Abstract

Subquadratic divide-and-conquer algorithms for computing the greatest common divisor have been studied for a couple of decades. The integer case has been notoriously difficult, with the need for "backup steps" in various forms. One central idea is the "half-gcd" operation, HGCD. HGCD takes two n-bit numbers as inputs, and outputs two numbers of size $\approx n / 2$ with the same GCD, together with a transformation matrix with elements also of size $\approx n / 2$. This talk explains why backup steps are necessary for algorithms based directly on the quotient sequence, and proposes a robustness criterion that is used to construct a simpler HGCD algorithm without any backup steps.

Subquadratic GCD

Niels Möller

May 15, 2008

Outline

Background
Algorithm comparison
The half-gcd (HGCD) operation
Subquadratic HGCD
Quotient based HGCD
Jebelean's criterion
Why backup steps?
Robust HGCD
Simple subquadratic HGCD
Difference-based HGCD
Base case HGCD
Further work

Background

History

- 300 BC (or even earlier): Euclid's algorithm.
- 1938: Lehmer's algorithm.
- 1961: Binary GCD described by Stein.
- 1994, 1995: Sorensson, Weber.
- 1970, 1971: Knuth and Schönhage, subquadratic computation of continued fractions.
- ca 1987: Schönhage's "controlled Euclidean descent", unpublished.
- 2004: Stéhle and Zimmermann, recursive binary GCD.
- 2005-2008: Möller. Left-to-right algorithm. Simpler and slightly faster than earlier algorithms.

Comparison of GCD algorithms

Algorithm	Time (ms)	\# lines	
mpn_gcd	1440	304	GMP-4.1.4 (Weber)
mpn_rgcd	87	1967	"Classical" Schönhage GCD
mpn_bgcd	93	1348	Rec. bin. (Stehlé/Zimmermann)
mpn_sgcd	100	760	1987 alg. (Schönhage/Weilert)
mpn_ngcd	85	733	New algorithm for GMP-5

Comparison of GCD algorithms

Algorithm	Time (ms)	\# lines	
mpn_gcd	1440	304	GMP-4.1.4 (Weber)
mpn_rgcd	87	1967	"Classical" Schönhage GCD
mpn_bgcd	93	1348	Rec. bin. (Stehlé/Zimmermann)
mpn_sgcd	100	760	1987 alg. (Schönhage/Weilert)
mpn_ngcd	85	733	New algorithm for GMP-5

- Benchmarked on 32-bit AMD, with inputs of 48000 digits.
- Cross-over around 7700 digits.

Questions

Q Where does the complexity come from?
A Accurate computation of the quotient sequence.

Q How to avoid that?
A Stop bothering about quotients.

What is HGCD?

Definition (Reduction)

$$
\binom{A}{B}=M\binom{\alpha}{\beta}
$$

- Positive integers A, B, α, and β.
- Matrix M, non-negative integer elements.
- $\operatorname{det} M=1$.

What is HGCD?

Definition (Reduction)

$$
\binom{A}{B}=M\binom{\alpha}{\beta}
$$

- Positive integers A, B, α, and β.
- Matrix M, non-negative integer elements.
- $\operatorname{det} M=1$.

Fact

For any reduction, $\operatorname{GCD}(A, B)=\operatorname{GCD}(\alpha, \beta)$

What is HGCD?

Definition (Reduction)

$$
\binom{A}{B}=M\binom{\alpha}{\beta}
$$

- Positive integers A, B, α, and β.
- Matrix M, non-negative integer elements.
- $\operatorname{det} M=1$.

Fact

For any reduction, $\operatorname{GCD}(A, B)=\operatorname{GCD}(\alpha, \beta)$
Definition (HGCD, "half gcd")
Input: A, B, of size n
Output: M, with size of α, β and M elements $\approx n / 2$

Main idea of subquadratic HGCD

Asymptotic running time

```
\(\operatorname{GCD}(A, B)\)
1 while \(\#(A, B)>\) GCD-THRESHOLD
2 do
\(3 \quad n \leftarrow \#(A, B), p \leftarrow\lfloor n / 2\rfloor\)
\(4 \quad M \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p} A\right\rfloor,\left\lfloor 2^{-p} B\right\rfloor\right)\)
\(5 \quad(A ; B) \leftarrow M^{-1}(A ; B)\)
6 return \(\operatorname{GCD}-\operatorname{BASE}(A, B)\)
```

Running times for operations on n-bit numbers

Multiplication: $\quad M(n)=O(n \log n \log \log n)$
HGCD: $\quad H(n)=O(M(n) \log n)$
GCD: $\quad G(n) \approx 2 H(n)$

Quotient based HGCD

Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence q_{j} and remainder sequence r_{j} are defined by

$$
\begin{aligned}
& r_{0}=a \\
& r_{1}=b \\
& q_{j}=\left\lfloor r_{j-1} / r_{j}\right\rfloor \\
& r_{j+1}=r_{j-1}-q_{j} r_{j}
\end{aligned}
$$

Definition (Quotient sequence)

For any positive integers a, b, the quotient sequence q_{j} and remainder sequence r_{j} are defined by

$$
\begin{aligned}
r_{0} & =a & r_{1} & =b \\
q_{j} & =\left\lfloor r_{j-1} / r_{j}\right\rfloor & r_{j+1} & =r_{j-1}-q_{j} r_{j}
\end{aligned}
$$

Fact

$$
\binom{a}{b}=M\binom{r_{j}}{r_{j+1}}
$$

with

$$
M=\left(\begin{array}{cc}
q_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
q_{2} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
q_{j} & 1 \\
1 & 0
\end{array}\right)
$$

Theorem (Jebelean's criterion)
Let $a>b>0$, with remainders r_{j} and r_{j+1}, and

$$
\binom{a}{b}=\underbrace{\left(\begin{array}{ll}
u & u^{\prime} \\
v & v^{\prime}
\end{array}\right)}_{=M}\binom{r_{j}}{r_{j+1}}
$$

Let $p>0$ be arbitrary, $0 \leq A^{\prime}, B^{\prime}<2^{p}$, and define

$$
\begin{aligned}
\binom{A}{B} & =2^{p}\binom{a}{b}+\binom{A^{\prime}}{B^{\prime}} \\
\binom{R_{j}}{R_{j+1}} & =2^{p}\binom{r_{j}}{r_{j+1}}+M^{-1}\binom{A^{\prime}}{B^{\prime}}
\end{aligned}
$$

For even j, the following two statements are equivalent:
(i) $r_{j+1} \geq v$ and $r_{j}-r_{j+1} \geq u+u^{\prime}$
(ii) For any p and any A^{\prime}, B^{\prime}, the j th remainders of A and B are R_{j} and R_{j+1}. The quotient sequences are the same.

Theorem (Jebelean's simplified criterion)

Let $a>b>0$, with remainders r_{j}, r_{j+1} and r_{j+2}, and

$$
\binom{a}{b}=M\binom{r_{j}}{r_{j+1}}
$$

Assume that $\# r_{j+2}>\lceil n / 2\rceil$, with $n=\#$. Let $p>0$ be arbitrary, $0 \leq A^{\prime}, B^{\prime}<2^{p}$, and define

$$
\begin{aligned}
\binom{A}{B} & =2^{p}\binom{a}{b}+\binom{A^{\prime}}{B^{\prime}} \\
\binom{R_{j}}{R_{j+1}} & =2^{p}\binom{r_{j}}{r_{j+1}}+M^{-1}\binom{A^{\prime}}{B^{\prime}}
\end{aligned}
$$

Then the j th remainders of A and B are R_{j} and R_{j+1}. The quotient sequences are the same.

Quotient based HGCD

A generalization of Lehmer's algorithm

Define $\operatorname{HGCD}(a, b)$ to return an M satisfying Jebelean's criterion.

Example (Recursive computation)

$$
\begin{aligned}
(a ; b) & =(858824 ; 528747) \\
M_{1} & =(13,8 ; 8,5) \quad \text { No difficulties } \\
(c ; d) & =M_{1}^{-1}(a ; b)=16(4009 ; 194)+(0 ; 15) \\
M_{2} & =\operatorname{HGCD}(4009,194)=(21,20 ; 1,1) \\
M_{2}^{-1}(4009 ; 194) & =(129 ; 65) \quad \text { Satisfies Jebelean } \\
M & =M_{1} \cdot M_{2}=(281,268 ; 173,165) \\
M^{-1}(a ; b) & =(1764 ; 1355)
\end{aligned}
$$

Backup step

Example (Continued)

$$
\begin{aligned}
(a ; b) & =(858824 ; 528747) \\
M & =M_{1} \cdot M_{2}=(281,268 ; 173,165) \\
M^{-1}(a ; b) & =(1764 ; 1355) \quad \text { Violates Jebelean }
\end{aligned}
$$

M corresponds to quotients $1,1,1,1,1,1,20,1$.
E.g., $(A ; B)=8(a ; b)+(1 ; 7)$ has quotient sequence starting with $1,1,1,1,1,1,20,2$.

Backup step

Example (Continued)

$$
\begin{aligned}
(a ; b) & =(858824 ; 528747) \\
M & =M_{1} \cdot M_{2}=(281,268 ; 173,165) \\
M^{-1}(a ; b) & =(1764 ; 1355) \quad \text { Violates Jebelean }
\end{aligned}
$$

M corresponds to quotients $1,1,1,1,1,1,20,1$.
E.g., $(A ; B)=8(a ; b)+(1 ; 7)$ has quotient sequence starting with $1,1,1,1,1,1,20,2$.

Conclusion

- The quotients are correct for $(a ; b)$, but not robust enough.
- Must drop final quotient before returning $\operatorname{HGCD}(a, b)$.

Robust HGCD

A robustness condition

Definition (Robust reduction)
A reduction M of $(A ; B)$ is robust iff

$$
M^{-1}\left\{\binom{A}{B}+\binom{x}{y}\right\}>0
$$

for all "small" $(x ; y)$. More precisely, for all $(x ; y) \in S$, where

$$
S=\left\{(x ; y) \in \mathbb{R}^{2},|x|<2,|y|<2,|x-y|<2\right\}
$$

A robustness condition

Definition (Robust reduction)

A reduction M of $(A ; B)$ is robust iff

$$
M^{-1}\left\{\binom{A}{B}+\binom{x}{y}\right\}>0
$$

for all "small" $(x ; y)$. More precisely, for all $(x ; y) \in S$, where

$$
S=\left\{(x ; y) \in \mathbb{R}^{2},|x|<2,|y|<2,|x-y|<2\right\}
$$

Theorem

The reduction

$$
\binom{A}{B}=\underbrace{\left(\begin{array}{ll}
u & u^{\prime} \\
v & v^{\prime}
\end{array}\right)}_{=M}\binom{\alpha}{\beta}
$$

is robust iff $\alpha \geq 2 \max \left(u^{\prime}, v^{\prime}\right)$ and $\beta \geq 2 \max (u, v)$

HGCD based on robustness

```
\(\operatorname{HgCD}(A, B)\)
\(1 \quad n \leftarrow \#(A, B)\)
\(2 p_{1} \leftarrow\lfloor n / 2\rfloor\)
\(3 \quad M_{1} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{1}} A\right\rfloor,\left\lfloor 2^{-p_{1}} B\right\rfloor\right)\)
\(4(C ; D) \leftarrow M_{1}^{-1}(A ; B) \quad \triangleright \#|C-D| \approx 3 n / 4\)
5 One subtraction and one division step on ( \(C ; D\) ). Update \(M_{1}\).
\(6 \quad p_{2} \leftarrow \# M_{1}+2\)
\(7 \quad M_{2} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{2}} C\right\rfloor,\left\lfloor 2^{-p_{2}} D\right\rfloor\right)\)
8 return \(M_{1} \cdot M_{2}\)
```


HGCD based on robustness

$\operatorname{HGCD}(A, B)$

```
\(1 \quad n \leftarrow \#(A, B)\)
\(2 p_{1} \leftarrow\lfloor n / 2\rfloor\)
\(3 \quad M_{1} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{1}} A\right\rfloor,\left\lfloor 2^{-p_{1}} B\right\rfloor\right)\)
\(4(C ; D) \leftarrow M_{1}^{-1}(A ; B) \quad \triangleright \#|C-D| \approx 3 n / 4\)
```

5 One subtraction and one division step on ($C ; D$). Update M_{1}.
$6 \quad p_{2} \leftarrow \# M_{1}+2$
$7 \quad M_{2} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{2}} C\right\rfloor,\left\lfloor 2^{-p_{2}} D\right\rfloor\right)$
8 return $M_{1} \cdot M_{2}$

$$
\begin{gathered}
c=\left\lfloor 2^{-p_{2}} C\right\rfloor \\
\widetilde{c}=2^{-p_{2}} C-c \\
M^{-1}\left\{\binom{A}{B}+\binom{x}{y}\right\}=2^{p_{2}} M_{2}^{-1}\{\binom{c}{d}+\underbrace{\binom{\widetilde{c}}{\tilde{d}}+2^{-p_{2}} M_{1}^{-1}\binom{x}{y}}_{\text {disturbance } \in S}\}
\end{gathered}
$$

Strong robustness

Definition (Strong robustess)

Let $n=\#(A, B)$ denote the bitsize of the larger of A and B. If $\# \min (\alpha, \beta)>\lfloor n / 2\rfloor+1$, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.

Strong robustness

Definition (Strong robustess)

Let $n=\#(A, B)$ denote the bitsize of the larger of A and B. If $\# \min (\alpha, \beta)>\lfloor n / 2\rfloor+1$, then M is strongly robust.

Lemma

If a reduction M is strongly robust, then it is robust.
Theorem (Schönhage-Weilert reduction)
For arbitrary $A, B>0$, let $n=\#(A, B)$ and $s=\lfloor n / 2\rfloor+1$.
Assume $\# \min (A, B)>s$. There exists a unique strongly robust M such that $\# \min (\alpha, \beta)>s$ and $\#|\alpha-\beta| \leq s$.

HGCD with strong robustness

```
\(\operatorname{HgCD}(A, B)\)
    \(1 \quad n \leftarrow \#(A, B)\)
    \(2 \quad s \leftarrow\lfloor n / 2\rfloor+1\)
    3 Split: \(p_{1} \leftarrow\lfloor n / 2\rfloor, A=2^{p_{1}} a+A^{\prime}, B=2^{p_{1}} b+B^{\prime}\)
    \(4\left(\alpha, \beta, M_{1}\right) \leftarrow \operatorname{HGCD}(a, b)\)
    \(5(A ; B) \leftarrow 2^{p_{1}}(\alpha ; \beta)+M_{1}^{-1}\left(A^{\prime} ; B^{\prime}\right) \quad \triangleright \#|A-B| \approx 3 n / 4\)
    6 One subtraction and one division step on \((A ; B)\). Update \(M_{1}\).
    7 Split: \(p_{2} \leftarrow 2 s-\#(A, B)+1, A=2^{p_{2}} a+A^{\prime}, B=2^{p_{2}} b+B^{\prime}\)
    \(8 \quad\left(\alpha, \beta, M_{2}\right) \leftarrow \operatorname{HGCD}(a, b)\)
    \(9 \quad(A ; B) \leftarrow 2^{p_{2}}(\alpha ; \beta)+M_{2}^{-1}\left(A^{\prime} ; B^{\prime}\right)\)
\(10 \quad M \leftarrow M_{1} \cdot M_{2}\)
11 while \(\#|A-B|>s \quad \triangleright\) At most four times
12
    One division step on \((A ; B)\). Update \(M\).
13 return \((A, B, M)\)
```


Base case HGCD

- HGCD2: Special case HGCD with two-limb inputs, and an M with single-limb elements.
- Repeat: extract top two limbs, call HGCD2, apply resulting M to bignums.
- Essentially Lehmer's algorithm, with a different stop condition.
- Quadratic running time.

Further work

Matrix multiplication

$$
M_{1} \cdot M_{2} \quad 2 \times 2 \text { matrices }
$$

Assume FFT and sizes such that transforms and pointwise multiplication take equal time.

	FFT	IFFT	Pointwise	Saving
Naive	16	8	8	0%
Schönhage-Strassen	14	7	7	12%
Invariance	8	4	8	37%
S.-S. + invariance	8	4	7	40%

Matrix-vector multiplication

- If α, β are returned: M of size $n / 4, A^{\prime}, B^{\prime}$ of size $n / 2$.

$$
M^{-1} \cdot\binom{A}{B}=2^{p}\binom{\alpha}{\beta}+M^{-1} \cdot\binom{A^{\prime}}{B^{\prime}}
$$

\#Mults. Prod. size

Naive	4	$3 n / 4$	Wins in FFT range
Block	8	$n / 2$	Can use invariance
S.-S.	7	$n / 2$	Wins in Karatsuba range

Matrix-vector multiplication

- If α, β are returned: M of size $n / 4, A^{\prime}, B^{\prime}$ of size $n / 2$.

$$
M^{-1} \cdot\binom{A}{B}=2^{p}\binom{\alpha}{\beta}+M^{-1} \cdot\binom{A^{\prime}}{B^{\prime}}
$$

\#Mults. Prod. size

Naive	4	$3 n / 4$	Wins in FFT range
Block	8	$n / 2$	Can use invariance
S.-S.	7	$n / 2$	Wins in Karatsuba range

- If only matrix is returned: M of size $n / 4, A, B$ of size n.

$$
\binom{\alpha}{\beta}=M^{-1} \cdot\binom{A}{B}
$$

α, β are of size $3 n / 4$ (cancellation!). Compute $\bmod \left(2^{k} \pm 1\right)$, with transform size $\approx 3 n / 4$.

Matrix-vector multiplication

- If α, β are returned: M of size $n / 4, A^{\prime}, B^{\prime}$ of size $n / 2$.

$$
M^{-1} \cdot\binom{A}{B}=2^{p}\binom{\alpha}{\beta}+M^{-1} \cdot\binom{A^{\prime}}{B^{\prime}}
$$

\#Mults. Prod. size

Naive	4	$3 n / 4$	Wins in FFT range
Block	8	$n / 2$	Can use invariance
S.-S.	7	$n / 2$	Wins in Karatsuba range

- If only matrix is returned: M of size $n / 4, A, B$ of size n.

$$
\binom{\alpha}{\beta}=M^{-1} \cdot\binom{A}{B}
$$

α, β are of size $3 n / 4$ (cancellation!). Compute $\bmod \left(2^{k} \pm 1\right)$, with transform size $\approx 3 n / 4$.

- Same transform size, $3 n / 4$, no matter if reduced numbers are available or not!

Base case optimizations

- Optimizing HGCD2 attacks the linear term in the running time.
- The quadratic term is the computation

$$
M^{-1}\binom{a}{b}=\binom{v^{\prime} a-u^{\prime} b}{-v a+u b}
$$

Using mpn_mul_1 and mpn_submul_1 uses four loops. Try writing a single loop to compute $v^{\prime} a-u^{\prime} b$.

- Or try writing a loop that computes two products $v^{\prime} a$ and $v a$.
- The matrix elements have high bit clear. May simplify sign or carry handling.
- If we have efficient mpn_mul_2 and mpn_submul_2, implement HGCD4, as two calls to HGCD2. Then apply an M with two-limb elements to the bignums.

Recursive binary GCD

Binary (2-adic) division

Notation

$v(x)$ denotes the number of trailing zeros: $2^{-v(x)} x$ is an odd integer.

Assume that $v(a)<v(b)$. Put

$$
a^{\prime}=2^{-v(a)} a \quad b^{\prime}=2^{-v(b)} b \quad k=v(b)-v(a)
$$

Define a quotient

$$
q=-a^{\prime}\left(b^{\prime}\right)^{-1} \quad\left(\bmod 2^{k+1}\right)
$$

and represent it as an integer in the symmetric interval $|q|<2^{k}$.
Define the remainder

$$
r=a+2^{-k} q b
$$

Then

$$
v(r)>v(b) \quad|r|<|a|+|b| \quad \operatorname{GCD}(b, r)=2^{k} \operatorname{GCD}(a, b)
$$

Binary quotient sequence

Definition (Binary quotient sequence)

For odd a and even b, define a binary quotient and remainder sequence by

$$
\begin{array}{lrl}
r_{0} & =a & r_{1}
\end{array}=b
$$

Theorem

The sequence terminates with $r_{j}=0$ for some finite j.

Proof.

Assume as $r_{j} \neq 0$. Then since 2^{j} divides r_{j}, we have

$$
2^{j} \leq\left|r_{j}\right| \leq \max (|a|,|b|) F_{j+1}
$$

Binary HGCD

Definition (BHGCD)

Input: Size n, odd A, even B, with $|A|,|B|<2^{n}$.
Output: Matrix M, integer v, odd a, even b, such that

$$
\begin{aligned}
& \qquad\binom{a}{b}=2^{-v}\binom{r_{j}}{r_{j+1}}=2^{-2 v} M\binom{A}{B} \\
& \text { and } v=v\left(r_{j}\right)<\lfloor(n-1) / 2\rfloor \leq v\left(r_{j+1}\right)
\end{aligned}
$$

Fact

$$
\operatorname{GCD}(a, b)=\operatorname{gcd}(A, B)
$$

Binary recursive algorithm

$\operatorname{BHGCD}(A, B, n)$
$1 \quad k \leftarrow\lfloor(n-1) / 2\rfloor$
2 if $v(B) \geq k$ return $0, A, B, l$
3 Split: $n_{1}=k+1, A=2^{n_{1}} A^{\prime}+a, B=2^{n_{1}} B^{\prime}+b$
$4\left(j_{1}, \alpha, \beta, M\right) \leftarrow \operatorname{BHGCD}\left(a, b, n_{1}\right)$
$5 \quad(A ; B) \leftarrow(\alpha, \beta)+2^{n_{1}-2 j_{1}} M\left(A^{\prime} ; B^{\prime}\right)$
$6 \quad v_{1} \leftarrow v(B)$
7 if $j_{1}+v_{1} \geq k$ return j_{1}, A, B, M
$8 \quad q \leftarrow \operatorname{bdiv}(A, B)$
$9 \quad(A, B) \leftarrow 2^{-v_{1}}\left(B, A+2^{-v_{1}} q B\right)$
$10 \quad M \leftarrow\left(0,2^{v_{1}} ; 2^{v_{1}}, q\right) \cdot M$
11 if $j_{1}+v_{1}+v(B) \geq k$ return j_{1}, A, B, M
12 Split: $n_{2} \leftarrow 2\left(k-j_{1}-v_{1}\right)+1, A=2^{n_{2}} A^{\prime}+a, B=2^{n_{2}} B^{\prime}+b$
$13\left(j_{2}, \alpha, \beta, M^{\prime}\right) \leftarrow \operatorname{BHGCD}\left(a, b, n_{2}\right)$
$14 \quad(A ; B) \leftarrow(\alpha, \beta)+2^{n_{2}-2 j_{2}} M^{\prime}\left(A^{\prime} ; B^{\prime}\right)$
$15 M \leftarrow M^{\prime} \cdot M$
16 return $j_{1}+v_{1}+j_{2}, A, B, M$

