ

cℓ
− 1 dℓ > 0

max
(
0, yℓ

cℓ
− 1
)

dℓ = 0
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Fairness

Before describing the window update law, we need to consider how to model the
congestion feedback. Each router marks packets independently, with some proba-
bility related to the current queue size. Since queueing delay dℓ is the state variable
at link ℓ, we express the marking probability as dℓ/(d

0
ℓ + dℓ), where the parameter

d0
ℓ corresponds to q0/c in the single link model. Assuming that packets are marked

independently at each link, the probability that an ack received by source s is
marked is given by

1−
∏

ℓ
Aℓs=1

(
1− dℓ

d0
ℓ + dℓ

)

To get this signalling to fit in the network utility maximization framework, we need
linear aggregation via the routing matrix, in the form p = ATλ. We get linear
aggregation by defining the link price λ, not as the queue size, nor as the marking
probability, but instead as:

λℓ = − log

(
1− dℓ

d0
ℓ + dℓ

)
= log

(
1 +

dℓ
d0
ℓ

)

Then it follows that the probability that acks received by source s are marked is
given by 1−e−ps . With this feedback signal, we can write down the window update
law, as

ẇ =
ms − (1− e−ps)ws

τ0
s + τs

The parameter ms is the additive increase parameter, which we can think of as the
packet size. The total system dynamics is then described by the following equations,

ẇ =
ms − (1− e−ps)ws

τ0
s + τs

ḋℓ =

{
yℓ

cℓ
− 1 dℓ > 0

max
(
0, yℓ

cℓ
− 1
)

dℓ = 0

rs =
ws

τ0
s + τs

+ ẇs λℓ = log

(
1 +

dℓ
d0
ℓ

)

together with the aggregation equations

y = Ar p = ATλ τ = AT d

Next, we derive the equilibrium conditions. In equilibrium, the aggregation equa-
tions still holds, together with

ms =
(
1− e−ps

)
ws yℓ ≤ cℓ

0 = dℓ(cℓ − yℓ)

rs =
ws

τ0
s + τs

λℓ = log

(
1 +

dℓ
d0
ℓ

)

145



6. A new congestion control protocol

This does not quite fit the standard utility maximization problem:

max
rs

∑
Us(rs)

s. t. rs ≥ 0

Ar ≤ c

since we have two different congestion signals, dℓ and λℓ, that are propagated from
links to sources.

It seems natural to treat the rs as primal variables, and either dℓ or λℓ as dual
variables (since they are associated with the constraint Ar ≤ c and a complementary
slackness condition dℓ(cℓ−yℓ) = 0). But then the relation λℓ = log(1+dℓ/d

0
ℓ) seems

difficult to handle. Several other congestion control protocols proposed recently use
both loss and delay as congestion signals [69, 112, 78]. The theory for this type of
networked systems is not well-developed, although highly needed. An extension of
the utility maximization framework to the case of several congestion signals would
enable powerful techniques for analyzing such protocols over arbitrary topologies.

It is possible to use the standard framework if we make the following simplifi-
cations:

• Assume that d0
ℓ has the same value, d0, at all links.

• Assume that dℓ ≪ d0 for all ℓ.

Under these assumptions, we get

1− e−ps ≈ ps ≈
τs
d0

When p is eliminated in this way, τ can play the customary rôle as the dual variables
associated with the capacity constraints.

We now derive a utility function from the equilibrium condition:

ms =
(
1− e−ps

)
ws =

(
1− e−ps

)
(τ0
s + τs)rs ≈

rs
d0
τs(τ

0
s + τs)

Solving for τs gives

τs = fs(rs) =
τ0
s

2

{√
1 +

4msd0

(τ0
s )2rs

− 1

}

which clearly is a decreasing function in rs. We find the utility function by integra-
tion, using

∫ √
1 +

2α

x
dx = x

√
1 +

2α

x
+ α log

√
1 + 2α

x + 1
√

1 + 2α
x − 1
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Put α = 2msd
0/(τ0

s )2 to get

Us(r) =

∫ r

0

fs(r
′) dr′

=
τ0
s

2



r
(√

1 +
2α

r
− 1

)
+ α log

√
1 + 2α

r + 1
√

1 + 2α
r − 1





=
τ0
s

2



r
√

1 +
4msd0

(τ0
s )2r

− r +
2msd

0

(τ0
s )2

log

√
1 + 4msd0

(τ0
s )2r + 1

√
1 + 4msd0

(τ0
s )2r − 1





To understand the shape of this function, we can look at the asymptotics when r
is very small or very large. We get

Us(r) = τ0
s

√
2αr +O(r) =

√
2msd0r +O(r) for small r

Us(r) =
τ0
s

2
α log r +O(1) =

msd
0

τ0
s

log r +O(1) for large r

We see that for small r, Us(r) grows rapidly, as
√
r. This seem related to the

condition that ws > ms. For large r, the utility grows as the log r. This utility is
the same as in tcp Vegas and Fast tcp, and corresponds to proportional fairness.

Since we had to use some approximations when deriving this utility function
from the equilibrium, we can not expect it to describe the fairness properties exactly.
However, we can still conclude that the sending rates in equilibrium should be close
to proportionally fair.

The weight ms/τ
0
s implies that flows with larger packet size or shorter prop-

agation will get higher throughput, just as for tcp New Reno. This dependence
on packet size and propagation delay can be seen already from the equilibrium
equation: Since ws = ms/ps in equilibrium, if some flows share the same set
of bottlenecks, so that they see the same price ps, then they all have the same
window size measured in units of packets. And the equilibrium sending rates are
ws/(τ

0
s +τs) = ms/(ps (τ0

s +τs)) , i.e., proportional to ms and inversely proportional
to the equilibrium rtt.

6.7 Packet-level simulations

The fluid flow model neglects important packet-level features of the proposed mech-
anism, in particular, it does not capture the limited information about the mark
probability p. To see how the mechanism behaves at the packet level, the mecha-
nism has been implemented in the ns2 simulator. The implementation consists of
a couple of small changes:

• Two new bits in the ns2 packet header, analogous to the ecn and ecn echo
bits.
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Source Destination

Figure 6.11: The simplest possible topology. A single data flow, with a single inter-
mediate bottleneck router.

• The Agent/TCPSink class handles reception of tcp data and sending of ack
packets. It is extended to copy the new mark bit from each tcp data packets
to the corresponding ack.

• The Queue/DropTail class implements the simplest queueing discipline, drop
tail. This class is extended with a new attribute q0. The new marking scheme
is enabled, by setting q0 to a positive value. When enabled, packets are marked
at arrival with a probability q/(q0 + q).

• The Agent/TCP/Newreno class implements the sending side of tcp New Reno.
It is modified to examine the echoed mark bit of received acks, and to decrease
current window size by one packet for each received mark.

Neither the slow start phase or New Reno’s reaction to packet losses is modified
at all. To force the tcp sender to leave the slow start phase, the initial slow start
threshold in all the simulations were set to a value close to the product of the rtt
and the fair share.

Single bottleneck, single flow

The first scenario uses a single tcp flow over a single bottleneck, this topology is
shown in Fig. 6.11. The bottleneck capacity is 2 Mbit/s, and the roundtrip propa-
gation delay (excluding queueing delay) is 100 ms. This implies a bandwidth delay
product of 16 packets, and the buffer size is set to 21 packets. The simulation runs
for 60 s, with a file transfer starting at time 0.1 s. The bottleneck link is shared
with Poisson cross-traffic, 20% of the capacity, increased to 40% during the interval
20–40 s.

This scenario is simulated twice, once with New Reno, once with the new pro-
tocol, with q0 = 32, twice the bandwidth-delay product. The results for a segment
of time around the cross-traffic change (at 20 s) is shown in Figs 6.12 and 6.13.

Table 6.1 shows average properties. The new mechanism almost eliminates
packet losses, while at the same time the tcp throughput is increased and the
queueing delay is reduced.

Single bottleneck, two flows

For the next scenario, we keep the same 2 Mbit/s bottleneck link with 20% Poisson
cross-traffic, and start two flows in parallel. The topology is illustrated in Fig. 6.14.
The first flow has a roundtrip propagation time (excluding queueing delay) of 20 ms,
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Figure 6.12: Single bottleneck, single flow. We see the congestion window and the
queue size for a New Reno flow. At 20 s, the cross-traffic is increased from 20% to
40%.
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Figure 6.13: Single bottleneck, single flow. We see the congestion window and the
queue size for a flow using the new protocol. At 20 s, the cross-traffic is increased
from 20% to 40%.
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New Reno New protocol
Loss rate (%) 4.27 0.02
Utilization (Mbit/s) 1.64 1.90
tcp throughput (Mbit/s) 1.02 1.40
Queue average (packets) 7.26 3.77

std. dev. (packets) 7.12 3.41
Forward delay average (ms) 114.66 80.84

std. dev. (ms) 40.11 19.61

Table 6.1: Average quantities for the single flow case.

S1 D1

S2 D2

Figure 6.14: Topology with a single bottleneck shared by two flows.
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Figure 6.15: Single bottleneck with two New Reno flows.
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Figure 6.16: Single bottleneck with two flows using the new protocol.

New Reno New protocol
Loss rate (%) 1.56 0.00
Utilization (Mbit/s) 2.00 1.99
Queue average (packets) 19.27 4.58

std. dev. (packets) 6.00 2.32

Table 6.2: Average properties for the link in the two-flow scenario.

New Reno New protocol
rtt (ms) 20 100 20 100
tcp throughput (Mbit/s) 1.22 0.38 1.17 0.42
tcp window (packets) 14.96 7.77 5.81 5.21

std. dev. 4.37 2.95 1.16 1.20
Forward delay average (ms) 135.55 178.34 45.58 88.53

std. dev. (ms) 37.33 35.61 13.76 13.41

Table 6.3: Average properties per flow, for the two-flow scenario.
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S0 D0

S1 D1 S2 D2 S3 D3

Figure 6.17: The “parking-lot” topology, with three bottlenecks in series.

and the second flow has a five times larger delay, 100 ms. The buffer size is set to
30 packets, and q0 is set to 15 packets. The evolution of the queue size and the two
window sizes are shown in Fig. 6.15–6.16.

Average quantities are summarized in Tab 6.2 and Tab. 6.3. The sharing of
capacity is roughly the same for the new protocol and New Reno, the flow with
the longer delay gets approximately a third of the throughput of the flow with the
shorter delay. For both the new protocol and tcp New Reno, flows that share the
same set of bottlenecks are expected to have the same equilibrium window size. In
this experiment, that is not the case for the two New Reno flows, and there also
seems to be more variation in the window size when using New Reno.

“Parking-lot” topology

In the final scenario, we have three bottleneck links in series, illustrated in Fig. 6.17.
The links are still 2 Mbit/s, with both the buffer size and q0 is set to 20 packets.
Over each link, there is one tcp flow, and 20% Poisson cross-traffic. These short
flows have 20 ms rtt excluding queueing. We also add one long rtt flow, traversing
all three bottlenecks, with a rtt of 150 ms excluding queueing.

The evolution of queues are shown in Fig. 6.18–6.19, while the window sizes are
shown in 6.20–6.21. The average properties are summarized in Tab. 6.4–6.5.

6.8 Summary

We have proposed a new congestion control protocol, consisting of the standard
ack-clock based inner-loop, and a novel outer-loop that adjusts the window size.
Routers mark packets with a probability depending on their instantaneous queue
size. In the absence of marks on received acks, sources increase their window sizes
linearly. When a marked ack is received, the source subtract the size of the corre-
sponding data packet from its congestion window.

The rule of reducing window size by one packet on the reception of a marked
ack is a subtle change from standard ecn processing, which has two important
benefits: The frequency of packet marks can be much higher than with standard
aqm/ecn schemes, on average, a flow in equilibrium will get receive one marked
ack per rtt. In this way, sources are provided with more information about the
network state. Furthermore, from a router’s point of view, the effect of the decision
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Figure 6.18: Evolution of the three bottleneck queues in the parking lot scenario,
with New reno flows.
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Figure 6.19: Evolution of the three bottleneck queues in the parking lot scenario,
with the new protocol.
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Figure 6.20: Window sizes for the four flows in the parking lot scenario, with New
Reno flows.

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7  8

P
ac

ke
ts

t [s]

w1
w2
w3
w4

Figure 6.21: Window sizes for the four flows in the parking lot scenario, with the
new protocol.
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New Reno New protocol
Loss rate (%) 1.96 1.99 1.67 0.00 0.00 0.00
Utilization (Mbit/s) 2.00 2.00 2.00 1.99 1.99 1.99
Queue average (packets) 11.98 12.07 11.94 4.37 4.43 4.33

std. dev. (packets) 4.32 4.37 4.35 2.15 2.16 2.09

Table 6.4: Average properties for the three bottlenecks in the parking-lot scenario.

New Reno New protocol
Flow #0 #1 #0 #1
tcp throughput (Mbit/s) 0.11 1.49 0.12 1.48
tcp window (packets) 4.49 13.05 2.94 7.06

std. dev. 2.01 3.57 0.75 1.26
Forward delay average (ms) 323.05 91.29 181.30 44.63

std. dev. (ms) 46.30 26.29 23.59 12.49

Table 6.5: Average properties for the flows, in the parking-lot scenario. Flow #0 is
the long flow, flow #1 is one of the short flows. The values for flow #2 and #3,
and are omitted in this table.

to mark a packet becomes much more predictable, since it does not depend on the
unknown window size of the corresponding flow.

The proposed marking scheme uses a single parameter, q0, per link. The value
should be on the same order as the expected value of the bandwidth-delay product
of flows using the link. We believe tuning of this parameter should be fairly easy.
Larger values results in a larger equilibrium queue size and a more stable system,
while smaller values result in a smaller equilibrium queue size. For small values
of q0, the system is unstable, but in our simulation, this instability corresponds
to small oscillations of the queue size and queue underflow, which indicates that
the penalty for choosing a too small q0 is reduced link utilization, not large queue
oscillations.

The proposed protocol has been implemented in ns2, and simulated over a
single link topology, and over a “parking-lot” topology with several bottlenecks.
The simulations show that the proposed protocol maintains full utilization and
small queueing delays. Furthermore, each flow gets a share of capacity close to
what the flows would get if they were all using tcp New Reno.

Further work

The development of the new congestion control protocol in this chapter is not
complete. Some interesting problems are:

Aggregation Investigate the equilibrium and dynamical properties when a large
number of flows share a bottleneck.
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6. A new congestion control protocol

Slow start In tcp New Reno, the first transition from the slow start state to
congestion avoidance state happens after the first packet loss. If packet losses
are eliminated, this transition must be based on some other signal. We need
a slow-start like mechanism that can grow the window size quickly when
the network is uncongested, and, based on received packet marks, switch to
congestion avoidance before the bottleneck queue grows large.

Traffic shaping The sender could use some basic traffic shaping, e.g., keep a min-
imum inter-packet interval corresponding to half the estimated rtt, divided
by the current window size in packets. The effect on both the inner-loop,
in particular for flows with heterogeneous rtts, and the outer-loop, needs
further investigation.

Wireless links Investigate the behavior over wireless links, characterized by time
varying capacity, random delays, and non-congestion packet losses.
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Chapter 7

Cross-layer radio network feedback

W
ired links are characterized by a small loss rate, short constant propa-
gation delay, and constant (and often high) capacity. As described in
Sec. 2.7, wireless links differ not only in the average of these character-

istics, but also in that all of the delay, loss rate, and capacity, are time varying.
To some degree, the link-layer design enables tradeoffs between these characteris-
tics, e.g., introducing link-layer retransmissions reduces the loss rate, at the cost of
larger and more varying delays.

In this chapter, we focus on handling the capacity variation when using tcp/ip
over the cellular telephony system. Standard tcp adapts quite slowly to capacity
variation, and in order to get high utilization of available capacity, it is necessary
to use a large buffer in front of the radio link. Large rtts, which are common in
these systems, also hurts performance, in particular for short flows.

To improve performance, we consider cross layer signalling from the link layer
at the radio link, to the transport layer of the tcp sender. In this chapter, we
consider file transfers in the down-link, i.e., from a server in the Internet to the
mobile terminal. Sec. 7.1 gives an overview of the High-Speed Downlink Packet
Access (hsdpa). The system architecture, with a proxy and cross-layer signalling,
is described in Sec. 7.2. The control structure, with feedforward of the channel
capacity and feedback of the rnc queue size, is described in Sec. 7.3. In Sec.7.4,
we prove that the proposed control mechanisms give a stable system. In Sec. 7.5,
we present simulations studies, for both a dedicated channel, and a shared hsdpa
channel. We also compare the performance gain to what one would get with other
widely known proposals for improved tcp over wireless, Snoop and Eifel. Finally,
in Sec. 7.6, we discuss the results and the implications for the tradeoff between
throughput and delay.
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7.1 High-speed downlink packet access

The High-Speed Downlink Packet Access (hsdpa) is an evolution of the third gen-
eration cellular network specified by the 3gpp [1, 2]. hsdpa allows theoretical down-
link peak data rates of 14.4 Mbit/s, compared with 2 Mbit/s of umts (Universal
Mobile Telecommunications Service).

In hsdpa three new channel types have been defined: the High-Speed Downlink
Shared Channel (hs-dsch), the High-Speed Shared Control Channel (hs-scch),
and the High-Speed Dedicated Physical Control Channel (hs-dpcch). hs-dsch is
the transport channel used to carry users’ data. Its resources can be shared among
all active hsdpa users in the cell. hs-dsch is mapped onto a pool of physical chan-
nels denominated High-Speed Physical Downlink Shared Channels (hs-pdschs),
which are multiplexed both in time and in code. Time is handled in Transmission
Time Intervals (ttis) of 2 ms and the code uses a constant spreading factor of 16,
with a maximum of 15 for hs-pdschs. These channels may be all assigned to one
terminal during the tti, or may be split between several users. hs-scch is a down-
link signalling channel used to carry information between the base station and the
terminal before the beginning of each scheduled tti. hs-dpcch is an uplink low
bandwidth signalling channel used to carry positive or negative acknowledgments
and channel quality indicator, which provides information related to the wireless
link bandwidth.

The main features introduced by hsdpa concern the use of an Adaptive Mod-
ulation and Coding (amc) scheme, of a fast Hybrid-Automatic Repeat reQuest
(harq) mechanism, and of a fast scheduling.

The scheduler determines the terminal (or terminals) to which the hs-dsch
should transmit and, together with amc, the data rate to be used. The schedul-
ing algorithms are Round Robin, which schedules users with a first-in first-out
approach, Maximum Carrier to Interference (Max C/I), which schedules only users
that are experiencing the Max C/I during that tti, and Proportional Fair, which
provides a trade-off mechanism between Round Robin and Max C/I. The Round
Robin algorithm involves high fairness among all users, but it may cause a reduc-
tion of the overall system throughput since users may be served even when they
are experiencing bad channel conditions. On the other hand, Max C/I provides the
maximum overall throughput for the system but it causes unfairness among users,
penalizing those located at the cell edge.

When used for ip transport, the hsdpa system appears as a link characterized
by time-varying capacity, and random delays.

7.2 Architecture

Consider the transfer of a file, from a server on the Internet, to a mobile terminal
attached via an operator’s radio access network. Within the operator’s network,
there are two special nodes: A Radio Network Controller (rnc), which among other
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Control structure

rnc Proxy

rnf messageVariable bandwidth

tcp tcp

Figure 7.1: Radio network feedback architecture. The mobile terminal on the left
downloads a file from the server on the right, via the proxy. During the transfer,
the rnc generates cross-layer rnf messages including information about the current
capacity over the radio link, and the current rnc queue length. The proxy uses this
information to adjust its window size.

things is responsible for allocating bandwidth to user connections, and a proxy,
which acts as a gateway between the operator’s network and the Internet. The
endpoints use standard tcp to communicate with the proxy. The proxy, on the
other hand, adapts its sending rate towards the terminal using a custom control
algorithm, which is aided by extra information provided by the rnc. We make the
reasonable assumptions that the bottleneck for the connection is the radio channel,
and that the operator’s network, between proxy and rnc, does not suffer congestion.

The architecture is illustrated in Figure 7.1, where two tcp connections have
been established: one between the terminal and the proxy and one between the
proxy and the server. The rnc sends Radio Network Feedback (rnf) messages to
the proxy, including information about the current bandwidth allocation and the
queue length in the rnc. The rnf messages are sent every time the bandwidth
changes, and also periodically with a relatively long period time, e.g., one second.

We will compare this system to the nominal setup, in which there is a direct
tcp connection between the terminal and the server.

We use the following notation. The time-varying bandwidth of the radio link is
c. The roundtrip propagation delay, excluding queueing at the rnc, is denoted τ ,
and the “pipe size”, or bandwidth-delay product, is cτ . The queue length at the
rnc is denoted q. The current window size at the proxy is denoted w.

7.3 Control structure

The objective is to achieve a high utilization of the radio link and maintain the rnc
queue close to a reasonably small reference value qref, by controlling the sending
rate of the proxy. Like in standard tcp, we use a window-based algorithm, but
unlike standard tcp, we take advantage of explicit information provided by the
rnc.

The control signal is the non-negative window size w, which indirectly deter-
mines the sending rate. The network provides the proxy controller with information
about the current capacity and current queue size. The control structure, with feed-
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Proxy
controller

w 3G
network

q

c
qref

Figure 7.2: Control structure. The controller uses cross-layer signalling: Feedforward
of the available radio link bandwidth c, and feedback of the rnc queue length q.
Note that both the rnc and the proxy belong to the operator’s administrative
domain.

forward of radio bandwidth c, and feedback of queue length q, is shown in Figure 7.2.
When the available bandwidth over the radio channel is changed, the rnc sends

an rnf message to the proxy to inform it about the new bandwidth. For a ded-
icated channel, the capacity switches between discrete values, i.e., the capacity
signal is piecewise constant. The generation of the bandwidth update messages is
event-triggered. For a shared hsdpa channel, the allocation of capacity is more
complicated and is depends on several random factors, such as the behavior and
movement of other users. Event-triggered generation of bandwidth update messages
could be based on a change-detection algorithm running at the rnc. For the current
work, however, the bandwidth update messages for the hsdpa channel is based on
regular sampling, where the transmitted value is simply the average capacity during
the previous sampling period.

When the controller receives a bandwidth update message, it resets the window
size to a new value,

w = ĉτ̂ + qref (7.1)

Here τ̂ is an estimate of the propagation delay τ , and ĉ is the new capacity from
the rnc’s message.

When the interval between bandwidth updates is long, i.e., in the dedicated
channel scenario, the rnc periodically sends rnf messages with the current queue
length. The controller compares this feedback information to the reference value
and adjusts its window,

wj+1 = wj + β (qref − qj+1) (7.2)

The feedback loop uses a quite long sampling time, on the order of one second, and
it is designed to compensate for the bias caused by a feedforward controller based
on uncertain information. On shorter time scales, the transmission window is fixed,
and transmission is governed by the usual ack clock.
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7.4 Stability analysis

Feedforward control

For the dynamics of the queue, subject to the ack-clock inner-loop, we use the
joint link model from Chapter 3,

q̇(t) =
w(t− τ)

τ + q(t− τ)/c + ẇ(t)− γc

As usual, we also have a non-negativity constraint. The above equation is valid only
when either q(t) > 0 or the right hand side is non-negative; otherwise, q̇(t) = 0. We
consider the case of γ close to 1, i.e., a small amount of cross-traffic.

If we substitute the feed-forward controller (7.1), this gives

q̇(t) =
ĉτ̂ + qref

τ + q(t− τ)/c − γc

This dynamical system is the same as the one studied in Chapter 4. By Theorem 4.2,
the system is globally asymptotically stable, in the sense that for any initial state,
if c is kept constant, then q(t)→ q∗ as t→∞, where q∗ is the equilibrium:

q∗ = max

(
0,
qref
γ

+
ĉτ̂

γ
− cτ

)

Furthermore, by Prop. 4.5, the convergence time is bounded by 3.4(τ + q∗/c).
We also see the effect of uncertainty in γ and in the estimates ĉ and τ̂ : we have a
bias

q∗ − qref =

(
1

γ
− 1

)
qref +

ĉτ̂

γ
− cτ

Feedback control

We now close the loop, using queue length samples. The primary objective of the
feedback control is to cancel the bias that results when using feedforward control
from estimates ĉ and τ̂ that are uncertain, or when γ < 1. A natural approach is
to use an integrating controller, and the feedback control law

ẇ(t) = −k
(
q(t− τ)− qref

)
(7.3)

where the gain k is a control parameter. For simplicity, we use the roundtrip prop-
agation delay τ here, even though the one-way signalling delay from rnc to the
proxy may be significantly shorter than τ .

With this control law, the closed loop system is described by the equations





q̇(t) =
w(t− τ)

τ + q(t− τ)/c − k
(
q(t− τ)− qref

)
− γc

ẇ(t) = −k
(
q(t− τ)− qref

) (7.4)
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Since q and w are non-negative, these equations are valid only in the interior of the
domain q, w ≥ 0. On the border w = 0 we have instead

ẇ(t) = max
(
0,−k

(
q(t− τ)− qref

))

and similarly for q̇ on the line q = 0.
Equations (7.4) have an equilibrium point given by q∗ = qref and w∗ = γ(cτ +

qref). The rtt in stationarity is τ∗ = τ + qref/c. Let q̃(t) = q(t) − q∗ and w̃(t) =
w(t)− w∗. With this notation, the system can be written as





˙̃q(t) =
w̃(t− τ)− γq̃(t− τ)
τ∗ + q̃(t− τ)/c − kq̃(t− τ)

˙̃w(t) = −kq̃(t− τ)

Let us first address local stability. Linearization of the system around the equi-
librium gives





˙̃q(t) = −
(
k +

γ

τ∗

)
q̃(t− τ) +

w̃(t− τ)
τ∗

˙̃w(t) = −kq̃(t− τ)
Then Theorem 4.18 implies that the system is stable provided that

τk ≤ π

2

qref + (1− 2γ/π)cτ

qref + (1 + 4/π)cτ

τk(cτ − qref) ≤ γcτ

As one might have expected, the stability condition is in the form of a bound on
τk, the product of the system delay and gain. Furthermore, the bound depends on
γ and the fraction qref/(cτ). And finally, we can conclude that the system is stable
for all sufficiently small k, in particular, τk ≤ min(γ, 0.25) is sufficient.

Next, we address global stability. We need to simplify the model slightly. We
have seen in Sec. 3.5 that the alternative model for the queue dynamics, without
signalling delays, is a reasonable approximation. So we omit those delays. We also
omit the feedback delay in the outer-loop; this is in general not a good approxima-
tion, but it can be justified in the case that the signalling delay from rnc to proxy
is small in comparison to the system dynamics. With these simplifications, we get
the non-linear system





˙̃q(t) =
w̃(t)− γq̃(t)
τ∗ + q̃(t)/c

− kq̃(t)

˙̃w(t) = −kq̃(t)

Consider the Lyapunov function

V (q̃, w̃) =

(
τ∗

2
+

q̃

3c

)
q̃2 +

1

2k
w̃2
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Note that
τ∗

2
+

q̃

3c
=
τ + qref/c

2
+
q − qref

3c
≥ τ

2
+
qref
6c

> 0

so that V is positive definite on the domain q̃ ≥ −q∗ = −qref and w̃ ≥ −w∗ =
−(cτ + qref). We get

V̇ (q̃, w̃) = q̃2
(
τ∗ +

q̃

c

)
˙̃q +

1

k
w̃ ˙̃w

= −q̃2
(
γ + k(τ∗ + q̃/c)

)

≤ −q̃2 (γ + kτ)

We also need to consider the case of active non-negativity constraints on the borders.
The constraint on w is active when w̃ = −w∗ and q̃ > 0. In this case ẇ = 0 and

˙̃q =
−w∗ − γq̃
τ∗ + q̃/c

− kq̃ < 0

and it follows that V̇ < 0. The constraint on q is active when q̃ = −qref and

w̃ + γqref
τ

+ kqref < 0

This implies that w̃ < 0. Furthermore ˙̃q = 0 and ˙̃w = kqref > 0. It follows that
V̇ < 0 also in this case.

By LaSalle’s theorem, we can conclude that for any initial condition w̃(0) ≥ −w∗

and w̃(0) ≥ −q∗, the trajectory converges to some invariant set of the line q̃ = 0,
and the only such set is the origin. .

Sampled feedback

In a practical implementation, the continuous signal q(t) will not be available at
the proxy; the rnc has to sample the signal and send the sample values as rnf
messages to the proxy. Recall that the objective of the feedback loop is to eliminate
the bias caused by uncertainty in the estimates ĉ and τ̂ . If we select a sampling
time that is large in comparison to the rtt, the following simple feedback law,
corresponding to the choice β = 1 in Eq. (7.2), eliminates the bias rapidly, and
within two sampling periods in the case γ = 1.

wk+1 = wk + (qref − qk+1)

If the sampling time is large compared to the rtt, then the sampling time is also
a couple of times longer than the convergence time constant. We get

qj+1 ≈
wj
γ
− cτ Convergence

wj+1 = wj + qref − qj+1 ≈ cτ + qref −
(

1

γ
− 1

)
wj Feedback
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If we put w∗ = γ(cτ + qref), this can be rearranged as

qj+1 − qref ≈
wj − w∗

γ

wj+1 − w∗ = −
(

1

γ
− 1

)
(wj − w∗)

or

wj − w∗ ≈
(

1− 1

γ

)j
(w0 − w∗)

qj+1 − qref ≈
1

γ

(
1− 1

γ

)j
(w0 − w∗)

In particular, if w0 = ĉτ̂ + qref, as set by the feedforward controller, then

q2 ≈ qref −
1

γ

(
1

γ
− 1

)
(ĉτ̂ + qref − γ(cτ + qref))

= qref −
1

γ

(
1

γ
− 1

)
(ĉτ̂ − γcτ)−

(
1

γ
− 1

)2

qref

We see that qj and wj converge as powers of the small number (1/γ − 1). When
γ = 1, this means that q converges to qref in two samples.

7.5 Simulation studies

To quantify how the rnf proxy improves performance, compared to end-to-end tcp
Reno, we have performed a series of simulations studies.

• Our first study considers a dedicated channel model, where the channel is
subject to stepwise changes to the capacity, and to temporary outages. Such
channel variations are typical for channels in umts.

• The second simulation study considers the shared download channel in hsdpa.
The capacity given to each user is decided by the Radio Network Controller,
based on the varying system load and the radio conditions for individual users.
For this study, the capacity variation is based on data, provided by Ericsson,
from detailed radio-level simulations.

• The third simulation study also focuses on hsdpa. The objective here was
not just to compare performance to tcp Reno, but to compare the perfor-
mance gain to the gain from other proposed mechanisms in the literature, in
particular Snoop and Eifel.
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Figure 7.3: Resulting throughput for the dedicated channel scenario. The dotted line
is the time-varying bandwidth to the terminal, the dashed line is the throughput for
tcp Reno, and the solid line is the throughput using the proposed rnf controller.

Dedicated channel

The dedicated channel is characterized by a bandwidth that varies between discrete
values, depending on the current radio conditions. In this simulation, we use a link
with a nominal bandwidth of 1 Mbit/s, which is subject to an outage of 6 s, starting
at time 5 s, and an excellent radio environment where the bandwidth is increased to
1.5 Mbit/s, for 5 s starting at time 20 s. The roundtrip propagation delay between
proxy and terminal is 223 ms. The packet size is 1500 bytes, and the rnc buffer
size is 30 packets, corresponding to the bandwidth-delay product during the time
interval with the largest bandwidth.

Figure 7.3 shows the resulting throughput as a function of time, and Fig. 7.4
shows the evolution of the rnc queue. In Fig. 7.3, note that the file download is
completed 2 s earlier, which is a modest improvement of user response time. In
Fig. 7.4, we see that the queue stays small, with small fluctuations. Due to errors in
the rtt estimate, the feedforward from the bandwidth changes results in a queue
size slightly different from the target value qref = 6, but this error is corrected by
the feedback from the actual queue size.

The ns2 implementation of the rnf proxy, which is used in this and the other
simulation scenarios, was developed as part of the Master of Science thesis [90].
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Figure 7.4: Resulting rnc queue size for the dedicated channel scenario. The dashed
line is the queue size with tcp Reno, and the solid line is the queue size with the
rnf controller. With rnf, the queue stays small, with small fluctuations.

HSDPA shared channel scenario

To simulate a realistic scenario of how the rate fluctuates for an end-user it is
important that all the aspects which are impacting the end-user rate are considered.
As described in Sec. 7.1 the rate fluctuates due to variations in radio quality and
cell load. The load variation in number of users depends on statistical variations in
call originations but also due to mobility when users move between cells.

We use a two stage simulation: First, the radio system is simulated in a fairly
loaded scenario, where users move around and download files using tcp/ip. From
this radio level simulation, we extract the available bandwidth per user in one of the
cells, which is a time varying signal. The second stage of the simulation implements
a link with this particular bandwidth variation in the ns2 network simulator [94],
for evaluation of the rnf mechanism.

The setup for the radio layer simulation was as follows: 7 sites and 21 cells,
1500 m site-to-site distance, realistic radio and fading models, and end-users moving
at 1 m/s while downloading files of 50 Kbyte via tcp/ip. The output result from the
radio layer simulations, the end-user rate level and fluctuation, is of course different
depending on how high system load that is used in the simulation. The result also
depends on the services that are used. However, we believe that on the time scales
that matter for tcp-traffic, the character of the bandwidth variations are similar
for a wide range of load levels and services.
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Figure 7.5: Resulting throughput for the hsdpa scenario. The dotted line is the
time-varying bandwidth to the terminal, the dashed line is the throughput for tcp
Reno, and the solid line is the throughput using the proposed rnf controller.

Since the bandwidth varies continuously, there are no distinct stepwise changes
of the bandwidth. In this scenario, we base the bandwidth feedforward on regular
sampling instead of the event-based signalling in the previous scenario. We use a
sample time of 0.5 s, and for each sample, the rnc calculates the averaged band-
width available to the user during the previous 0.5 s interval. The queue feedback
is omitted—it was intended to operate on a time scale faster than the feedforward
control and slower than the rtt, and is not applicable here.

Figure 7.5 shows the resulting throughput as a function of time, and Fig. 7.6
shows the evolution of the rnc queue. The results are similar to the case of a
dedicated channel: The rnc queue stays small, and the total download time is a
few seconds shorter than with tcp Reno.

Comparison to Eifel and Snoop

Finally, we compare the performance gain with the rnf proxy, to the performance
gain with Eifel and Snoop.

In these simulations, the radio channel is modelled using the eurane extension
to ns2, developed by Ericsson Netherlands and other partners within the European
5th framework project seacorn [98, 94]. The simulation scenario considers the
connection to a user located 450 m from a base station. There are 29 other users
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Figure 7.6: Resulting rnc queue size for the hsdpa scenario. The dashed line is
the queue size with tcp Reno, and the solid line is the queue size with the rnf
controller. Like in the dedicated channel scenario, the rnf controller results in a
small queue.

competing for the channel, with distance to the base station varying from 50 m to
750 m. User mobility follows the standard “Pedestrian A” scenario, with pedestrian
users, walking with a velocity of 3 Km/h. The rnc uses the Max C/I scheduler,
and the sample period for the rnf capacity feedback is 250 ms. The path from web
server to the base station has a bottleneck of 10 Mbit/s outside of the operator’s
network, and a total one-way delay of 75 ms. qref is set to 36 packet, and the block
error target in the cellular system is 0.1. More details on these simulations are
provided in [42, 50].

We compare the following combination of protocols:

• End-to-end tcp Reno.

• End-to-end tcp Reno, using the Eifel at the sending web server, and a Snoop
agent at the base station.

• Split-connection using a http proxy. The proxy is located between the op-
erator’s network, and the server. There are two tcp Reno connections, one
from the web server to the proxy, and another from the proxy to the user’s
terminal.
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Figure 7.7: The link bandwidth for the channel. Pedestrian A scenario, velocity
3 km/h, distance from base station 450 m.

• Split-connection using the rnf proxy. The connection between web server
and proxy uses tcp Reno. The proxy takes advantage of the capacity feedback
from the rnc, once every 250 ms, to adjusts its sending window. The receiving
terminal need not be aware of this.

• Split-connection with the rnf proxy, combined with Eifel and a Snoop agent
at the base station.

In Fig 7.7, we see the time varying capacity of the channel to the user’s terminal.
In 7.8, we see the resulting throughput for the case of end-to-end tcp Reno, and
with a http Proxy. The proxy gives a large gain, which is due to the shorter round-
trip time. In this simulation, the one-way delay from the tcp sender to the base
station is reduced from to one third, from 75 ms to 25 ms. In Fig. 7.9, we have
added the Eifel-protocol at the web-server, and a Snoop agent at the base station.
We see a gain in performance, but the throughput is still not close too the available
capacity.

The results with the rnf proxy is shown in Fig. 7.10, where it is also compared
to a plain http proxy. Finally, in Fig. 7.11, we combine the rnf proxy with Eifel
and Snoop.

The average throughput for all the scenarios is summarized in 7.1. We see that
using only Eifel and Snoop gives a very modest improvement of the throughput for
this channel. This is not so surprising, since both are designed to address problems
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Figure 7.8: Throughput for end-to-end tcp Reno. The figure shows the throughput
for both end-to-end Reno, and with an intermediate http proxy.
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Figure 7.9: Throughput for end-to-end tcp Reno, together with Snoop and Eifel.
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Figure 7.10: Throughput when using the rnf proxy.
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Figure 7.11: Throughput when using the rnf proxy together with Snoop and Eifel.
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Scenario Throughput (kbit/s) % of capacity
Link bandwidth 1350 100
End-2-end Reno 659 49

with Snoop and Eifel 667 49
http Proxy 1003 74
rnf Proxy 1106 82

with Snoop and Eifel 1137 84

Table 7.1: Average throughput.

with packet losses (Snoop) and outages, which are uncommon due to the link-layer
mechanisms. The reduction in round-trip time with split connection, as seen with
the http proxy, gives a significant improvement in performance. This is improved
further with rnf and, to our surprise, when combining rnf with Snoop and Eifel.

7.6 Tradeoff between throughput and packet delay

One of the objectives of the rnf mechanism is to reduce the user response time,
which also corresponds to higher link utilization and fewer queue underflows. An
alternative way to increase link utilization is to simply increase the rnc buffer
size. This is illustrated in Fig. 7.12, which shows the response time as a function
of the queue size, for our second simulation scenario, Sec 7.5, based on radio-layer
simulations of hsdpa.

However, when the rnc buffer size is increased, queue delay and jitter also
grows, as shown in Fig. 7.13. We see that with tcp Reno, we have a difficult trade-
off between high utilization and short packet delay, while the rnf solution achieves
high utilization with a fairly small buffer.

A large rnc queue is problematic for several reasons. At hand-over to a different
rnc or to a different system, e.g., a Wireless Local Area Network (wlan), a large
rnc queue means that there is more data that has to be transferred or discarded,
making a smooth hand-over more difficult. When a user cancels a download, e.g.,
by clicking the browser stop button and then selecting a different link, all data in
the rnc queue will still be transmitted over the radio link, and discarded by the
user terminal. In this way, a large rnc queue increases the response time to the
user’s browsing, and wastes radio resources. Furthermore, higher queueing delay
and more jitter implies degraded quality for any real-time traffic sharing the link.

Real-time services provided by the operator, such as voice, need not suffer from
a large rnc queueing delay, since the operator is in control of the link layer, and
can ensure that this real-time traffic is given priority.

However, no other players have this control. Any third-party real-time service,
such as voice, video, or online games, is restricted to end-to-end solutions: Software
is installed at the communication end points, but modifications or tweaks to the the
network infrastructure are impossible. Therefore, this traffic will most likely share
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Figure 7.12: Total download time, as a function of rnc buffer size. A download
time of 40 s corresponds to almost full utilization of the radio link.

the same rnc queue with web-browsing and downloads.
It is remarkable that by violating the end-to-end principle for one service, web-

browsing, we improve the quality for other services which adhere to the end-to-end
principle.
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Figure 7.13: Average and standard deviation of the one-way packet delay during
the download, as a function of rnc buffer size. With tcp Reno, both average delay
and the delay jitter increases with the buffer size.
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Chapter 8

Conclusions

Through the chapters of this thesis, we have developed and validated a new model
for the window-based packet transmission which is the inner-loop of all window-
based congestion control protocols. We have analyzed the properties of this system,
and a couple of different outer-loops, in the form of window update rules. Finally,
we have designed two new outer-loops, one aimed for general congestion control,
and one specialized to cellular systems where some extra cross-layer signalling is
possible. So what can we learn about modeling, analysis, and design, of window-
based congestion control?

8.1 Modeling

The first lesson is that cross-traffic matters. Consider a bottleneck link shared by
congestion controlled traffic and some cross-traffic that is not subject to congestion
control. The cross-traffic does not merely reduce the capacity available for the
congestion controlled traffic, but the dynamical properties of the congestion control
are also affected. For the inner-loop, increasing the cross-traffic increases the static
gain between window size and queue size, and it slows down queue convergence.

To give an idea why we have this behavior, let us consider a single fully utilized
link and a single flow. Assume the queue is in equilibrium, with a size of 20 packets.
We then increase the window size by 10 packets. This results in a burst of packets,
and the queue grows instantly to 30 packets. If there is no cross-traffic, this is all
that happens: Since the link is already serving the flow at full capacity, there is
no change in the stream of acks, and no further changes in the sending rate. The
queue size of 30 packets is the new equilibrium.

Let us now assume that the link is shared with constant rate cross-traffic, cor-
responding to one half of the capacity. Before the window change, our flow gets the
remaining half. Of the queued packets, 10 belongs to our flow and 10 belongs to the
cross-traffic. With the increased window size, the first result is still that the queue
grows to 30 packets. But this means that now 2/3 of the queued packets belong
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to our flow. Via the ack-clock, this implies a new higher sending rate, at 2/3 of
capacity. Since the cross-traffic keeps sending at half of the capacity, the total traf-
fic exceeds capacity. The queue grows, until it approaches the new equilibrium of
40 packets. At the new equilibrium, our flow and the cross-traffic have 20 queued
packets each, and the sending rate of our flow have returned to half of the capacity.

The model developed in Chapter 3 unifies two previous models in the literature:
The integrator model, which is accurate for a high level of cross-traffic, and the static
model, which is accurate for a low level of cross-traffic. The new model describes
the dynamics accurately for any level of cross-traffic, and is validated using ns2

simulations.
Since the dynamics of the inner-loop, including important properties such as the

gain and the time constant, depends on the amount of cross-traffic, it is important
to take the cross-traffic into account when designing the window update rules in
the outer-loop. We need to construct congestion control so that it either works for
arbitrary cross-traffic, or so that it works for some known ranges, e.g., for cross-
traffic less than 40% of capacity. The new model enables such analysis.

8.2 Analysis

Fluid-flow modeling of queueing systems results in differential equations with state
constraints, because the amount of queued data is necessarily non-negative1. These
differential equations have discontinuities at the constraint boundary, which violate
the Lipschitz condition in standard proofs of existence and uniqueness of solutions.
To prove rigorously that such models are well-posed, we have stated and proved
existence and uniqueness theorems for differential equations of this form.

Stability results for congestion control protocols are challenging. Ideally, one
would like to prove that the system is globally asymptotically stable for arbitrary
topologies and arbitrary delays. In our analysis of the inner-loop in window-based
congestion control, in Chapter 4, we take a pragmatic approach, and address po-
tential sources of instability separately.

Delay: We have proved that a single link, single source topology is globally stable,
for arbitrary delays.

Aggregation: We have proved that a single link, with many sources, each source
having its own propagation delay, is locally stable.

Topology: For an arbitrary topology, with no signalling delays, we have proved
that the system is globally stable.

1Finite buffer sizes are a constraint at the other end of the state space. In the analysis in this
thesis, the differential equations are only constrained below. We have either assumed that buffers
are unlimited, and aimed for controllers that keep the actual queues small, or used a hybrid model
where queue overflow is a discrete event.
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While we lack a fully general stability proof, analysis of these three cases give a
reasonably indication that the system should be stable under most circumstances.
If there is any counter example where the system is unstable, it would probably
exhibit some interesting interaction between delay, aggregation and topology.

In the inner-loop stability analysis, we have stability for all values of the param-
eters. We interpret this as a result of the packet conservation built into the system
by Van Jacobson; the total number of packets in the network is bounded by the
sum of all the window sizes, and the size of each queue is bounded by the sum of
the window sizes of the flows using that queue. To say that window control is sta-
ble means that not only are the queues bounded, but they converge to equilibrium
values.

For congestion control outer-loops, i.e., when including a window update rule
into the model, stability results typically depend on some relation between system
parameters and control parameters. For a protocol to be tunable in practice, those
relations must be reasonably simple. And to make that true, a very clever analysis
may not be sufficient, it also depends on the choice of control and signalling struc-
ture, which are design issues. When designing a protocol, it is highly desirable to
construct it so that it is easy both to analyze and tune.

8.3 Design

We have presented two congestion control designs, one protocol for general end-to-
end congestion control, and one cross-layer mechanism for downloads to a wireless
terminal. For both control designs, reduced queueing is the main improvement
compared to tcp New Reno. This is essential for the quality of real-time applications
sharing the same bottlenecks. It is particularly important in the wireless setting,
since the wireless link to the terminal is usually a bottleneck, and it is shared by
all applications on the terminal.

To get high quality for all applications, when using a wireless network for both
file-sharing and voice calls, like in the emergency response scenario in the introduc-
tion (Sec. 1.1), it is necessary to keep queueing delays small.

A new congestion control protocol

When working on the design of the new congestion control protocol in Chapter 6,
the guiding principles have been to keep queues small, stay close to tcp New Reno
in terms of the other control objectives, including fairness, and to search for control
laws that are simple, both from an analysis point of view, and for practical tuning.

The proposed protocol uses the same signalling structure as other tcp/aqm
designs: An aqm control in routers, which determines a probability used for marking
packets, and a window control at the end points, that reacts to those marks and
updates the window size.

For the packet marking in routers, the mark probability p is a very simple con-
tinuous function of the instantaneous queue size q, with a single tuning parameter
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q0: p = q/(q + q0). For the window control part, the control law rule is also fairly
simple: Additive increase in the absence of congestion, additive decrease in response
to packet marks (which for robustness should be combined with multiplicative de-
crease in response to packet losses). The only tuning parameter in the window
control is the additive increase parameter, usually set to the packet size.

The most striking property of these two control laws is that the system appears
to fail gracefully when badly tuned. If the parameter q0 is too large, the equilibrium
queue size grows, but only as O(

√
q0). And if q0 is too small, the system becomes

unstable, but the simulations indicate that this instability does not lead to any
large queue oscillations. Instead, there will be small oscillations close to the queue
being empty. The practical effect will be reduced utilization, but not large delays
and delay jitter.

The fundamental difference from common tcp/aqm schemes is that the feed-
back from the network is applied additively to the window sizes. I believe this is a
promising approach for making congestion controlled traffic, including peer-to-peer
file-sharing of large files, coexist nicely with real-time traffic.

Radio network feedback

In the setting in Chapter 7, we have cross-layer signalling from the Radio Network
Controller (rnc) to the proxy which is the tcp sender. The signalling includes
information about the capacity of the radio channel, and the queue size in the rnc.

The controller design uses well known principles: Feedforward, to adjust to band-
width changes, and feedback, to control the rnc queue size in spite of uncertainties
in the available bandwidth and delay information. The actual control laws are very
simple; more advanced controllers could be designed to improve performance, or
to handle additional disturbances in the system. One interesting extension is to
introduce an outer control loop that selects a suitable value for qref.

Using ns2 simulations, and capacity data from detailed radio-layer simulation,
the performance of the proposed controller was compared to tcp New Reno. We
see improvements in user download time, link utilization, and packet delay. In
terms of download time and throughput, the new controller and proxy gives modest
improvements, on the order of 10%, when compared to tcp New Reno sender at
the same location in the network.

The new controller makes a larger difference when buffering is taken into ac-
count. With tcp New Reno, there is a trade-off between throughput and delay,
and this trade-off seems to be more difficult for wireless systems like hsdpa with
large capacity variations. Throughput is gradually improved when the rnc buffer
is made large. A large rnc buffer is problematic for both user response time, and
for hand-over. With the new proxy and controller, there is no need for large buffers
at the rnc; it is possible to get both high throughput and small delay and delay
jitter.
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8.4 The future

What the Internet traffic mix will be like in the future is hard to predict. Maybe
real-time traffic will remain a small fraction, less than 10%, of the Internet traffic?
Or maybe real-time video conferencing (which certainly is more environmentally
friendly than international meetings with the corresponding long-distance travel-
ling) will be the next killer application? Or some other unforeseen real-time ap-
plication that needs much higher capacity than today’s voice over ip and online
games.

The traffic mix can certainly be of different character in different parts of the
Internet. When designing congestion control protocols, it is therefore important to
take into account the possibility of a large proportion of the traffic being real-time
traffic.

One prediction that it seems quite safe to make, is that we will see more and
more devices and users that are connected to the Internet via wireless links. As
devices get cheaper, the laptops and mobile phones today, carried by humans, will be
joined by wireless sensors for various industrial applications as well as environmental
monitoring. The wireless Internet today is a mostly wired backbone, with a single
wireless hop from an base station or access point to the wireless terminal. In coming
years, we will see some form of multi-hop networks and ad-hoc networks in wide
use, e.g., following the roll out of the xo laptops for school children in developing
countries.

Will the future Internet use window-based congestion control? I think so. The
basic idea, to send a new packet when you know that some previous packet has
arrived, is intuitively very sound, and as we have seen in this thesis, it also provides
nice stability properties for the network.
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Mutual information

Assume that p is a stochastic variable in the interval 0 ≤ p ≤ 1, with a probability
density function fp. Let y be a mark bit, which is one with probability p, and zero
with probability 1− p. Then the joint probability distribution for p and y is

{
fyp(0, p) = fp(p) (1− p)
fyp(1, p) = fp(p) p

The mutual information between y and p is defined by

I(y, p) =
∑

y∈{0,1}

∫ 1

0

fyp(y, p) lg
fyp(y, p)

fy(y)fp(p)
dp (A.1)

where lg denotes logarithm to base 2. This quantity gives the amount of information
we get about p by measuring y (or vice versa).

Proposition A.1 The mutual information can be expressed as

I(y, p) = h(E[p])− E[h(p)]

where h(p) gives the entropy a binary source with a fixed probability p,

h(p) = −(p lg p+ (1− p) lg(1− p))

Proof : In the expression for I(y, p), we need the marginal probability fy(y). We
get

fy(0) =

∫ 1

0

fp(p) (1− p) dp = 1− E[p]

fy(1) =

∫ 1

0

fp(p) pdp = E[p]
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Substituting the various probability distribution functions into (A.1) gives

I(y, p) =

∫ 1

0

fp(p) (1− p) lg
fp(p) (1− p)

(1− E[p]) fp(p)
dp+

∫ 1

0

fp(p) p lg
fp(p) p

E[p] fp(p)
dp

= E

[
(1− p) lg

1− p
1− E[p]

+ p lg
p

E[p]

]

= E
[
(1− p) lg(1− p) + p lg p

]
− E[1− p] lg(1− E[p])− E[p] lg(E[p])

= −E[h(p)] + h(E[p])

�

Proposition A.2 Assume that p is uniformly distributed on the interval [0,M ].
Then

I(y, p) =
M

2
−
(

1− M

2

)
lg

(
1− M

2

)
− (1−M)2

2M
lg(1−M)− 1

2 log 2

In particular, M = 1 gives I(y, p) = 1 − 1/(2 log 2) ≈ 0.27, and M small gives
I(y, p) = (1/2− 1/(4 log 2))M +O(M2) ≈ 0.14M +O(M2).

Proof : The probability distribution for p is

fp(p) =

{
1/M 0 ≤ p ≤M
0 otherwise

with expected value E[p] = M/2. Then

E[p lg p] =
1

M log 2

∫ M

0

p log pdp

=
M

2
lgM − M

4 log 2

E[(1− p) lg(1− p)] =
1

M log 2

∫ M

0

(1− p) log(1− p) dp

= − (1−M)2

2M
lg(1−M) +

M − 2

4 log 2
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where log is the usual logarithm, to base e. Together, we get

I(y, p) = h(E[p])− E[h(p)] = h(M/2) + E[p lg p] + E[(1− p) lg(1− p)

= −M
2

lg(M/2)−
(

1− M

2

)
lg

(
1− M

2

)

+
M

2
lgM − M

4 log 2

− (1−M)2

2M
lg(1−M) +

M − 2

4 log 2

=
M

2
−
(

1− M

2

)
lg

(
1− M

2

)
− (1−M)2

2M
lg(1−M)− 1

2 log 2

Putting M = 1 gives I(y, p) = 1/2 − 1/2 lg(1/2) − 1/(2 log 2) = 1 − 1/(2 log 2).
Taylor expansion around M = 0 gives

I(y, p) =
M

2
+

1

log 2

{
−1

4
M +

1

24
M2 +

1

48
M3 +O(M4)

}

The first non-zero term is (1/2− 1/(4 log 2))M . �
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Appendix B

Lambert’s function

In some of the chapters, we use Lambert’s W function [34], defined as the inverse of
z 7→ zez. The branches are enumerated as Wk(z), where k ∈ Z. There are two real
branches. On the real axis, W0(x) is defined for x ≥ 1/e, and W−1(x) is defined for
1/e ≤ x < 0. These are illustrated in Fig. B.1.

Equations involving linear and exponential terms can be solved in terms of
Lambert’s function. E.g., the equation

Ax+ ex = B

with A 6= 0 can be rewritten as

(
B

A
− x
)
e(

B
A
−x) =

1

A
e

B
A

with solutions

x =
B

A
−Wk

(
1

A
e

B
A

)
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B. Lambert’s function
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Figure B.1: The two real branches of Lambert’s W function. W0(x) (solid) is defined
for all x ≥ −1/e, while W−1(x) (dotted) is defined on the interval −1/e ≤ x < 0.
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