Abstract

Subquadratic divide-and-conquer algorithms for computing the greatest common divisor have been studied for a couple of decades. The integer case has been notoriously difficult, with the need for "backup steps" in various forms. One central idea is the "half-gcd" operation, HGCD. HGCD takes two n-bit numbers as inputs, and outputs two numbers of size $\approx n/2$ with the same GCD, together with a transformation matrix with elements also of size $\approx n/2$. This talk explains why backup steps are necessary for algorithms based directly on the quotient sequence, and proposes a robustness criterion that is used to construct a simpler HGCD algorithm without any backup steps.

$Subquadratic \ {\rm GCD}$

Niels Möller

May 15, 2008

Outline

Background

Algorithm comparison The half-gcd (HGCD) operation Subquadratic HGCD

Quotient based HGCD

Jebelean's criterion Why backup steps?

Robust HGCD

Simple subquadratic HGCD Difference-based HGCD

Base case HGCD

Further work

Background

History

- ▶ 300 BC (or even earlier): Euclid's algorithm.
- ▶ 1938: Lehmer's algorithm.
- ▶ 1961: Binary GCD described by Stein.
- ▶ 1994, 1995: Sorensson, Weber.
- 1970, 1971: Knuth and Schönhage, subquadratic computation of continued fractions.
- ca 1987: Schönhage's "controlled Euclidean descent", unpublished.
- ▶ 2004: Stéhle and Zimmermann, recursive binary GCD.
- 2005–2008: Möller. Left-to-right algorithm. Simpler and slightly faster than earlier algorithms.

Comparison of ${\rm GCD}$ algorithms

Algorithm	Time (ms)	# lines	
mpn_gcd	1440	304	GMP-4.1.4 (Weber)
$\mathtt{mpn}_{\mathtt{rgcd}}$	87	1967	"Classical" Schönhage GCD
mpn_bgcd	93	1348	Rec. bin. (Stehlé/Zimmermann)
$\mathtt{mpn_sgcd}$	100	760	1987 alg. (Schönhage/Weilert)
mpn_ngcd	85	733	New algorithm for $GMP-5$

Comparison of ${\rm GCD}$ algorithms

Algorithm	Time (ms)	# lines	
mpn_gcd	1440	304	GMP-4.1.4 (Weber)
$\mathtt{mpn}_{\mathtt{rgcd}}$	87	1967	"Classical" Schönhage GCD
mpn_bgcd	93	1348	Rec. bin. (Stehlé/Zimmermann)
$\mathtt{mpn_sgcd}$	100	760	1987 alg. (Schönhage/Weilert)
mpn_ngcd	85	733	New algorithm for $GMP-5$

- ▶ Benchmarked on 32-bit AMD, with inputs of 48 000 digits.
- Cross-over around 7 700 digits.

Questions

- Q Where does the complexity come from?
- A Accurate computation of the quotient sequence.
- Q How to avoid that?
- A Stop bothering about quotients.

What is HGCD?

Definition (Reduction)

$$\begin{pmatrix} \mathsf{A} \\ \mathsf{B} \end{pmatrix} = \mathsf{M} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

- Positive integers A, B, α , and β .
- Matrix *M*, non-negative integer elements.
- det M = 1.

What is HGCD?

Definition (Reduction)

$$\begin{pmatrix} \mathsf{A} \\ \mathsf{B} \end{pmatrix} = \mathsf{M} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

- Positive integers A, B, α , and β .
- Matrix *M*, non-negative integer elements.
- det M = 1.

Fact

For any reduction, $GCD(A, B) = GCD(\alpha, \beta)$

What is HGCD?

Definition (Reduction)

$$\begin{pmatrix} \mathsf{A} \\ \mathsf{B} \end{pmatrix} = \mathsf{M} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

- Positive integers A, B, α , and β .
- Matrix *M*, non-negative integer elements.
- det M = 1.

Fact

For any reduction, $GCD(A, B) = GCD(\alpha, \beta)$

Definition (HGCD, "half gcd")

Input: A, B, of size n Output: M, with size of α , β and M elements $\approx n/2$

Main idea of subquadratic HGCD

Asymptotic running time

GCD(A, B)
1 while
$$\#(A, B) >$$
 GCD-THRESHOLD
2 do
3 $n \leftarrow \#(A, B), p \leftarrow \lfloor n/2 \rfloor$
4 $M \leftarrow \text{HGCD}(\lfloor 2^{-p}A \rfloor, \lfloor 2^{-p}B \rfloor)$
5 $(A; B) \leftarrow M^{-1}(A; B)$
6 return GCD-BASE(A, B)

Running times for operations on *n*-bit numbers

Multiplication: $M(n) = O(n \log n \log \log n)$ HGCD: $H(n) = O(M(n) \log n)$ GCD: $G(n) \approx 2H(n)$

Quotient based HGCD

Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence q_j and remainder sequence r_j are defined by

$$r_0 = a \qquad r_1 = b$$

$$q_j = \lfloor r_{j-1}/r_j \rfloor \qquad r_{j+1} = r_{j-1} - q_j r_j$$

Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence q_j and remainder sequence r_j are defined by

$$r_0 = a \qquad r_1 = b$$

$$q_j = \lfloor r_{j-1}/r_j \rfloor \qquad r_{j+1} = r_{j-1} - q_j r_j$$

Fact

$$\begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = M \begin{pmatrix} \mathsf{r}_j \\ \mathsf{r}_{j+1} \end{pmatrix}$$

with

$$M = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_j & 1 \\ 1 & 0 \end{pmatrix}$$

Theorem (Jebelean's criterion)

Let a > b > 0, with remainders r_j and r_{j+1} , and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \underbrace{\begin{pmatrix} u & u' \\ v & v' \end{pmatrix}}_{=M} \begin{pmatrix} r_j \\ r_{j+1} \end{pmatrix}$$

Let p > 0 be arbitrary, $0 \le A', B' < 2^p$, and define

$$\begin{pmatrix} A \\ B \end{pmatrix} = 2^{p} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} A' \\ B' \end{pmatrix}$$
$$\begin{pmatrix} R_{j} \\ R_{j+1} \end{pmatrix} = 2^{p} \begin{pmatrix} r_{j} \\ r_{j+1} \end{pmatrix} + M^{-1} \begin{pmatrix} A' \\ B' \end{pmatrix}$$

For even *j*, the following two statements are equivalent:

(i)
$$r_{j+1} \ge v$$
 and $r_j - r_{j+1} \ge u + u'$

(ii) For any p and any A', B', the jth remainders of A and B are R_i and R_{i+1} . The quotient sequences are the same.

Theorem (Jebelean's simplified criterion)

Let a > b > 0, with remainders r_j , r_{j+1} and r_{j+2} , and

$$\begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = M \begin{pmatrix} \mathsf{r}_j \\ \mathsf{r}_{j+1} \end{pmatrix}$$

Assume that $\#r_{j+2} > \lceil n/2 \rceil$, with n = #a. Let p > 0 be arbitrary, $0 \le A', B' < 2^p$, and define

$$\begin{pmatrix} A \\ B \end{pmatrix} = 2^{p} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} A' \\ B' \end{pmatrix}$$
$$\begin{pmatrix} R_{j} \\ R_{j+1} \end{pmatrix} = 2^{p} \begin{pmatrix} r_{j} \\ r_{j+1} \end{pmatrix} + M^{-1} \begin{pmatrix} A' \\ B' \end{pmatrix}$$

Then the *j*th remainders of A and B are R_j and R_{j+1} . The quotient sequences are the same.

Quotient based HGCD

A generalization of Lehmer's algorithm

Define HGCD(a, b) to return an M satisfying Jebelean's criterion.

Example (Recursive computation)

$$\begin{array}{l} (a;b) = (858\,824;528\,747) \\ M_1 = (13,8;8,5) \\ (c;d) = M_1^{-1}(a;b) = 16\,(4009;194) + (0;15) \\ M_2 = \mathrm{HGCD}(4009,194) = (21,20;1,1) \\ M_2^{-1}(4009;194) = (129;65) \\ M = M_1 \cdot M_2 = (281,268;173,165) \\ M^{-1}(a;b) = (1764;1355) \end{array}$$

Backup step

Example (Continued)

$$(a; b) = (858\,824; 528\,747)$$

 $M = M_1 \cdot M_2 = (281, 268; 173, 165)$
 $M^{-1}(a; b) = (1764; 1355)$ Violates Jebelean

M corresponds to quotients 1, 1, 1, 1, 1, 1, 20, 1. E.g., (*A*; *B*) = 8 (*a*; *b*) + (1; 7) has quotient sequence starting with 1, 1, 1, 1, 1, 1, 20, 2.

Backup step

Example (Continued)

$$(a; b) = (858\,824; 528\,747)$$

 $M = M_1 \cdot M_2 = (281, 268; 173, 165)$
 $M^{-1}(a; b) = (1764; 1355)$ Violates Jebelean

M corresponds to quotients 1, 1, 1, 1, 1, 1, 20, 1. E.g., (A; B) = 8 (a; b) + (1; 7) has quotient sequence starting with 1, 1, 1, 1, 1, 1, 20, 2.

Conclusion

- ► The quotients are correct for (*a*; *b*), but not robust enough.
- Must drop final quotient before returning HGCD(a, b).

Robust HGCD

A robustness condition

Definition (Robust reduction)

A reduction M of (A; B) is robust iff

$$M^{-1}\left\{ \begin{pmatrix} A \\ B \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \right\} > 0$$

for all "small" (x; y). More precisely, for all $(x; y) \in S$, where

$$S = \{(x; y) \in \mathbb{R}^2, |x| < 2, |y| < 2, |x - y| < 2\}$$

A robustness condition

Definition (Robust reduction)

A reduction M of (A; B) is robust iff

$$M^{-1}\left\{ \begin{pmatrix} A \\ B \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \right\} > 0$$

for all "small" (x; y). More precisely, for all $(x; y) \in S$, where

$${\cal S}=\{(x;y)\in \mathbb{R}^2, |x|<2, |y|<2, |x-y|<2\}$$

Theorem

The reduction

$$\begin{pmatrix} A \\ B \end{pmatrix} = \underbrace{\begin{pmatrix} u & u' \\ v & v' \end{pmatrix}}_{=M} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

is robust iff $\alpha \geq 2\max(u',v')$ and $\beta \geq 2\max(u,v)$

HGCD based on robustness

 $\begin{array}{ll} \operatorname{HGCD}(A,B) \\ 1 & n \leftarrow \#(A,B) \\ 2 & p_1 \leftarrow \lfloor n/2 \rfloor \\ 3 & M_1 \leftarrow \operatorname{HGCD}(\lfloor 2^{-p_1}A \rfloor, \lfloor 2^{-p_1}B \rfloor) \\ 4 & (C;D) \leftarrow M_1^{-1}(A;B) \qquad \rhd \# |C-D| \approx 3n/4 \\ 5 & \operatorname{One \ subtraction \ and \ one \ division \ step \ on \ (C;D). \ Update \ M_1.} \\ 6 & p_2 \leftarrow \#M_1 + 2 \\ 7 & M_2 \leftarrow \operatorname{HGCD}(\lfloor 2^{-p_2}C \rfloor, \lfloor 2^{-p_2}D \rfloor) \\ 8 & \operatorname{return} \ M_1 \cdot M_2 \end{array}$

HGCD based on robustness

HGCD(A, B)1 $n \leftarrow \#(A, B)$ 2 $p_1 \leftarrow \lfloor n/2 \rfloor$ 3 $M_1 \leftarrow \text{HGCD}(|2^{-p_1}A|, |2^{-p_1}B|)$ 4 $(C; D) \leftarrow M_1^{-1}(A; B)$ $ightarrow \# |C - D| \approx 3n/4$ 5 One subtraction and one division step on (C; D). Update M_1 . 6 $p_2 \leftarrow \# M_1 + 2$ 7 $M_2 \leftarrow \text{HGCD}(|2^{-p_2}C|, |2^{-p_2}D|)$ 8 return $M_1 \cdot M_2$

$$c = \lfloor 2^{-p_2} C \rfloor \qquad c = 2^{-p_2} C - c$$
$$M^{-1} \left\{ \begin{pmatrix} A \\ B \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \right\} = 2^{p_2} M_2^{-1} \left\{ \begin{pmatrix} c \\ d \end{pmatrix} + \underbrace{\begin{pmatrix} \widetilde{c} \\ \widetilde{d} \end{pmatrix}}_{\text{disturbance } \in S} + 2^{-p_2} M_1^{-1} \begin{pmatrix} x \\ y \end{pmatrix}}_{\text{disturbance } \in S} \right\}$$

|a-mc|

Strong robustness

Definition (Strong robustess)

Let n = #(A, B) denote the bitsize of the larger of A and B. If $\#\min(\alpha, \beta) > \lfloor n/2 \rfloor + 1$, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.

Strong robustness

Definition (Strong robustess)

Let n = #(A, B) denote the bitsize of the larger of A and B. If $\#\min(\alpha, \beta) > \lfloor n/2 \rfloor + 1$, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.

Theorem (Schönhage-Weilert reduction)

For arbitrary A, B > 0, let n = #(A, B) and $s = \lfloor n/2 \rfloor + 1$. Assume $\#\min(A, B) > s$. There exists a unique strongly robust M such that $\#\min(\alpha, \beta) > s$ and $\#|\alpha - \beta| \le s$.

HGCD with strong robustness

HGCD(A, B)
1
$$n \leftarrow \#(A, B)$$

2 $s \leftarrow \lfloor n/2 \rfloor + 1$
3 Split: $p_1 \leftarrow \lfloor n/2 \rfloor$, $A = 2^{p_1}a + A'$, $B = 2^{p_1}b + B'$
4 $(\alpha, \beta, M_1) \leftarrow \text{HGCD}(a, b)$
5 $(A; B) \leftarrow 2^{p_1}(\alpha; \beta) + M_1^{-1}(A'; B') \qquad \triangleright \#|A - B| \approx 3n/4$
6 One subtraction and one division step on $(A; B)$. Update M_1 .
7 Split: $p_2 \leftarrow 2s - \#(A, B) + 1$, $A = 2^{p_2}a + A'$, $B = 2^{p_2}b + B'$
8 $(\alpha, \beta, M_2) \leftarrow \text{HGCD}(a, b)$
9 $(A; B) \leftarrow 2^{p_2}(\alpha; \beta) + M_2^{-1}(A'; B')$
10 $M \leftarrow M_1 \cdot M_2$
11 while $\#|A - B| > s \qquad \triangleright \text{ At most four times}$
12 One division step on $(A; B)$. Update M .
13 return (A, B, M)

- ▶ HGCD2: Special case HGCD with two-limb inputs, and an *M* with single-limb elements.
- Repeat: extract top two limbs, call HGCD2, apply resulting M to bignums.
- Essentially Lehmer's algorithm, with a different stop condition.
- Quadratic running time.

Further work

Matrix multiplication

$M_1 \cdot M_2$ 2 × 2 matrices

Assume FFT and sizes such that transforms and pointwise multiplication take equal time.

	FFT	IFFT	Pointwise	Saving
Naive	16	8	8	0%
Schönhage-Strassen	14	7	7	12%
Invariance	8	4	8	37%
SS. + invariance	8	4	7	40%

Matrix-vector multiplication

• If α, β are returned: *M* of size n/4, A', B' of size n/2.

$$M^{-1} \cdot \begin{pmatrix} A \\ B \end{pmatrix} = 2^{p} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + M^{-1} \cdot \begin{pmatrix} A' \\ B' \end{pmatrix}$$

	#Mults.	Prod. size	
Naive	4	3 <i>n</i> /4	Wins in FFT range
Block	8	<i>n</i> /2	Can use invariance
SS.	7	n/2	Wins in Karatsuba range

Matrix-vector multiplication

▶ If α , β are returned: *M* of size n/4, A', B' of size n/2.

$$M^{-1} \cdot \begin{pmatrix} A \\ B \end{pmatrix} = 2^{p} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + M^{-1} \cdot \begin{pmatrix} A' \\ B' \end{pmatrix}$$

	#Mults.	Prod. size	
Naive	4	3 <i>n</i> /4	Wins in FFT range
Block	8	n/2	Can use invariance
SS.	7	n/2	Wins in Karatsuba range

▶ If only matrix is returned: M of size n/4, A, B of size n.

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = M^{-1} \cdot \begin{pmatrix} A \\ B \end{pmatrix}$$

 α, β are of size 3n/4 (cancellation!). Compute mod $(2^k \pm 1)$, with transform size $\approx 3n/4$.

Matrix-vector multiplication

▶ If α , β are returned: *M* of size n/4, A', B' of size n/2.

$$M^{-1} \cdot \begin{pmatrix} A \\ B \end{pmatrix} = 2^{p} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + M^{-1} \cdot \begin{pmatrix} A' \\ B' \end{pmatrix}$$

	#Mults.	Prod. size	
Naive	4	3 <i>n</i> /4	Wins in FFT range
Block	8	n/2	Can use invariance
SS.	7	<i>n</i> /2	Wins in Karatsuba range

▶ If only matrix is returned: M of size n/4, A, B of size n.

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = M^{-1} \cdot \begin{pmatrix} A \\ B \end{pmatrix}$$

 α, β are of size 3n/4 (cancellation!). Compute mod $(2^k \pm 1)$, with transform size $\approx 3n/4$.

Same transform size, 3n/4, no matter if reduced numbers are available or not!

Base case optimizations

- Optimizing HGCD2 attacks the linear term in the running time.
- The quadratic term is the computation

$$M^{-1}\begin{pmatrix}a\\b\end{pmatrix} = \begin{pmatrix}v'a - u'b\\-va + ub\end{pmatrix}$$

Using mpn_mul_1 and mpn_submul_1 uses four loops. Try writing a single loop to compute v'a - u'b.

- Or try writing a loop that computes two products v'a and va.
- The matrix elements have high bit clear. May simplify sign or carry handling.
- If we have efficient mpn_mul_2 and mpn_submul_2, implement HGCD4, as two calls to HGCD2. Then apply an *M* with two-limb elements to the bignums.

Recursive binary GCD

Binary (2-adic) division

Notation

v(x) denotes the number of trailing zeros: $2^{-v(x)}x$ is an odd integer.

Assume that v(a) < v(b). Put

$$a' = 2^{-v(a)}a$$
 $b' = 2^{-v(b)}b$ $k = v(b) - v(a)$

Define a quotient

$$q = -a'(b')^{-1} \pmod{2^{k+1}}$$

and represent it as an integer in the symmetric interval $|q| < 2^k$. Define the remainder

$$r = a + 2^{-k}qb$$

Then

$$v(r) > v(b)$$
 $|r| < |a| + |b|$ $\operatorname{GCD}(b, r) = 2^k \operatorname{GCD}(a, b)$

Binary quotient sequence

Definition (Binary quotient sequence)

For odd a and even b, define a binary quotient and remainder sequence by

 $r_0 = a r_1 = b$ $q_j = bdiv(r_{j-1}, r_j) r_{j+1} = r_{j-1} + 2^{v(r_{j-1}) - v(r_j)} q_j r_j$

Theorem

The sequence terminates with $r_j = 0$ for some finite *j*.

Proof.

Assume as $r_i \neq 0$. Then since 2^j divides r_i , we have

 $2^j \le |r_j| \le \max(|a|, |b|) F_{j+1}$

Binary HGCD

Definition (BHGCD)

Input: Size *n*, odd *A*, even *B*, with $|A|, |B| < 2^n$. Output: Matrix *M*, integer *v*, odd *a*, even *b*, such that

$$\binom{a}{b} = 2^{-\nu} \binom{r_j}{r_{j+1}} = 2^{-2\nu} M \binom{A}{B}$$

and $\nu = \nu(r_i) < |(n-1)/2| \le \nu(r_{i+1})$

Fact

$$GCD(a, b) = gcd(A, B)$$

Binary recursive algorithm

BHGCD(*A*, *B*, *n*)
1
$$k \leftarrow \lfloor (n-1)/2 \rfloor$$

2 **if** $v(B) \ge k$ **return** 0, *A*, *B*, *I*
3 Split: $n_1 = k + 1$, $A = 2^{n_1}A' + a$, $B = 2^{n_1}B' + b$
4 $(j_1, \alpha, \beta, M) \leftarrow BHGCD(a, b, n_1)$
5 $(A; B) \leftarrow (\alpha, \beta) + 2^{n_1 - 2j_1}M(A'; B')$
6 $v_1 \leftarrow v(B)$
7 **if** $j_1 + v_1 \ge k$ **return** j_1, A, B, M
8 $q \leftarrow bdiv(A, B)$
9 $(A, B) \leftarrow 2^{-v_1}(B, A + 2^{-v_1}qB)$
10 $M \leftarrow (0, 2^{v_1}; 2^{v_1}, q) \cdot M$
11 **if** $j_1 + v_1 + v(B) \ge k$ **return** j_1, A, B, M
12 Split: $n_2 \leftarrow 2(k - j_1 - v_1) + 1$, $A = 2^{n_2}A' + a$, $B = 2^{n_2}B' + b$
13 $(j_2, \alpha, \beta, M') \leftarrow BHGCD(a, b, n_2)$
14 $(A; B) \leftarrow (\alpha, \beta) + 2^{n_2 - 2j_2}M'(A'; B')$
15 $M \leftarrow M' \cdot M$
16 **return** $j_1 + v_1 + j_2, A, B, M$