
A 16-bit instruction set

Niels Möller

1 Introduction

This file documents an attempt to define an instruction set with 16-bit op-
codes and 16 general purpose registers. Current status: Not extremely pretty,
and some important features not yet specified. But at least the instructions do
fit in 16 bits.

Word size is ℓ = 64 bits (variants with smaller native word size are possible).

1.1 Registers

There are 16 registers, R0 to R15. R15 is the program counter, and R14 is the
link register for calls. (FIXME: Stack pointer?)

1.2 About load and store

Loads and stores are big-endian. We always load and store full words. To make
it easier to work with smaller quantities, allow unaligned effective addresses,
with the following trick. A load at the effective address is p, loads the word at
p and−8 (i.e., the low address bits are ignored for the actual memory access).
But then the result is rotated depending on the low address bits: The word read
is rotated 8(p and 7) bits left. So the highest byte of the result is always the byte
read from the given, possibly unaligned, address.

Stores do the inverse processing, the value to store is rotated 8(p and 7) bit
right and stored at p and−8.

The most performance-critical loops are expected to always load and store
full words anyway. Making access to partial words reasonably easy is intended
to help for a common case outside of the most critical loops.

For load and store with offset, optionally do post-increment (for offset > 0)
and pre-decrement (for offset < 0).

For load and store with index register, we use a trick suggested by Marcus
Comstedt to encode an extra bit in the register ordering.

1.3 Constants

For most immediate values and offsets, we use 4 or 5 bits with the encoding in
Table 1 and Table 2. Note that zero is not included, for operations where zero
is a useful argument, special instruction is needed.

To provide larger immediate values and offset, adopt a suggestion by Leif
Stensson. Use a prefix flag and a prefix register (the latter 60 bits, so that we
can copy both contents and a couple of flags into a 64-bit register for context
switches and the like), and new imm instruction including a constant, say 12

1

Code Value Code Value
0000 1 1000 -1
0001 3 1001 -3
0010 2 1010 -2
0011 6 1011 -6
0100 4 1100 -4
0101 12 1101 -12
0110 8 1110 -8
0111 16 1111 -16

Table 1: 4-bit encoding of immediate values.

Code Value Code Value
00000 1 10000 -1
00001 3 10001 -3
00010 5 10010 -5
00011 7 10011 -7
00100 2 10100 -2
00101 6 10101 -6
00110 10 10110 -10
00111 14 10111 -14
01000 4 11000 -4
01001 12 11001 -12
01010 20 11010 -20
01011 28 11011 -28
01100 8 11100 -8
01101 16 11101 -16
01110 24 11110 -24
01111 32 11111 -32

Table 2: 5-bit encoding of immediate values.

2

Code Meaning
00 Not modified
01 Carry out
10 Signed not borrow
11 Signed overflow (FIXME: Is this really needed?)

Table 3: Options for setting the condition flag from an addition or subtraction.

Code Meaning
00 Shift in flag, flag unmodified.
01 Shift in flag, set flag from bit shifted out.
10 Shift in zero, set flag from bit shifted out.
11 Shift in sign bit, set flag from bit shifted out.

Table 4: Right shift with carry

bits (could go down to 10 if needed). When this instruction is executed, if the
flag is clear, the constant is sign extended and copied to the prefix register. If
the flag is set, the contents of the prefix register is shifted 12 bits left, and the
12 new bits are shifted in at the low end.

Instructions accepting an immediate value or offset check the prefix flag. If
it is clear, the constant field is interpreted according to the above tables. But if
the prefix flag is set, the constant field (4, 5 or 10 bits depending on instruction)
is appended to the contents of the prefix register, and the low 64 bits are used
as the immediate value or offset.

The prefix flag is cleared when used, and it ought to be cleared after all
branches (including using mov with the pc as destination). Maybe it’s simplest
to have it cleared by all instructions except imm.

2 Conditional flag

There’s only a single conditional flag, used for conditional jumps, conditional
moves, and carry input to certain instructions. The flag can be set by add, sub,
cmp, and tst.

For addition and subtraction, using the flag as an input carry is optional.
Subtraction is done as a+ ¬b+ c, so c = 1 means no borrow. When the flag is
not used for carry input, carry in is zero for add and one for sub. (There’s no
sub with immediate, to do sub with carry and an immediate value, one must
adjust the constant).

For flag output there are four possibilities, see Table 3. The overflow flag
follows the ARM convention, including with carry input. The signed not borrow
condition means that the the true sign of the signed result is non-negative. This
makes the flag work as a signed greater-or-equal flag, and in addition, the result
can be sign extended to register r using sub r, cc, r.

For shift right with carry (xshift), there are four variants, see Table 4.
(FIXME: To do signed (a+b)/2 as adds + xshift, we’d need to be
able to shift in not carry. Or introduce a “not cc” intruction.)

3

Redundant cmpugeq Equivalent to Encoding reused for
cmpugeq r, #-1 cmpeq r, #-1 cmpsgeq r, #0
cmupgeq r, #1 tst r, #-1 cmpeq r, #0
cmupgeq r, #2 tst r, #-2 cmpugt r, # 8
cmupgeq r, #4 tst r, #-4 cmpsgt r, # 8
cmupgeq r, #8 tst r, #-8 unused
cmupgeq r, #16 tst r, #-16 unused
cmupgeq r, #32 tst r, #-32 unused

Table 5: Stolen immediate encodings for cmpugeq. These values are special only
when no prefix is active.

Code Meaning
0000 10
0001 12
0010 14
0011 16
0100 20
0101 24
0110 28
0111 32
1000 −10
1001 −12
1010 −14
1011 −16
1100 −20
1101 −24
1110 −28
1111 −32

Table 6: 5-bit encoding of immediate values for cmpugt and cmpsgt.

3 Comparisons

Comparisons for equality is done using the cmpeq instruction. (FIXME: Or
cmpneq instead? Then cmpneq #0 is equivalent to tst #-1. Or use
one of the unused encodings for cmpeq #0.). For inequality tests, there
are more design options. Since the carry output from unsigned subtraction cor-
responds to not borrow, subc a, b sets the cc flag iff a ≥ b. Therefore, the main
unsigned compare instruction should be cmpugeq, setting the flag exactly like
subc, but not storing the result of the subtraction. For consistency, the main
signed comparison instruction is cmpsgeq. With signed non borrow defined as
above, cmpsgeq sets the cc flag in the same way as subs.

We also define a tst a, b instruction, setting the cc flag if a and b 6= 0. This
convention means that tst a, −2k is equivalent to cmpugeq a, 2k.

Immediate comparisons need some special handling. We want to do imme-
diate comparisons for equality, greater-or-equal and greater-than, with all 32
constants in Table 2, and zero. For signed and unsigned values. But, e.g., x > 3
is the same as x ≥ 4, so we don’t need all variants. And some comparisons can be
done with the tst instruction, e.g., unsigned x ≥ 4 is equivalent to x and−4 6= 0.

4

We use three regular instructions, cmpeq, cmpugeq and cmpsgeq, using 5-bit
constants and any active prefix. With only a small tweak: When no prefix is
active, some encodings for cmpuleq are stolen for other immediate comparisons.
See Table 5.

The greater-than comparisons with small values, which aren’t equivalent to
some cmpgeq instruction, are then encoded as a special instruction using Table 6
to encode the desired operation.

4 Division

For integer division, we need a reciprocal instruction computing ⌊2128/x⌋ − 264

for a normalized x, i.e., 263 ≤ x < 264. Then with some extra book-keeping, we
can get single-word unsigned division using umulhi, add, xshift, rshift. Unclear
what the reciprocal instruction should do with unnormalized inputs, maybe we
can have a two-operand instruction doing normalization and reciprocal at the
same time, storing an appropriate shiftcount in a second destination operand?

5 Floating point

The first eight registers can be used for floating point operations. We also need
some additional status register, not yet specified.

5

6 Op-code allocation

code instruction
Load and store. Offsets are coded as c according to Table 1. Total of 0x5000 op
codes (with some small holes). The instructions using an offset apply the prefix
register, if active.
0000 c n d ld rd, [rn, o] Load with offset (Table 1)
0001 c n d ld rd, [rn, o]! Load with offset, update rn
0010 c n d st rd, [rn, o] Store with offset
0011 c n d st rd, [rn, o]! Store with offset, update rn
0100 i n d ld rd, [rn, ri] Indexed load, n < i
0100 i n d st rd, [rn, ri] Indexed store, n > i

Besides load and store with indexed addressing, there are two additional in-
structions taking three registers, umull and shiftl.
0101 h a d umull rd, rh, ra 〈rh, rd〉 ← rard
0110 b c d shiftl rd, rb, rc Shift rd rc bits, shifting in bits from rb.

For long shift, rd is unchanged if rc = 0, and set to zero if |rc| ≥ 64. Otherwise,
if rc > 0, rd is shifted left, shifting in bits from the high end of rb, and if rc < 0,
rd is shifted right, shifting in bits from the low end of rb. Note that b = c gives
a rotate.

0111 iiii iiii iiii imm #i Prefix for constant/offset

Instructions with 5-bit constant argument (see Table 2). Uses prefix register if
active

.

1000 iooc cccc d add rd, #x i and oo specify carry use
1001 iooc cccc d rsb rd, #x rd ← #x− rd (with carry)
1010 000c cccc d mov rd, #x
1010 001c cccc d and rd, #x
1010 010c cccc d or rd, #x
1010 011c cccc d xor rd, #x
1010 100c cccc d tst rd, #x Set flag on rd andx 6= 0
1010 101c cccc d cmpeq rd, #x Set flag on rd = x
1010 110c cccc d cmpugeq rd, #x Set flag on rd ≥ x (unsigned)
except stolen cmpugeq encodings, see Table 5.
1010 111c cccc d cmpsgeq rd, #x Set flag on rd ≥ x (signed)

Shift instructions, with 6-bit count (c = 0 is special).
1011 00cc cccc d lshift rd, #c Left shift
1011 0000 0000 d clz rd Count leading zeros
1011 01cc cccc d rshift rd, #c Logical right shift
1011 0100 0000 d ctz rd Count trailing zeros
1011 10cc cccc d ashift rd, #c Arithmetic right shift
1011 1000 0000 d cls rd Count sign bits
1011 11cc cccc d rot rd, #c Rotate left
1011 1100 0000 d popc rd Population count

Instructions with a (relatively) large offset to the pc. Offset is scaled by 2. All
the instructions apply the prefix register, if active.
1100 00oo oooo oooo jmp pc + o Unconditional jump

6

1100 01oo oooo oooo jsr pc + o Subroutine call
1100 10oo oooo oooo bt pc + o Branch if true
1100 11oo oooo oooo bf pc + o Branch if false

Two-operand instructions
1101 0ioo s d add rd, rs Add, carry in if i = 1, for oo, see Table 3
1101 1ioo s d sub rd, rs Subtract, carry handling as above
1110 0000 s d mov rd, rs
1110 0001 s d movt rd, rs Move if flag set
1110 0010 s d movf rd, rs Move if flag clear
1110 0011 s d and rd, rs
1110 0100 s d or rd, rs
1110 0101 s d xor rd, rs
1110 0110 s d mullo rd, rs rd ← rdrs mod 2ℓ

1110 0111 s d umulhi rd, rs rd ← ⌊rdrs2
−ℓ⌋

1110 1000 s d lshift rd, rs rs > 0 means left
1110 1001 s d ashift rd, rs rs > 0 means left
(For rotate, use the shiftl instruction)
1110 1010 s d injt8 rd, rs Copy low rs byte to high rd byte
1110 1011 s d injt16 rd, rs
1110 1100 s d injt32 rd, rs
1110 1101 s d tst rd, rs Set flag on rd and rs 6= 0
1110 1110 s d cmpeq rd, rs Set flag on rd = rs
1110 1111 s d cmpugeq rd, rs Set flag on rd ≥ rs (unsigned)
1111 0000 s d cmpsgeq rd, rs Set flag on rd ≥ rs (signed)
1111 0001 s d ld rd, [rs] Plain load
1111 0010 s d st rd, [rs] Plain store
1111 0011 xxxx xxxx Unassigned (0x100)

Immediate compares using the special encoding in Table 6. Doesn’t accept any
prefix.
1111 0100 cccc d cmpugt rd, #x Set flag on rd > x (unsigned)
1111 0101 cccc d cmpsgt rd, #x Set flag on rd > x (signed)

One-operand instructions.
1111 0110 00mm d xshift rd Single-bit right shift (Table 4)
1111 0110 01oo d adc rd, #0 Add carry, flag output according to Table 3
1111 0110 1000 d neg rd
1111 0110 1001 d bswap rd Swap bytes
1111 0110 1010 d jsr rd Indirect subroutine call.
1111 0110 1011 d recpr rd Reciprocal
Unassigned area (0x140)

Floating point operations.
1111 100a aabb bddd fmac rd, ra, rb “Fused” d← d+ ab
1111 1010 0sss sddd fldexp rd, rs Adds integer rs to exponent.
1111 1010 10ss sddd fadd rd, rs
1111 1010 11ss sddd fsub rd, rs
1111 1011 00ss sddd fmul rd, rs
1111 1011 01ss sddd fdiv rd, rs

7

1111 1011 10ss sddd fcmpeq rd, rs Sets flag
1111 1011 11ss sddd fcmpleq rd, rs Sets flag
1111 1100 00ss sddd fcmplt rd, rs Sets flag
Single register floating point operations.
1111 1100 0100 0ddd fneg rd
1111 1100 0100 1ddd fabs rd
1111 1100 0101 0ddd fs2d rd Convert single to double.
1111 1100 0101 1ddd fd2s rd Convert double to single.
1111 1100 0110 0ddd fui2d rd Convert unsigned to double.
1111 1100 0110 1ddd fd2ui rd Convert double to unsigned.
1111 1100 0111 0ddd fsi2d rd Convert signed to double.
1111 1100 0111 1ddd fsi2d rd Convert double to signed.
1111 1100 1000 0ddd fui2s rd Convert unsigned to single.
1111 1100 1000 1ddd fsi2s rd Convert signed to single.
(Converting single precision to integer can go via double).
1111 1100 1001 0ddd feqz rd Set flag on rd = 0.0
1111 1100 1001 1ddd fgeqz rd Set flag on rd ≥ 0.0
1111 1100 1010 0ddd fgtz rd Set flag on rd > 0.0
1111 1100 1010 1ddd fleqz rd Set flag on rd ≤ 0.0
1111 1100 1011 0ddd fltz rd Set flag on rd < 0.0
1111 1100 1011 1ddd Unassigned area(0x148)

1111 111x xxxx xxxx Reserved (0x200).

7 Remaining work

With the above op-code allocation, we have 0x488 op-codes left, out of the space
of 0x10000. This is sufficient for two single two-operand instructions or a dozen
of of single-operand instructions. Important missing pieces, roughly in order of
decreasing importance:

• System features: System call, interrupts, save and restore status flags and
prefix register, atomic operations, memory barrier, pre-fetch, Speaking
of pre-fetch, there should be a way to clear a cache line so we can write
to a memory block without first fetching the old contents.

• Missing immediate forms for multiplication instructions. Maybe we have
to sacrifice independent destination arguments to umull to make room?
Instead, store the result in an adjacent pair of registers.

• Hooks for SIMD unit or general co-processor.

Some nice-to-have features that have been left out:

• Signed long multiplication (smull and smulhi). Could add smulhi, but
there’s no space for a three-operand smull.

• It would be nice with extract instructions (i.e., right shift by 56, 48 or 32
bits) with separate destination register.

8

• Similarly, it would be nice with clz and ctz with a separate destination
register.

• The fabs and fneg instructions are trivial bit operations, a bit too trivial
to have their own instructions. Would be nice if they could be generalized.

• A three-operand add is often useful to reduce the number of mov instruc-
tions. There’s no space, but one might consider replacing the indexed load
and store instructions. Or we could sacrifice a bit to get “alternate desti-
nation” for some instructions, storing the result into some fixed register,
possibly r0.

• The immediate prefix instruction could be reduced from 12 to 10 bits, if
we need additional instructions.

9

