
Final thesis

Potential for increasing the size of NETSim simulations

through OS-level optimizations

by

Kjell Enblom,

Martin Jungebro

LITH-IDA-EX--08/001--SE

2008-01-18

Final thesis

Potential for increasing the size of NETSim

simulations through OS-level optimizations

by

Kjell Enblom,

Martin Jungebro

LITH-IDA-EX--08/001--SE

Supervisor : Tomas Abrahamsson

FJI/K
at Ericsson AB

Examiner : Christoph Kessler

Dept. of Computer and Information Science
at Linköpings universitet

Abstract

English

This master’s thesis investigates if it is possible to increase the size of the simulations running
on NETSim, Network Element Test Simulator, on a specific hardware and operating system.
NETSim is a simulator for operation and maintenance of telecommunication networks.

The conclusions are that the disk usage is not critical and that it is needless to spend time
optimizing disk and file system parameters. The amount of memory used by the simulations
increased approximately linear with the size of the simulation. The size of the swap disk space
is not a limiting factor.

Svenska

Detta exsamensarbete undersöker om det är möjligt att öka storleken p̊a simuleringskörningar
av NETSim, Network Element Test Simulator, p̊a en specifik h̊ardvaru- och operativsystem-
splattform. NETSim är en simulator för styr och övervakning av telekomnätverk.

Slutsatserna är att diskanvändandet inte är kritiskt och att det är onödigt att ägna tid åt att
optimera disk- och filsystemsparametrar. Minnesutnyttjandet ökar approximativt linjärt med
storleken p̊a simuleringarna. Storleken p̊a swapdisken är inte n̊agon begränsande faktor.

Keywords : NETSim, simulating UMTS networks, OS parameters,
Linux, Ericsson AB

iii

iv

Acknowledgements

We would like to thank those at the NETSim department at Ericsson in
Linköping, especially Daniel Wiik, David Haglund and our tutor Tomas
Abrahamsson.

v

vi

Chapters 2.7, 2.9, 3.2.3, 3.2.5 is written by Kjell Enblom, chapters 2.5, 2.6,
3.2.1, 3.2.2 is written by Martin Jungebro and all other chapters by Kjell
Enblom and Martin Jungebro.

Contents

1 Introduction 1

1.1 Overview over the report 1

1.2 Background . 2

1.3 Purpose and problem description 2

1.4 Items to tune . 3

2 Theoretical background 5

2.1 Overview over UMTS networks 5

2.2 NETSim . 9

2.3 OSS . 13

2.4 The load generator . 15

2.5 RAID . 16

2.5.1 RAID-0 . 17

2.5.2 RAID-1 . 18

vii

viii CONTENTS

2.5.3 RAID-3 . 19

2.5.4 RAID-4 . 20

2.5.5 RAID-5 . 21

2.5.6 RAID-6 . 22

2.6 Confidence Interval . 23

2.7 File systems . 23

2.7.1 B+tree . 25

2.7.2 ext3 . 26

2.7.3 Reiserfs . 30

2.7.4 XFS . 33

2.7.5 JFS . 37

2.8 I/O Scheduling Algorithms 40

2.9 Virtual Memory and Swap 43

2.9.1 Swappiness . 46

2.9.2 vfs cache pressure 47

2.9.3 dirty ratio and dirty background ratio 48

2.9.4 min free kbytes . 48

2.9.5 page-cluster . 48

2.9.6 dirty writeback centisecs 49

3 Realization 51

CONTENTS ix

3.1 The test environment . 51

3.1.1 Test runs and measurement of IDL methods 55

Mean value calculations with sliding window 57

Mean value calculations 58

Times for SWUG’s 60

Disk access load . 63

3.2 The tests . 66

3.2.1 RAID . 66

3.2.2 Crypto Accelerator Card 66

3.2.3 File systems . 67

3.2.4 I/O Scheduling Algorithms 67

3.2.5 Virtual Memory and Swap 68

swappiness . 68

vfs cache pressure 68

dirty ratio and dirty background ratio 69

min free kbytes . 70

page-cluster . 71

dirty writeback centisecs 71

4 Results 73

4.1 Mean with sliding window 73

x CONTENTS

4.2 Mean with whisker bars . 79

4.3 Swug-times . 84

4.4 Memory usage . 86

5 Discussion, conclusions, recommendations and future work 99

5.1 Discussion and conclusions 99

5.2 Recommendations . 103

5.3 Future work . 104

A Abbreviations 107

A.1 Abbreviations . 107

Bibliography 111

Chapter 1

Introduction

This master’s thesis investigates if it is possible to increase the size of the
simulations running on NETSim, Network Element Test Simulator, on a
specific hardware and operating system.

1.1 Overview over the report

This chapter introduces the background and purpose of this master thesis.

Chapter 2 introduces an overview over cellular networks, NETSim, the
operation and maintenance system OSS, the load generator, RAID, con-
fidence interval, file systems, I/O scheduling algorithms, virtual memory
and swap.

Chapter 3 describes the test environment and the test runs.

Chapter 4 presents the test results.

Chapter 5 discusses the results and presents our recommendations.

1

2 1.2. Background

The main target group for this thesis is NETSim personel at Ericsson AB.
Recommended previous knowledge for readers is a masters degree in com-
puter science or similar.

1.2 Background

Since 1993 Ericsson is developing the simulation tool NETSim. NETSim
is a simulator for testing telecommunication networks. NETSim simulates
parts of or whole UMTS networks, Universal Mobile Telecommunications
System networks from an operational and maintenance perspective. The
users are primarily other divisions at Ericsson AB.

NETSim is a resource demanding program and claims expensive computers
to run large simulations, about 5000 cellular network nodes. 5000 nodes
covers a small country. The network nodes are base stations phone switches,
network routers etc.

Since 1993 more network elements has been developed and the need for
running larger simulations has increased.

1.3 Purpose and problem description

NETSim is resource demanding and needs expensive computers for running
large simulations, about 5000 nodes, called NEs, Network Elements, in
NETSim. And soon customers needs to run even larger simulations, about
2 to 3 times larger. Therefore Ericsson wants to know if it is possible to
increase the number of network elements, NEs, on the existing hardware
without increasing the number of computers.

One possible way to do it is to optimize the NETSim code. Another possible
way is to do performance tuning in the operating system environment. In
this thesis we are studying the operating system environment. To study

Introduction 3

possible ways to optimize the source code of NETSim is something that
should be done but that is outside the scope of this master’s thesis.

The goal of this thesis is to ascertain if it is possible to increase the size
of the running simulations with 50% more NEs on existing hardware with
operating system environment tuning.

1.4 Items to tune

After a discussion with our supervisor and seven other developers we came
to the conclusion that this list is what is most interesting to study within
the scope of the master’s thesis. The items to study and the three categories
is mainly Ericsson’s priority order. All technical terms and abbreviations
will be defined later in this thesis.

1. • Compare NETSim and databases on RAID 0 with NETSim and
databases running without RAID.

• Compare 32 bit and 64 bit SSL esock.

• Compare Kpoll and Epoll in SSL esock.

• Compare SSL with and without a crypto accelerator card

2. • Compare the reiserfs filesystem with other file systems, ext3, xfs
and jfs.

• Study different I/O scheduling

• Study different values for swappiness

• Study different VM parameters

3. • Compare the standard Linux kernel, 2.6.8, with a newer kernel.

• Compare 32 bit and 64 bit Erlang

This is what Ericsson and we think can give most performance on the
operating system level.

4 1.4. Items to tune

Chapter 2

Theoretical background

This section describes the theoretical background of UMTS networks, NET-
Sim, OSS, the load generator, RAID, Confidence Interval, File systems, I/O
Scheduling algoriths and Virtual memory and Swap.

2.1 Overview over UMTS networks

The parts of a UMTS network are core, GSM, Global System for Mobile,
and UTRAN, UMTS Terrestrial Radio Access Network [1].

A UMTS network is divided in two main parts the BSS, Base Station
System, and the switching system. The BSS is the lower part elements of
figure 2.1 and the switching part is the upper part elements of the figure.
The left part of the figure is the GSM network and the right part is the
UTRAN network.

5

6 2.1. Overview over UMTS networks

Figure 2.1: UMTS Network.

The Base Station System is responsible for the radio functions in the net-
work. In GSM the functions is divided in BTS, Base Transceiver Stations
and BSC, Base Station Controllers. BTS is the unit providing radio com-
munication in each radio cell. BSC is controlling a set of BTSs, see figure
2.1. The most important task is utilization of the radio resources. The
BSC uses traffic information to balance the temporary traffic load between
its cells. They are expensive and therefore there are not so many BSCs in
a UMTS network [2].

The MSC, Mobile Service Switching Center, is part of the Switching Sys-
tem, see figure 2.1. The MSC controls calls to and from the PSTN, Public
Switched Telephone Network, and within and between PLMN, Public Land
Mobile Networks. A national or international transit is called a GMSC,

Theoretical background 7

Gateway Mobile Service Switching Center [2].

In UTRAN the BSS consists of RNC, Radio Network Controller, and RBS,
Radio Base Station.

The main function of the Node B (or RBS in Ericsson terminology) is
to perform the air interface L1, level 1, processing (channel coding and
interleaving, rate adaption, spreading, etc.). It also performs some basic
Radio Resource Management operation as the inner loop power control. It
logically corresponds to the GSM Base Station. see figure 2.1 [3].

RNC performs cell resource allocation, radio resource management, system
information broadcasting and hand over. Described in Gunnarsson et al.
“The mobiles, the base stations and their radio resources are all controlled
by the radio network controller (RNC)” [4].

RXI, is an ATM and IP router [5, 6].

The SGSN, Serving GPRS Support Node, stores information about mobile
nodes visiting its network, copy of the visiting user’s service profile, as
well as more precise information on th UE’s, User Equipments, location
within the serving system. The MSC and SGSN servers determine what
media gateway functions and resources are required by the call/session and
controls them via the gateway control protocol. The Ericsson SGSN server
determines and controls end-user Internet protocol services and mobility
management [6, 3].

GGSN, Gateway GPRS Support Node, provides the interface between mo-
bile networks and the Internet or corporate intranets. Consequently, the
GGSN usually incorporates a firewall. Incoming data packets are packed
in a special container by the GGSN and forwarded over GTP, the GPRS
Tunnel Protocol, to the SGSN [7].

HLR, Home Location Register, stores the locations of mobile stations. It
contains subscription information and information about which MSC area
the mobile station is within at a given moment. This information is needed
to make it possible to set up a call to a mobile station [2].

8 2.1. Overview over UMTS networks

EIR, Equipment Identity Register, stores hardware numbers of the autho-
rized mobile stations and information about them. This information is used
to prevent not type-approved equipment from accessing the network, for
example stolen mobile station equipment. MSC is connected to EIR and
uses the information from EIR to check the validity of the mobile station
equipment [2].

SCP, Service Control Point, is detecting and handling IN services, Intel-
ligent Network services, like local number portability, routing calls to the
location that is closest to or most convenient for the calling party, Premium
Rate services etc. [8].

Theoretical background 9

2.2 NETSim

NETSim is a simulator developed by Ericsson. NETSim is written in the
Erlang programming language and is currently running on Suse Linux and
on Sun Solaris. NETSim simulates GSM, UTRAN or combined UMTS
networks. It simulates the operation and maintenance behavior of telecom-
munication networks. It does not simulate data traffic in the net, telephone
traffic, GPRS data etc.

NETSim can be combined with a real UMTS network. An O&M, Operation
and Maintenance, operator can in that way perform O&M on both real
NEs, Network Elements, and on simulated NEs. It is also possible to train
on simulated NEs simulating not yet developed NEs [1].

NETSim can be used [9]:

• for testing O&M part of the network elements in different types of
testing.

• as a substitute when real nodes are too expensive or are not developed
yet.

• to simulate erroneous behaviour in a node.

• to simulate the behaviour of a real network for training of O&M
system users.

• for installation and delivery tests of O&M systems.

In NETSim a simulation consists of one or more networks that each contains
a number of network elements, usually 100 – 300 NE per network. To load,
start and stop simulations one can either use the command line interface,
netsim shell, or the graphical user interface, netsim gui, see figure 2.2.

10 2.2. NETSim

Figure 2.2: NETSim graphical user interface.

In figure 2.2 we can see a running network simulation with 100 NEs. In
the simulation there is one RNC, RNC07, and 98 RBS, RNC07RBS7001-
RNC07RBS7098, and one hidden RXI. The RBS’s and the RXI are all
connected to the RNC called RNC07.

Theoretical background 11

NETSim consists of the following blocks; a super-server that takes care of
starting and registering other nodes, a coordinator that handles the user in-
terfaces, server(s) that each of them handles execution of 1 to MaxPerServer
NEs (in our simulations 1 to 32), NME, NETSim Management Extension,
that handles communication to monitor and administration through SNMP,
Simple Network Management Protocol, and error logger that takes care of
all error logging [10].

Figure 2.3: NETSim block diagram.

Many of the NEs communicate using Corba over SSL, Secure Sockets Layer,
and some of the AXE based NEs use X25. Different protocols used for O&M
traffic are used by NETSim. Examples of such protocols are MTP, Mes-
sage Transfer Protocol, Corba, telnet, SSH, FTP, File Transfer Protocol,
and SFTP, Secure File Transfer Protocol. Alarms from NEs that commu-
nicate using Corba are sent with SSLIOP, Secure Socket Layer Inter-ORB
Protocol, to the O&M system.

The O&M systems sends operation and maintenance commands, config-

12 2.2. NETSim

urations, software upgrades etc, to NEs and NEs sends alarm messages,
notifications and produces performance measurements to the O&M sys-
tem [1].

The NEs use one IP address each in a simulation [1].

NETSim uses databases, one for storing global data, one database for each
running simulation and one database per NE. During simulation runs the
NEs have data stored in a database on disk and a working copy in primary
memory. When an NE is started it reads in data from disk to its working
area and when it is stopped it saves data to the database on disk.

NEs are restarted every time they perform a SWUG, SoftWare UpGrade.
SWUG in NETSim is a simulation of a software upgrade. The NEs gets
an upgrade control file, where the upgrade control file contains information
about where the new software file is and what method should be used to
collect it. The simulated NEs in NETSim gets the new software file and
drops it, without installing it (whereas a real NE would, of course, use it for
installation). The NEs stores attributes in an MO tree, Managed Objects
tree, within a MIB tree, Management Information Base. The MO tree is
a data structure for storing information, attributes, about the NEs, and
for manipuling hardware (in real NEs), software and configurations. The
information is stored in the internal nodes and in the leafs. Example of
attributes is fan speed for a fan. The number of MO’s and MO attributes
for an RNC, an RBS and an RXI are shown in table 2.1 [1, 11].

Number of MO Number of MO attributes
RNC ∼ 5 ∗ 104 ∼ 2 ∗ 106

RBS ∼ 4 ∗ 102 ∼ 4 ∗ 103

RXI ∼ 2 ∗ 104 ∼ 3 ∗ 105

Table 2.1: Number of MO’s and MO attributes in some NEs.

NETSim is distributing simulated NEs over all CPU’s in a system via the
server nodes [10]. The algorithm is:

Theoretical background 13

1. If the number of server nodes are fewer than the number of CPU’s in
the system start a new server node on a new CPU.

2. If number of NEs is equal to max number of NEs per server node
start a new server node.

3. Else select the least occupied server node for the new NE.

2.3 OSS

OSS, Operations Support System, is an O&M system. The operations of
OSS are [2]:

• Cellular network administration

• Configuration management

• Software management

• Hardware management

• Fault management

• Performance management

• Security management

In large Public Land Mobile Network, the amount of network data is huge.
There may be thousands of NEs and each NE has more than a hundred
NE parameters controlling and defining neighbour relations between NEs
and the behaviour of the NE itself.

When changes are introduced, it is important that the new data, for ex-
ample a NE parameter in a new NE, does not disturb the other NEs or
introduce unexpected behaviour into the network. Checking all the param-
eters involved is a tedious task. Cellular Network Administration provides
support for changes in the cellular network [2].

14 2.3. OSS

Configuration management includes the following functions: presenting
managed objects and their parameters, adjusting the database with net-
work configuration data, importing and exporting configuration data, sup-
port for taking objects in or out of operation, initiating tests on objects,
planning and introducing new sites and reconfiguring objects [2].

The software management is used to store, control and upgrade central
function software and transceiver software [2].

The hardware management provides the operator with a register of all
installed hardware from which he or she can get an overview of hardware
products on the sites. This information is important for many reasons,
for example to handle spare parts or to trace hardware units of a specific
update revision [2].

OSS has a fault management that covers the following types of problems:
network element generated alarms, data link generated alarms, externally
generated alarms i.e. alarms originated from alarms in the buildings where
the OSS is installed and OSS internal generated alarms [2].

There are three performance management functions within OSS: perfor-
mance management statistics which can be used to continuosly evaluate
the overall performance of the cellular network, statistical reports which is
a set which focus on the data used for managing, planning and engineering
a cellular network, performance management traffic recording which is a
general data collection tool for the radio path that can be used to survey
limited network areas and to verify NE and locating changes [2].

The OSS provides mechanisms for handling authority and access and it
is used among other things for delegating management tasks to specific
departements [2].

The data OSS collects is statistics and NE data. OSS transfers the data
from the NEs with FTP or SFTP. Example on statistics is the number of
phone calls, number of lost calls etc. OSS also subscribes for notifications
and alarm messages from the NEs. Alarms and notifications are sent with
SSLIOP, Corba over SSL. NEs send notifications when an attribute value in

Theoretical background 15

the MO tree is changed, and when the MO tree is changed, an attribute is
deleted or a new attribute is added. The O&M systems sends configuration
data, commands and software upgrades to the NEs over SSLIOP [1].

2.4 The load generator

The load generator imitates some of the load that OSS puts on NETSim.
The load generator performs performance monitoring, PM, by collecting
data from the NEs. It also sees to that the NEs change their attribute
values in the MO tree and sends an AVC notification, Attribute Value
Change, and sees to that NEs changes the MO tree and sends topology
change notifications.

Another important thing is alarms. In a simulation with a load generator
10 alarms / second are sent from NEs to the load generator. The alarms
are sent from NEs in the first simulated network. 10 alarms / second is a
standard value at Ericsson.

The load generator also does topology synchronization, and attribute syn-
chronizations for all MO trees for all NEs. A topology synchronization
followed by an attribute synchronization is also called nesync. During the
topology synchronization the load generator makes a snapshot of the NEs
MO tree.

All the above is background load. Background load 1 is defined as aver-
age alarms + average attribute change + performance monitoring + NE
restarts. Background load 2 is defined in the same way as background load
1 except NE restarts. Another task the load generator can do is SWUG,
SoftWare UpGrade, on NEs [12].

16 2.5. RAID

2.5 RAID

Redundant Arrays of Independent Disks, RAID works with three key con-
cepts, mirroring, striping and different error correction techniques. Mir-
roring needs two or more physical disks, and copies each block to all disks
at the same offset. Striping need two or more physical disks and saves
data blocks or blocksegments in a round robin fashion. Error correction or
detection techniques are implemented by parity check and Reed-Solomon
code. RAID can be implemented in hardware or software. In hardware
implemented RAID, a RAID controller performs parity calculations, and
management of the disks. Hardware implementations do not add any ex-
tra processing time to the CPU and present the RAID system as a logical
disk to the operating system. Software RAID provides an abstraction layer
between the logical disk and disk controller. There are six main standard
RAID levels, RAID-0, RAID-1 and RAID-3 to RAID-6, standardized by
SNIA , Storage Networking Industry Association.

Theoretical background 17

2.5.1 RAID-0

Striped set of disks without parity, needs two or more disks, see figure 2.4.
RAID-0 provides improved bandwidth in reading and writing large files,
because all included disks read and write at the same time. For files
smaller than the blocksize all disks can read and write independent of each
other. [13]

Figure 2.4: RAID 0.

18 2.5. RAID

2.5.2 RAID-1

Mirrored set of disks needs two or more disks, see figure 2.5. RAID-1 writes
at the same speed as a single disk but reading can be done independently
on all disks increasing bandwidth and decreasing seek time. [13]

Figure 2.5: RAID 1.

Theoretical background 19

2.5.3 RAID-3

Byte level striped set of disks with parity on a dedicated parity disk, see
figure 2.6. RAID-3 needs at least three disks. All disks apart from the
parity disk read at the same time. And all disks including the parity disk
write at the same time. [13]

Figure 2.6: RAID 3.

20 2.5. RAID

2.5.4 RAID-4

Block level striped set of disks with parity on a dedicated parity disk, see
figure 2.7. RAID-4 needs at least three disks. It has the same advantage
as RAID-0 but the parity disk can be a bottleneck, because after all write
operations new parity need to be calculated and written down. [13]

Figure 2.7: RAID 4.

Theoretical background 21

2.5.5 RAID-5

Block level striped set with distributed parity, see figure 2.8. RAID-5 needs
at least three disks. It has the same advantage as RAID-4 and because
the parity is distributed between all disks we avoid the parity disk bottle-
neck. [13]

Figure 2.8: RAID 5.

22 2.5. RAID

2.5.6 RAID-6

Block level striped set of disks with double distributed parity, see figure 2.9.
RAID-6 needs four or more disks. It is the same as RAID-5 but double
parity, using parity and Reed-Solomon code, orthogonal dual parity or
diagonal parity. [13]

Figure 2.9: RAID 6.

Theoretical background 23

2.6 Confidence Interval

Estimating a parameter by a single value is sometimes not precise enough.
Instead we use an interval called confidence interval. Confidence interval
is an interval that covers an unknown parameter with probability 1 − α.
1 − α is called confidence level and should be as large as possible, in most
cases 0.95, 0.99 or 0.999. Confidence interval is calculated from n samples,
with chosen confidence level 1 − α.

Im = Confidence Interval = (x − tα/2(f)d, x + tα/2(f)d)
d = s/

√
n

f = n − 1

s = sample standard derivation =
√

1
n−1

∑n
i=1(xi − x)2

x1, x2, ...; xn = the samples of the parameter.
x = arithmetic mean of the parameter.
n = number of samples.
tα/2(f) = Student’s t-distribution.

To get good precision we need the interval to be sufficiently small. To
achieve that we need adequate number of samples, a rule of thumb is if
we wants to halve the interval size, we need to quadruple the number of
samples. [14]

2.7 File systems

This section describes some of the Linux filesystems.

In Linux there is a virtual filesystem, VFS, that is “a kernel software layer
that handles all system calls related to a standard Unix filesystem” [15]. It
provides a common interface to several kinds of filesystems. The filesys-
tems supported by the VFS can be grouped into three main classes, disk-

24 2.7. File systems

based filesystems, network filesystems and special filesystems, see figure
2.10. Some examples of disk based filesystems are: ext2, ext3, Reiserfs,
XFS, JFS, VFAT, NTFS, ISO9660 CD-ROM filesystem etc. Examples of
network based filesystems are NFS, Coda, AFS, CIFS, and NCP. A typical
example of a special filesystem is the proc filesystem [15].

Figure 2.10: VFS role in file handling.

The disk based Linux file systems are quite different from each other but
they all have in common that they implement a few POSIX APIs. The
original Linux file system, ext, was developed from the minix file system.
The ext filesystem was further developed to ext2. Later journaling was
added to the file system that became ext3 [15].

Hans Reiser developed a filesystem called Reiserfs [16].

Silicon Graphics ported their filesystem XFS and IBM ported their filesys-
tem JFS to Linux in the late 1990’s.

Common to all disk based filesystems described here is that they all have

Theoretical background 25

a superblock that contains information about the filesystem and inodes,
where files and directory are represented persistently by inodes. “Each
inode describes the attributes of the file or directory and serves as the
starting point for finding the file or directory’s data on disk” [15]. [15, 16,
17, 18]

In the VFS there are two caching mechanisms, dentry cache and inode
cache [15].

Every time a new file object is read from disk a dentry object is created.
The dentry object“stores information about the linking of a directory entry
(that is, a particular name of the file) with the corresponding file” [15]. The
dentry objects are cached in a dentry cache in RAM. Further accesses to the
dentry data “can then be quickly satisfied without slow access to the disk
itself” [15]. Dentry cache “speeds up the translation from a file pathname
to the inode of the last pathname component” [15].

When a file is opened an inode object is created in the inode cache, which
stores corresponding inode information from disk [15].

Because these caches are in the VFS layer they are independent of the
underlying filesystems. The caches works in the same way independent of
file system type [15].

2.7.1 B+tree

B+trees is a tree data structure used by the filesystems Reiserfs, XFS
and JFS. B+trees provides faster lookup, insertion, and delete capabilities
than traditional filesystems with a linear structure. In B+trees the data
are sorted in a balanced tree with data stored in the leaf nodes. The time
complexity to search for data in a linear structure is O(n) and for a B+tree
it is O(log n). B+trees are for that reason more efficient than a linear data
structure [19].

26 2.7. File systems

2.7.2 ext3

The ext3 filesystem is essentially the same as the ext2 filesystem with jour-
nal file added. This section describes ext2 and ext3 data structures and
ext3 journaling.

The ext3 partition is split into a boot block and n block groups, see figure
2.11. The boot block is reserved and is not managed by the ext3 filesys-
tem [15].

Figure 2.11: Ext3 partition layout.

The layout of each block group is shown in the lower part of figure 2.11.
The superblock contains information about the filesystem, the total num-
ber of inodes, filesystem size in blocks, number of reserved blocks, free
block counter, free inodes counter, block size, volume name etc. The first
superblock, the superblock in block group 0, is the primary and is used by
the filesystem. All other superblocks are spare and are only used by the
filesystem check program [15].

The group descriptors in each block contains information about the num-
ber of free blocks in the group, number of free inodes in the group, number
of directories in the group, the block number of the first inode table block,
the block number of the inode bitmap and the block number of the block
bitmap. Free blocks, free inodes and used directories are used when allocat-
ing new inodes and data blocks. They determine the most suitable block
to allocate for each data structure. The two bitmaps contains 0’s and 1’s

Theoretical background 27

corresponding to the inodes and data blocks in the block group. 0 means
that the inode or the block is free and 1 that it is used. Each bitmap, that
must be stored in a single block, describes the state of 8192, 16384 or 32768
blocks depending on the blocksize, 1024, 2048 or 4096 bytes. A small block
size is preferable when the average file length is small because “this leads
to less internal fragmentation–that is, less of a mismatch between the file
length and the portion of the disk that stores it” [15]. Larger block sizes
“are usually preferable for files greater than a few thousand bytes because
this leads to few disk transfers, thus reducing system overhead” [15].

“The inode table consists of a series of consecutive blocks, each of which
contains a predefined number of inodes.” [15] “All inodes have the same
size: 128 bytes.” [15] The inode contains the file attributes, file type and
access rights, file owner, file length in bytes, last access time, time that
the inode was last changed, time that the file contents last was changed,
time of file deletion, the group that the file belongs to, hard link counter
(number of filenames associated with the inode), number of datablock of
the file, pointers to the file data blocks, etc [15].

The data blocks contain the contents of the files and directories [15].

“Ext2 implements directories as a special kind of file whose data blocks
store filenames together with the corresponding inode number” [15], see
figure 2.12. The directory entry parts are: inode number, length of the
record, length of the filename, file type and the filename. The length of a
directory entry is a multiple of 4 and, if necessary the filename are padded
with null characters at the end, see figure 2.12. The record length can be
interpreted as a pointer to the next record. The base address of the record
plus the record size gives the address to the next directory entry [15].

28 2.7. File systems

Figure 2.12: An example of a ext3 directory.

Because the files are stored in a linear structure in the directory the time-
complexity for searching for a file in a directory in ext3 is O(n), where n is
the number of files in the directory.

Nonempty regular files consist of a group of datablocks. In the indexnode
there is an array of 15 components (default value) that contains block
numbers to logical disk blocks of the file, see figure 2.13 [15].

The first 12 components in the array, 0 – 11, yield the block numbers
corresponding to the first 12 logical blocks of the file [15].

The 12th points to a block called indirect block, that represents a second-
order array of blocks. “They correspond to the file block numbers ranging
from 12 to b/4+11, where b is the filesystem’s block size” [15]. Each block
number is stored in 4 bytes therefore we divide by 4 [15].

The 13th component in the array contains the block number to an indirect
block containing a second-order array of block numbers. The logical blocks
pointed to by the second-order array contains the logical blocks b/4 + 12

Theoretical background 29

to (b/4)2 + (b/4) + 11 of the file [15].

The last index, 14, uses a triple indirection. The fourth-order arrays store
the logical blocks from (b/4)2 + (b/4) + 12 to (b/4)3 + (b/4)2 + (b/4) + 11
of the file [15].

This structure is an unbalanced tree with a shallow depth for the first part
of the file and a larger depth for the end of the file. The worst case search
complexity is O(d), where d is the depth of the tree, se figure 2.13 [19].

Figure 2.13: Data structures to address the file’s data blocks.

When ext3 allocates logical blocks for a file it preallocates up to eight
adjacent blocks. Ext3 also tries to allocate new blocks for a file near the

30 2.7. File systems

last block of the file. If that is not possible the filesystem searches for free
blocks in the same block group that includes the file’s inode. As a last
resort the filesystem allocates free blocks from other block groups. Both
these allocation methods reduces file fragmentation [15].

What distinguishes ext3 from its precursor ext2 is that ext3 has a special
file, a journal file. The main idea behind journaling is to perform each high-
level change to the filesystem in two steps. “First, a copy of the blocks to
be written is stored in the journal; then, when the I/O data transfer to the
journal is completed (in short, data is committed to the journal), the blocks
are written in the filesystem.” [15] When done the copies in the journal are
discarded. If the system fails before the blocks are completely committed
to the journal then, at recovery when the e2fsck program runs, it ignores
them. If the system fails after the blocks are committed to the journal
and before the blocks are written to the filesystem then at recovery the
e2fsck program copies the blocks from the journal and writes them into
the filesystem. In that way data can be lost but the filesystem is always
consistent [15].

For efficiency reasons, “most information stored in the disk data struc-
tures of an ext2 partition are copied into RAM when the filesystem is
mounted” [15].

2.7.3 Reiserfs

This section describes Reiserfs version 3. Reiserfs is a journaled file system
and it uses balanced trees to store files and directories [16].

A reiserfs partition starts with 64 KB unused disk space, reserved for par-
tition labels or boot loaders. “After that follows the superblock.” The
superblock contains information about the partition such as the block size,
the number of free blocks, and the block number of the root and journal
nodes. “There is only one instance of the superblock for the entire partition”
in Reiserfs [16].

Theoretical background 31

Directly following the superblock are n bitmap blocks, each mapping k
blocks. “One bitmap block can address (8 ∗ blocksize) blocks.” [16] If a bit
is set in the bitmap block it indicates that the block is in use, a zero bit
indicates that the block is free. The blocks follow the bitmap blocks [16].

There are 4 types of items in Reiserfs, stat data items, directory items,
indirect items and direct items. The stat data item contains information
about the file or directory such as file type, permissions, number of hard
links, id of the owner, group id, the file size, last access time, the time that
the file contents last was changed, the time the inode (stat data) was last
changed, and an offset from the beginning of the file to the first byte of
direct item of the file. For small files, the direct items contains the entire
file, “all the necessary other information can be found in the item header
and the corresponding stat item for the file” [16]. Larger files have pointers
to indirect items which points to the blocks that belongs to the file. “Larger
files are composed of multiple indirect items.” [16] [20, 16]

Directory items describes a directory. Directories with few files uses one
directory item and directories with many files will span across several direc-
tory items. The directory items contains headers and filenames, see figure
2.14. The directory headers have a hash value of the filename (called off-
set), an object id of the referenced item’s parent directory, object id of the
referenced item, offset to the name within the item, an unused bit and a bit
indicating if the entry should be visible or not. “The file names are simple
zero-terminated ASCII strings.” [16] The hash value is used to search for
file and directory names, and the items are sorted by the offset value [16].

Figure 2.14: A directory item in Reiserfs.

“The Reiser file system is made up of a balanced tree” [16], a B+tree. “The
tree is composed of internal nodes and leaf nodes”[16], see figure 2.15. Each
object, file, directory, or stat item, “is assigned a unique key, which can be

32 2.7. File systems

compared to an inode number in other file systems”. “The internal nodes
are mainly composed of keys and pointers to their child nodes.” “Except
for indirect items all the data is contained within the leaf nodes.” [16] Each
node is contained in a disk block. The leafs have level number 1 in the tree
and the root node has the highest level [16].

Figure 2.15: Reiser file system B+tree.

The keys are used to uniquely identify items, to find them in the tree and
to achieve local groupings of items that belong together. The keys consists
of four objects, the directory id, the object id, an offset and a type. Two
objects in the same directory have the same directory id. When two keys
are compared they are first compared by their directory id, and if they are
equal by their object id and so on. For large files the Reiser file system
uses multiple keys where the offset in the keys denotes the offset in bytes
of the file [16].

When Reiserfs places nodes of the tree on the disk, it searches for the
first empty block in the bitmap which it finds by starting at a location of
the left neighbor of the node in the tree ordering, and moving in the last
moved direction. This method was experimentally found by the developers
to be better than “taking the first non-zero entry in the bitmap” [20], or

Theoretical background 33

“taking the entry after the last one that was assigned in the direction last
moved” [20], or “starting at the left neighbor and moving in the direction
of the right neighbor” [20].

2.7.4 XFS

The XFS file system is a journaled file system. The XFS file system uses
B+trees for almost all file system data structures [21].

“XFS is modularized into several parts”[21]. The space manager is a central
and important module which manages the file system free space, the allo-
cation of inodes, and the allocation of space within individual files. “The
I/O manager is responsible for satisfying file I/O requests” [21]. “The direc-
tory manager implements the XFS file system name space.” [21] The buffer
cache is used by all these parts to cache contents of frequently accessed
blocks in memory for efficiency reasons. The transaction manager is used
by other pieces of the file system so all metadata updates can be atomic.
[21].

The XFS partition is split into a number of equally sized chunks called
AG, Allocation Groups. “Each AG has the following characteristics:” [17]
“A super block describing overall filesystem info” [17] , “free space man-
agement” [17] and “inode allocation and tracking” [17]. The disk layout
structure of an Allocation Group are shown in figure 2.16. The superblock
in the the first Allocation Group is the primary and is used by the filesys-
tem. All other superblocks are spare and are only used by xfs repair. The
first AG maintains global information about free space across the filesystem
and total number of inodes. “Having multiple AGs allows XFS to handle
most operations in parallel” [17].

34 2.7. File systems

Figure 2.16: XFS AG layout.

The superblock contains information about the filesystem, the block size,
total number of blocks available, the first block number for the journaling
log, the root inode number in the inode B+tree, the number of levels in the
inode B+tree, the AG relative inode number most recently allocated, the
size of each AG in blocks, the number of AGs in the filesystem, the number
of blocks for the journaling log, the underlying disk sector size, the inode
size in bytes, number of inodes per block, name for the filesystem, etc [17].

Theoretical background 35

XFS uses two B+trees to manage free space. One B+tree tracks free space
by block number and the second B+tree by the size of the free space block.
“This scheme allows XFS to quickly find free space near a given block or
of a given size.” [17] “The second sector in an AG contains the information
about the two free space B+trees” [17].

Inodes are allocated in chunks where each chunk contains 64 inodes. A
B+tree is used to track the inode chunks of inodes as they are allocated
and freed. The inodes contain almost the same information as in the ext3
filesystem. XFS uses extents where the extents specify where the file’s ac-
tual data is located within the filesystem. “Extents can have 2 formats”[17]:
for small files the“extent data is fully contained within the inode which con-
tains an array of extents to the filesystem blocks for the file” [17], for larger
files the “extent data is contained in the leaves of a B+tree” [17] where the
“inode contains the root node of the tree” [17], see figure 2.17 [17].

Figure 2.17: XFS file data structure.

36 2.7. File systems

“The data fork contains the directory’s entries and associated data”[17] and
the format of the entries can be one of 3 formats. For small directorys with
few files the“directory entries are fully contained within the inode”[17]. For
medium size directorys the “actual directory entries are located in another
filesystem block” [17] and “the inode contains an array of extents to these
filesystem blocks” [17]. For large directorys with many files the “directory
entries are contained in the leaves of a B+tree” [17]. “The inode contains
the root node of the tree” [17]. The number of directory entries that can
be stored in an inode depends on the inode size, the number of entries, the
length of the entry names and extended attribute data [17].

In the XFS filesystem the journaling is implemented to journal all meta-
data. First XFS writes the updated metadata to an in-core log buffer and
then asynchronously writes the log buffers to the on-disk log [21].

Theoretical background 37

2.7.5 JFS

The journaled file system, JFS, was developed by IBM for the IBM AIX
Unix and later ported to Linux [18].

A JFS filesystem is built on top of a partition. The partition can be a
physical partition or a logical volume. The partition is divided in a number
of blocks where each block has the size blocksize. “The partition block
size defines the smallest unit of I/O” [18]. There is one aggregate in the
partition and it is wholly contained within the partition. “A fileset contains
files and directories.” [18] A fileset forms an independently mountable sub-
tree. “There may be multiple filesets per aggregate” [18], see figures 2.18
and 2.19. [18, 22]

Figure 2.18: JFS aggregate with two filesets.

A fileset has a Fileset Inode Table and a Fileset Inode Allocation Map.
The Inode Table describes the fileset-wide control structures. The Fileset
Allocation Map contains allocation state information on the fileset inodes
as well as their on-disk location. The first four, 0–3, inodes in the fileset
are used for “additional fileset information that would not fit in the Fileset
Allocation Map Inode in the Aggregate Inode Table” [22], root directory

38 2.7. File systems

inode for the fileset, inode for the Access Control List file. “Fileset inodes
starting with four are used by ordinary fileset objects, user files, directories,
and symbolic links” [22].

Figure 2.19: A JFS fileset.

The Aggregate superblock maintains information about the entire file sys-
tem and includes the following fields: size of the file system, number of
data blocks in the file system, a flag indicating the state of the file system,
allocation group sizes. The secondary superblock is used if the primary
superblock is corrupted [22].

The Aggregate inode table contains inodes describing the aggregate-wide
control structures. The secondary Aggregate Inode Table contains repli-
cated inodes from the inode table. The inodes in the inode table are critical
for finding file system information therefore are they duplicated. The Ag-
gregate inodes are used for describing the aggregate disk blocks comprising
the Aggregate Inode Map, describing the Block Allocation Map, describing
the journal log, describing bad blocks, and there is one inode per fileset [22].

The Aggregate Inode Allocation Map contains allocation state information
on the Aggregate inodes as well as their on-disk location. The secondary
Aggregate Inode Allocation Map describes the Secondary Aggregate Inode
Table [22].

The Block Allocation Map describes the control structures for allocating
and freeing aggregate disk blocks within the aggregate. It is used to track
the freed and allocated disk blocks for an entire aggregate [22].

JFS allocates inodes dynamically in contiguous chunks of 32 inodes in a
inode extent. This allows inode disk blocks to be placed at any disk ad-

Theoretical background 39

dress, which decouples the inode number from the location. It eliminates
the static allocation of inodes when creating the filesystem. “File allocation
for large files can consume multiple allocation groups and still be contigu-
ous” [22]. “With static allocation the geometry of the file system implicitly
describes the layout of inodes on disk; with dynamic allocation separate
mapping structures are required.” [22] The Inode Allocation Map provides
with the function of finding inodes given the inode number. “The Inode Al-
location Map is a dynamic array of Inode Allocation Groups (IAGS).” [22]
The mapping structures are critical to the JFS integrity [22].

For directories two different directory organizations are provided. The first
is used for small directories, up to 8 entries, and stores the directory con-
tents within the directory’s inode (except . and .. which are stored in
separate areas of the inode). This eliminates the need for separate block
I/O and separate block storage. “The second organization is used for larger
directories and represents each directory as a B+tree keyed on name” [18].

Allocation groups divide the space in an aggregate into chunks where al-
location policies try to cluster disk blocks and disk inodes for related data
to achieve good locality. Files are often read and written sequentially, and
the files in a directory are often accessed together [22].

“A file is represented by an inode containing the root of a B+tree which
describes the extents containing user data.” [22] The B+tree is indexed by
the offset of the extents. “A file is allocated in sequences of extents.” [22]
An Extent is a variable length sequence of contiguous aggregate blocks
allocated to a JFS object as a unit. The extents are defined by two values,
its length, measured in units of aggregate block size, and its address (the
address to the first block of the extent). The extents are indexed in a
B+tree [23, 22].

“JFS uses a transaction-based logging technique to implement recoverabil-
ity.” [23] JFS journals the file system structure to ensure that it is always
consistent. “User data is not guaranteed to be fully updated if a system
crash has occurred” [23]. When the inode information is updated for some
inodes the inode information is written to the inode extent buffer. Then
the record is written. “After the commit record has actually been written

40 2.8. I/O Scheduling Algorithms

(I/O complete), the block map and inode map are updated as needed, and
the tlck’ed meta-data pages are marked ’homeok’ ” [23].

2.8 I/O Scheduling Algorithms

In Linux there are 4 algorithms for handling disk I/O requests, the noop
elevator, the complete fairness queueing elevator, the deadline elevator and
the anticipatory elevator. The heuristics is reminiscent of the algorithm
used by elevators when dealing with request coming from different floors
to go up or down. “The elevator moves in one direction and when it has
reached the last booked floor the elevator changes direction and starts mov-
ing in the other direction” [15].

In the Linux 2.6 kernel up to 2.6.17, including the 2.6.8 used in our tests,
the anticipatory elevator is the default algorithm. In 2.6.18 the kernel
developers changed algorithm to the complete fairness queueing elevator as
the default algorithm [15, 24].

The Noop elevator is the simplest algorithm of the four algorithms. There
is no ordered queue and new requests are added either at the end or at the
front of the dispatch queue. “The next request to be served is always the
first in the dispatch queue” [15].

The Deadline elevator algorithm uses four queues and a dispatch queue.
Two queues are sorted queues for read and write requests ordered according
to their initial sector number. Two queues are deadline queues including
the same read and write requests sorted according to their deadlines. The
expire time for read requests is 500 milliseconds and for write requests 5
seconds. Read requests are privileged over write requests. The deadline
ensures that the scheduler looks at a request if it has been waiting a long
time [15].

“When the elevator replenishes the dispatch queue it determines the data
direction of the next request and if there are both read and write requests
to be dispatched, the elevator chooses the read direction, unless the write

Theoretical background 41

direction has been discarded too many times” [15].

The elevator also checks the deadline queue relative to the chosen direction.
If a request in the queue is elapsed, the elevator moves that request to the
tail of the dispatch queue. It also moves a batch of requests taken from the
sorted queue starting from the request following the expired one [15].

If there are no expired requests the elevator dispatches a batch of requests
starting with the request following the last one taken from the sorted queue.
When the tail of the sorted queue is reached the search starts again from
the top [15].

The anticipatory elevator uses a dispatch queue, two deadline queues and
two sorted queues. The algorithm is an evolution of the Deadline elevator.
The two sorted queues are one for read requests and one for write requests.
The two deadline queues, one for read requests and one for write requests,
are sorted according to their “deadlines”. The request are the same as in
the two sorted queues [15].

Figure 2.20: The anticipatory elevator.

The deadline queues are implemented to avoid request starvation, which
occurs when the elevator policy for a very long time ignores a request be-

42 2.8. I/O Scheduling Algorithms

cause it handle other requests that are closer to the last served one. A
request deadline is an expire timer that starts when the request is queued.
The default expire time for read requests is 125 milliseconds and for write
requests is 250 milliseconds. The I/O scheduler keeps scanning the two
sorted queues, alternating between read and write request but giving pref-
erence to the read ones and moves the requests to the dispatch queue. The
scanning is sequential, unless a request expires. The scheduler looks at
the deadline queues and checks if there are any requests to expire, then it
handles them and moves them to the dispatch queue, see figure 2.20.

If a request behind another one is less than half the seek distance of the
request after the current position the algorithm chooses that one instead.
This forces a backward seek of the disk head [15].

The anticipatory elevator saves statistics about the patterns of I/O oper-
ations. The elevator tries to anticipate requests based on the statistics.
Right after dispatching a read request that triggered by some process, the
anticipatory elevator checks if the next request in the sorted queue comes
from the same process. If not the elevator looks at the statistics about
the process and decides if its likely that the process will issue another read
request soon, then it stalls for a short period of time [15].

The CFQ, complete fairness queueing, elevator uses a dispatch queue and
a hash table with queues. The default number of queues in the hash table
is 64. The hash function converts the thread group identifier of the current
process into the index of a queue. The thread group identifier is usually
corresponding to the PID, Process ID. The elevator scans the I/O input
queues in a round-robin fashion and refills the tail of the dispatch queue
with a batch of requests [15].

Theoretical background 43

Figure 2.21: CFQ elevator.

2.9 Virtual Memory and Swap

“Virtual memory is the separation of user logical memory from physical
memory.” [25] “This separation allows an extremely large virtual memory
to be provided for programmers when only a smaller physical memory is
available” [25], see figure 2.22 [25].

“Virtual memory is commonly implemented by demand paging.”[25] “When
we want to execute a process, we swap it into memory.” [25] “Rather than
swapping the entire process into memory, however, we use a lazy swap-
per.” [25] “A lazy swapper never swaps a page into memory unless that
page will be needed”. [25]

44 2.9. Virtual Memory and Swap

Figure 2.22: Virtual memory.

The virtual memory is mapped to physical memory and to swap space
(usually a hard disk). When a process is started parts of the program, or
the whole program, is loaded into the physical memory. When we start
executing a process the operating system sets the instruction pointer to
the first instruction of the process. If that page is not in physical memory
a page fault occurs and the page is brought into memory. “After this
page is brought into memory, the process continues to execute, faulting as
necessary until every page that it needs is in memory.” [25] “In this way,
we are able to execute a process, even though portions of it are not (yet) in
memory.” [25] When a process tries to allocate more memory it is given the
memory if there is enough free physical memory. If there is no free page
frame the OS uses a page-replacement algorithm to select a victim page. If
the victim page has been changed it is first written to swap space before it
is reused. If a process accesses a swapped-out page a page fault occurs and
the page is swapped in. When swapping in a page it might be neccessary
to first swap out another page [25].

Virtual memory in Linux is implemented by demand paging. It uses the
PFRA, Page Frame Reclaiming Algorithm. The main goal of the algo-
rithm is to pick up page frames and make them free. PFRA handles page

Theoretical background 45

frames in different ways depending on what content they have. We can
distinguish between unreclaimable pages, swappable pages, syncable pages
and discardable pages. For unreclaimable pages reclaiming is not allowed
or needed. Example of such pages are reserved pages, pages dynamically
allocated by the kernel, pages in the kernel mode stacks of the processes
and temporarily locked pages. Swappable pages are anonymous pages in
the user mode address area (user mode heap and stack) and mapped pages
from the tmpfs filesystem. When a swappable page is reclaimed the kernel
saves the page contents on the swap area first. Syncable pages must be syn-
chronized with their image on disk before they can be used. Discardable
pages are unused pages included in memory caches and unused pages of
the dentry cache (cache of links between file names and index nodes). The
discardable pages can be used without saving the page contents first [15].

When swapping out a page the kernel tries to store it in contiguous disk
slots to minimize disk seek time when accessing the swap area. If more
than one swap area is used the kernel starts to use the area with the highest
priority. “If there are several of them, swap areas of the same priority are
cyclically selected to avoid overloading one of them.” [15] If there is no free
slot in the highest priority areas the search continues with the swap areas
that have a priority next to the highest one, and so on [15].

In many computer architecture and in the 80x86 architecture the page
frame memory have hardware constraints that limit the way page frames
can be used. There are in particular two hardware constraints that the
Linux kernel must deal with in the 80x86 architecture [15]:

• “The Direct Memory Access (DMA) processors for old ISA buses have
a strong limitation: they are able to address only the first 16MB of
RAM.” [15]

• “In modern 32-bit computers with lots of RAM, the CPU cannot
directly access all physical memory because the linear address space
is to small.” [15]

To cope with these limitations the memory in the Linux 2.6 kernel, the

46 2.9. Virtual Memory and Swap

physical memory is partitioned into three zones. In the 80x86 architecture
the zones are [15]:

ZONE DMA Contains frames of memory below 16MB

ZONE NORMAL Contains frames of memory from 16MB to 896MB

ZONE HIGHMEM Contains frames of memory from and above 896MB

In the Linux kernel all memory pages belonging to the User Mode address
space and to the page cache are grouped into two lists, the active list that
tends to include the pages that have been accessed recently and the inactive
list that tends to include the pages that have not been accessed for some
time. The function refill inactive zone() moves pages from the active list to
the inactive list. The function must not be too aggressive and move a large
number of pages from the active list to the inactive list. In that case the
system performance will be hit.”On the other hand, if the function is too
lazy, the inactive list will not be replenished with a large enough number of
unused pages” [15]. In that case the PFRA will fail in reclaiming memory.

In the kernel there are a group of kernel threads called pdflush. The pdflush
systematically scan the page cache looking for dirty pages, pages that has
been changed, to flush [15].

2.9.1 Swappiness

The refill inactive zone() function uses swap tendency which regulates its
behaviour. “The swap tendency value is computed by the function as fol-
lows” [15]:

“swap tendency = mapped ratio / 2 + distress + swappiness” [15]

“The mapped ratio value is the percentage of pages in all memory zones
that belong to User Mode address spaces (sc->nr mapped) with respect to
the total number of allocatable page frames. A high value of mapped ratio

Theoretical background 47

means that the dynamic memory is mostly used by User Mode processes,
while a low value means that it is mostly used by the page cache.” [15]

“The distress value is a measure of how effectively the PFRA is reclaiming
page frames in this zone; it is based on the scanning priority of the zone
in the previous run of the PFRA” [15]. 12 is the lowest priority and 0 is
the highest. The distress value is computed based on the zones previous
priority, see table 2.2 [15].

Zone’s previous priority 12..7 6 5 4 3 2 1 0
Distress value 0 1 3 6 12 25 50 100

Table 2.2: Distress value.

Swappiness is a user defined constant which may be tuned by the system
administrator by writing in the /proc/sys/vm/swappiness file or by using
the sysctl command (issuing the sysctl() system call). The swappiness value
is usually set to 60 [15].

“Pages will be reclaimed from the address space of processes only if the
zone’s swap tendency is greater or equal to 100.” [15] With a swappiness
value of 0 the PFRA never reclaims pages in the User Mode address space
unless the zone’s previous priority is zero, which is an unlikely event. With
a swappiness value of 100 the PFRA reclaims pages in the User Mode
address space at every invocation [15].

2.9.2 vfs cache pressure

The /proc/sys/vm/vfs cache pressure, and sysctl vm.vfs cache pressure,
control the tendency of the kernel to reclaim the memory which is used for
caching of directory and inode objects.

“At the default value of vfs cache pressure=100 the kernel will attempt
to reclaim dentries and inodes at a ”fair” rate with respect to pagecache
and swapcache reclaim. Decreasing vfs cache pressure causes the kernel

48 2.9. Virtual Memory and Swap

to prefer to retain dentry and inode caches. Increasing vfs cache pressure
beyond 100 causes the kernel to prefer to reclaim dentries and inodes.” [26]

2.9.3 dirty ratio and dirty background ratio

With these parameters it is possible to control the syncing of dirty data.

The /proc/sys/vm/dirty ratio, and the sysctl vm.dirty ratio, “contains, as
a percentage of total system memory, the number of pages at which a
process which is generating disk writes will itself start writing out dirty
data” [26].

The /proc/sys/vm/dirty background ratio, and the sysctl vm.dirty background ratio,
“contains, as a percentage of total system memory, the number of pages at
which the pdflush background writeback daemon will start writing out dirty
data” [26].

2.9.4 min free kbytes

The /proc/sys/vm/min free kbytes, and sysctl vm.min free kbytes, is used
to force the Linux VM to keep a minimum number of kilobytes RAM free.
“The VM uses this number to compute a pages min value for each lowmem
zone in the system. Each lowmem zone gets a number of reserved free pages
based proportionally on its size.” [27]

2.9.5 page-cluster

“The Linux VM subsystem avoids excessive disk seeks by reading multiple
pages on a page fault. The number of pages it reads is dependent on the
amount of memory in your machine.” [27]

“The number of pages the kernel reads in at once is equal to 2page−cluster.
Values above 25 don’t make much sense for swap because we only cluster

Theoretical background 49

swap data in 32-page groups.” [27]

The value is defined bye the /proc/sys/vm/page-cluster, and the sysctl
vm.page-cluster. [27]

2.9.6 dirty writeback centisecs

The /proc/sys/vm/dirty writeback centisecs, and sysctl vm.dirty writeback centisecs,
controls how often the pdflush writeback daemon will wake up and write
old data out to disk. “This tunable expresses the interval between those
wakeups, in 100’ths of a second.” [26].

50 2.9. Virtual Memory and Swap

Chapter 3

Realization

The goal of this thesis is to examine if it is possible to increase the size
of the running simulations with 50% more NEs on existing hardware with
operating system environment tuning. To see if it was possible we needed
to run test runs and measure the test runs by comparing them with a
reference test.

We decided to test one parameter at a time and see which of them made
improvements.

3.1 The test environment

The test environment consisted of 2 computers, one for the NETSim sim-
ulations, running Suse Linux 9.2, and one for the load generator, running
Solaris 9, and a local network between them. The NETSim computer was
an HP DL145 G1 with two single core AMD Opteron 2.4 GHz CPUs, 8GB
RAM and two Ultra SCSI disks. Unfortunately they were not the only
computers on the local network. However the network load was low and

51

52 3.1. The test environment

should therefore not have affected on our test runs. We wanted to test
only the simulations, not the combination of simulation and load genera-
tor, therefore the need of two computers. We wanted to be independent of
external servers, so we used local user accounts. The test environment is a
standard test environment for NETSim.

The computer running NETSim was reinstalled before the test runs with a
standard installation of Suse 9.2. The installation of Linux was automated
with autoyast/jumpstart and the installation of NETSim was automated
with shell scripts which give that the NETSim computer’s software and
configuration always was exactly the same for all test runs.

Our test nets consisted of 100 NEs, Network Elements, where 98 NEs was
RBS’s, one RNC and one RXI.

To find out where the limit for the computer running the simulations was
we ran simulations with 8, 9, 10 and 11 nets. During these test runs and
all the rest of the test runs we supervised the load generator by measuring
the alarm rate, PM, AVC, nesync and SWUG with the program moodss,
see figure 3.1. Moodss is a opensource software which can be found at
http://moodss.sourceforge.net/ . Moodss is frequently used at NETSim at
Ericsson.

Realization 53

Figure 3.1: Moodss supervising the load generator.

54 3.1. The test environment

We also supervised the two computers load, memory usage and swap usage
with moodss, see figure 3.2.

Figure 3.2: Moodss supervising a computer running NETSim.

Apart from monitoring the load, memory usage and swap usage with moodss
we did run extra tests to study the processor usage and network usage.

The maximum response time is 2 minutes for all of the above. This 2
minute limit is defined by OSS. At 11 nets the time limit was exceeded
with some errors as a consequence. Exceeding the time limit is an error.
The conclusion was that 10 nets with 1000 NEs was the upper limit for this
computer without optiminations applied.

The test run with 10 nets then became our reference run. All parameters
had their default values in this test. Thus the goal of this thesis is to
examine if it is possible to run NETSim with 15 nets on the computer we

Realization 55

used for the NETSim tests.

When changing a parameter on the computer running the simulations the
computer was first reinstalled. The only exception was for the virtual
memory parameters which could be changed without reinstalling or reboot
the computer.

All NETSim files and load generator temporary files were located on the
same local file system during all our tests. Load generator temporary files
is the part of the load generator that resides on the NETSim computer.

3.1.1 Test runs and measurement of IDL methods

The test runs were realized by starting NETSim and starting the test nets
and then running background load 2 (see page 15) plus software upgrades.
All tests took at least 15 – 17 hours because it took at least 15 – 17 hours
for the swap to level out. Before we could start the test runs the computer
was reinstalled, NETSim was reinstalled and the test nets were reinstalled
and then started. Reinstalling the computer and NETSim and starting all
the nets took 1 – 2 hours. This gives a total of 16 – 19 hours for each test
run.

The load generator logs times and response times for the IDL, interface
descriptions language,methods in log files on the computer running the
load generator. These include the three IDL methods below. The load
generator only writes to the logs when something happens. That means
that there can be different amounts of measure points for two test runs.
The unit for the logged response times is milliseconds.

The response times of three IDL methods were measured from the load gen-
erator logs, basic get MO containment short, get MO attributes, and ba-
sic create MO. These three make most load on the computer of all IDL meth-
ods. The basic get MO containment short is part of a topology sync.
Topology sync is where the load generator makes a snapshot of the whole
MO tree. The get MO attributes is part of an attribute sync, where sev-

56 3.1. The test environment

eral MO’s with several IDL methods are synced by the load generator. The
basic create MO is done as a part of the SWUG where the NEs collect an
Upgrade Control File, an XML file, who parse the XML file. The XML file
contains information about the software upgrade such as where to find the
software file and how to get it.

Realization 57

Mean value calculations with sliding window

To be able to interpret the test results we did a mean value calculation
of the response times by dividing them in two intervals and calculate one
interval at a time. Without doing that the oscillation of the response times
for the IDL methods were too fast to see anything and it was impossible
to draw any conclusions.

We divided the two test runs to be compared into intervals, where the
number of intervals were equal to the number of SWUG cycles. A SWUG
cycle is from the start of a SWUG to the start of the next SWUG. The
intervals from the two compared runs where synced with the SWUG cycles
by using the start and end times from the SWUG cycles, see figure 3.3.

Figure 3.3: Mean value calculation of response times.

Each SWUG cycle was divided into equal partial intervals to get an equal

58 3.1. The test environment

number of mean values for the two test runs. Otherwise the width of the
two calculated mean value graphs would differ and it would be impossible
to compare them. Further we used a sliding window and calculated the
mean value for the whole window and then moved the window forward and
calculated a new mean value and continued so to the end of the SWUG
cycle, see figure 3.4. The calculation then continued with the next SWUG
cycle.

Figure 3.4: Mean value calculation with a sliding window.

The two mean value curves were then plotted into one graph to a file with
gnuplot. Three graphs, one for each of the three IDL methods, were created.

Mean value calculations

The next thing we did was to calculate one mean value for each SWUG
cycle and plot them in a graph and calculated the least square for a third
degree function [28, 29] with gnuplot and plotted in the same graph.

Realization 59

f(x) = a1*x*x*x + b1*x*x + c1*x + d1
g(x) = a2*x*x*x + b2*x*x + c2*x + d2
fit f(x) "file1" via a, b, c
fit g(x) "file2" via d, e, h

plot f(x) title "~s" with lines lt 9, g(x) title "~s" with lines lt -1

In separate graphs the mean values were complemented with whisker bars
with median, quartile 1 and 3 and min95- and max95- values. 1st and
3’d quartile is the median of the lower respectively upper half of the data,
where the median of the whole set is not included. Max95 and Min95 is
the greatest respectively smallest value of the data, not included 5% of the
outliners. Outliners are the 5% extremest values.

Figure 3.5: A whisker bar.

The graphs show the deviation for the measured IDL methods in one test
run. See figure 3.6 for an hypothetic example.

60 3.1. The test environment

These two graphs were easier to calculate, took less time to calculate and
gave the same result as the first type with sliding window.

Figure 3.6: Mean value calculation with whisker bars and least square for
a third degree function.

Times for SWUG’s

SWUG’s are heavy and cause a lot of load on the NEs that are upgraded
during the software upgrade. It is therefore interesting to study the time it
takes to do all SWUG’s. We complemented with studying and comparing
the time it took for one SWUG cycle from start to nesync at the end of
the SWUG cycle, see figure 3.7.

Realization 61

Figure 3.7: Start and end of a SWUG.

The sample times are discrete values and the start of a SWUG can occur
between two values and the end of an nesync can occur between two values.
To see the time differences the graphs contains the minimum and maximum
times for a SWUG from start of SWUG to end of nesync, see figure 3.8.

62 3.1. The test environment

Figure 3.8: Maximum and minimum time difference for SWUG’s.

See figure 3.9 for an example of a plot of time difference for a number of
SWUG’s in a hypothetic test run.

Figure 3.9: Time difference for SWUG’s.

Realization 63

Two time difference curves from two test runs were plotted in the same
graph. See figure 3.10 for a hypothetic example.

Figure 3.10: Time difference for SWUG’s for two test runs.

Disk access load

To measure the disk access load, read and write from and to disk, during a
test run we ran a test on a Sun Fire T2000 with Solaris 10 and measured all
disk activities with a dtrace script rwsnoop. The hard drives were two SAS
interfaced, Serial Attached SCSI, FUJITSU MAY2073RCSUN72G 73.4GB
with an approximate read and write speed at 300 Mbyte/s, Interface SAS
(3Gbps) [30]. The result was summarized, in Mbyte, with the following
awk script.

awk ’BEGIN {c = 0} { c = c + $9} END { print c/(1024*1024)}’ datafile

The results are shown in table 3.1 and peak values in figures 3.11 and 3.12.

64 3.1. The test environment

PM/SWUG/ Number of nets MByte data Time (minutes) MByte/s
Background load
Background load 1 7.1478 8 0.01
PM 1 121.353 4 0.5
PM 2 241.246 3 1.3
SWUG 1 131.953 15 0.1
SWUG 1 137.172 15 0.2
SWUG 2 272.583 17 0.3

Table 3.1: Disk accesses.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 51800 51900 52000 52100 52200 52300 52400 52500 52600 52700 52800

M
B

yt
e

Time in s

Disk IO for SWUG on 1 net.

Figure 3.11: SWUG with 1 net.

Realization 65

 0

 2

 4

 6

 8

 10

 12

 58550 58600 58650 58700 58750 58800 58850 58900 58950 59000

M
B

yt
e

Time in s

Disk IO for SWUG on 2 nets.

Figure 3.12: SWUG with 2 nets.

We did not run any tests with 10 nets on the Sun Fire T2000 because of a
heavy-load bug in the communication between the Erlang process and the
SSL module.

The disk load is approximately but not exactly linear regard to number of
net and MByte/s. With a linear approximation this gives 5 MByte/s for
PM on 10 nets and 1 – 2 MByte/s for SWUG on 10 nets. Compared to the
speed for the PCI bus, the SAS interface and the speed for the hard drive
disk read and write of 1 – 5 MByte/s is very little. The computer we used
for almost all test runs have Ultra SCSI disks at a speed of 320 MByte/s
which is also much more than 1 – 5 MByte/s.

Peak disk load is slightly below 10 MB/s for 1 net and slightly above 10
MB/s for 2 nets. That indicates small increments in peak disk load.

With these numbers we can conclude that there are relatively few disk
accesses during a simulation run.

66 3.2. The tests

3.2 The tests

3.2.1 RAID

We choose RAID-0 because we do not need fault tolerance, and just want
improved I/O performance. We implemented Suses built-in software RAID
on two physical disks with 4 K bytes chunk size. The root- and swap-
partitions were not RAID:ed and each lying on one of the two disks 3.13.

Figure 3.13: RAID-0 with two disks.

3.2.2 Crypto Accelerator Card

Because NETSim use Corba over SSL for comunication, heavy crypto cal-
culations could be eliminated with a crypto accelerator card. We tested
Sun Crypto Accelerator 6000 PCI-E Board on a HP ProLiant DL145 G2
with two dualcore AMD Opteron model 285 2.6GHz processors running
Suse 9. The crypto accelerator card supports hash functions SHA1 and
MD5, block ciphers DES, 3DES and AESSun and RSA/DH public key,
with lengths of 512-2,048 bits. Sun Microsystems Inc. does not officially
support other platforms than Sun workstations and servers, but supports
Suse 9. We use OpenCryptoki as a bridge between OpenSSL and Suns

Realization 67

device driver. OpenCryptoki is a PKCS#11, Public Key Cryptography
Standard, wrapper. OpenCryptoki and OpenSSL are open source, while
Suns device driver is proprietary. With OpenSSL and Suns crypto accelera-
tor card, we measure double performance in RSA verifying and signing. We
could not test NETSim with Suns crypto accelerator card, because Suns
device driver did not work faultlessly on the HP platforms.

3.2.3 File systems

The file system used in the reference test was Reiserfs version 3. We tested
the other major file systems in Linux, ext3, XFS and JFS and compared
them with Reiserfs. For ext3 we did two tests, one with default values and
one with index and no update of atime.

In NETSim there are relatively few disk accesses, so changing the file system
should only have a small impact on the test run.

3.2.4 I/O Scheduling Algorithms

In Linux there are 4 I/O scheduling algorithms. The two most interesting
of them are the Anticipatory elevator and the CFQ elevator. They are
interesting because the Anticipatory elevator was the default elevator in
the Linux kernel up to version 2.6.17 and the CFQ elevator is the default
elevator in the kernel from 2.6.18. Therefore we wanted to test and compare
these two algorithms with each other. Both algorithms were tested with a
2.6.8 kernel.

The I/O scheduling algorithm should have little impact on the relatively
few disk accesses but it should have more effect on the swap usage when
running large simulations with large memory usage with much swapping.

68 3.2. The tests

3.2.5 Virtual Memory and Swap

We tested swap on two partitions on two different disks with the same
priority for both swap partitions. This should have some effect on large
simulations with large memory usage especially when the system starts to
swap and needs to swap very much. The effect might be less if the NETSim
partition lays on the same disk as one of the partitions. In that case NE disk
accesses might occur at the same time as swap accesses so the read/write
head needs to move a lot over the disk. If that happens it might be better
to have the swapspace on a separate disk.

The virtual memory parameters that we tested was swappiness,
vfs cache pressure, dirty ratio, dirty background ratio, min free kbytes, page-
cluster, and dirty writeback centisecs.

swappiness

The default value for swappiness is 60. We tested with swappiness 30
and 90. It is overall better to swap less especially when there are time
requirements on operations depending on memory and with that depending
on swap. The time limit on operations on NEs in NETSim is 2 minutes.
So it should be better to have a lower value on swappiness than a higher
one.

vfs cache pressure

The default value for vfs cache pressure is 100. We tested with
vfs cache pressure 50 and 150.

With the relatively few disk accesses it should be better to reuse the cache
memory used for directories and i-nodes and use the memory for NEs. A

Realization 69

vfs cache pressure value 100 should be better than 50, and 150 might be
even better.

dirty ratio and dirty background ratio

The default value for dirty background ratio is 10 and for vm dirty ratio
it is 40.

In a mail to the Linux Kernel Mailing List Linus Torvalds recommends to
set the dirty background ratio to 5 and dirty ratio to 10 [31].

Date Fri, 27 Apr 2007 08:18:34 -0700 (PDT)
From Linus Torvalds <>
Subject Re: [ext3][kernels >= 2.6.20.7 at least] KDE going comatose when FS is under

heavy write load (massive starvation)
Digg This

On Fri, 27 Apr 2007, Mike Galbraith wrote:
>
> As subject states, my GUI is going away for extended periods of time
> when my very full and likely highly fragmented (how to find out)
> filesystem is under heavy write load. While write is under way, if
> amarok (mp3 player) is running, no song change will occur until write is
> finished, and the GUI can go _entirely_ comatose for very long periods.
> Usually, it will come back to life after write is finished, but
> occasionally, a complete GUI restart is necessary.

One thing to try out (and dammit, I should make it the default now in
2.6.21) is to just make the dirty limits much lower. We’ve been talking
about this for ages, I think this might be the right time to do it.

Especially with lots of memory, allowing 40% of that memory to be dirty is
just insane (even if we limit it to "just" 40% of the normal memory zone.
That can be gigabytes. And no amount of IO scheduling will make it
pleasant to try to handle the situation where that much memory is dirty.

So I do believe that we could probably do something about the IO
scheduling _too_:

- break up large write requests (yeah, it will make for worse IO
throughput, but if make it configurable, and especially with
controllers that don’t have insane overheads per command, the
difference between 128kB requests and 16MB requests is probably not
really even noticeable - SCSI things with large per-command overheads
are just stupid)

70 3.2. The tests

Generating huge requests will automatically mean that they are
"unbreakable" from an IO scheduler perspective, so it’s bad for latency
for other reqeusts once they’ve started.

- maybe be more aggressive about prioritizing reads over writes.

but in the meantime, what happens if you apply this patch?

Actually, you don’t need to apply the patch - just do

echo 5 > /proc/sys/vm/dirty_background_ratio
echo 10 > /proc/sys/vm/dirty_ratio
and say if it seems to improve things. I think those are much saner
defaults especially for a desktop system (and probably for most servers
too, for that matter).

Even 10% of memory dirty can be a whole lot of RAM, but it should
hopefully be _better_ than the insane default we have now.

Historical note: allowing about half of memory to contain dirty pages made
more sense back in the days when people had 16-64MB of memory, and a
single untar of even fairly small projects would otherwise hit the disk.
But memory sizes have grown *much* more quickly than disk speeds (and
latency requirements have gone down, not up), so a default that may
actually have been perfectly fine at some point seems crazy these days..

Linus’’

Therefore we decided to run a test with dirty background ratio = 5 and
dirty ratio = 10.

min free kbytes

Our default value for min free kbytes is 282 MBytes RAM. The recom-
mended value for NETSim is at least 2% of the total size of RAM in the
computer. With less than 1–2% min free kbytes the device drivers could
not always allocate memory.

We ran one test with min free kbytes 158MB which was 2% of RAM in our
case with our computer. As seen above less than 1–2% min free kbytes is
not good. With a too high value a lot of memory stays unused and the

Realization 71

operating system needs to swap more. Therefore a too high value is not
good.

page-cluster

The default value for page-cluster is 3. We tested page-cluster values of
1 and 5. Page-cluster should have little effect on the relatively few disk
accesses but it should have more impact on large simulations with large
memory usage and much swapping.

dirty writeback centisecs

The default value for dirty writeback centisecs is 500. We tested with
a dirty writeback centisecs value of 1000. The dirty writeback centisecs
should have little effect on the relatively few disk accesses.

72 3.2. The tests

Chapter 4

Results

In this chapter we present the test results of our tests. All response times
below are in milliseconds.

4.1 Mean with sliding window

Besides the test runs with different values for the different paramaters we
run three reference runs and compared them with each other. The results
were plotted with mean value calculation with sliding window. Figure 4.1
shows the IDL method get MO attributes for two reference runs, ref 1 and
ref 2. We compared the IDL methods for two test runs at a time because
that was what our program was designed for.

73

74 4.1. Mean with sliding window

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600

R
es

po
ns

et
im

e

Value

Attributes

Original 1
Original 2

Figure 4.1: Comparing get MO attributes for two reference runs.

Figure 4.2 shows IDL method get MO attributes for reference run 2 and
test run with 2 separate swap partitions.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600

R
es

po
ns

et
im

e

Value

Attributes

Swap on 1 partition
Swap on 2 partitions

Figure 4.2: Comparing get MO attributes for reference run 2 and a swap
run.

Results 75

Figure 4.3 shows the IDL method basic create MO for two reference runs,
ref 1 and ref 2.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600

R
es

po
ns

et
im

e

Value

Create_MO

Original 1
Original 2

Figure 4.3: Comparing basic create MO for two reference runs.

76 4.1. Mean with sliding window

Figure 4.4 shows the IDL method basic create MO for reference run 2 and
test run with 2 separate swap partitions.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600

R
es

po
ns

et
im

e

Value

Create_MO

Swap on 1 partition
Swap on 2 partitions

Figure 4.4: Comparing basic create MO for reference run 2 and a swap
run.

Results 77

Figure 4.5 shows the IDL method basic get MO containment short for two
reference runs, ref 1 and ref 2.

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600

R
es

po
ns

et
im

e

Value

Get_MO

Original 1
Original 2

Figure 4.5: Comparing basic get MO containment short for two reference
runs.

78 4.1. Mean with sliding window

Figure 4.6 shows the IDL method basic get MO containment short for ref-
erence run 2 and test run with 2 separate swap partitions.

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600

R
es

po
ns

et
im

e

Value

Get_MO

Swap on 1 partition
Swap on 2 partitions

Figure 4.6: Comparing basic get MO containment short for reference run
2 and a swap run.

Results 79

4.2 Mean with whisker bars

We plotted graphs with mean values, one for each SWUG, and combined
them with least square for a second degree function and whisker bars.
Figure 4.7 shows the IDL method get MO attributes for two reference runs,
ref 1 and ref 2.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

et
im

e

Time

Attributes Whiskerbars Combined

Original 1
Original 2

Figure 4.7: Comparing get MO attributes for two reference runs with
whisker bars.

80 4.2. Mean with whisker bars

Figure 4.8 shows the IDL method basic create MO for two reference runs,
ref 1 and ref 2 with whisker bars.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

et
im

e

Time

Create_MO Whiskerbars Combined

Original 1
Original 2

Figure 4.8: Comparing basic create MO for two reference runs with whisker
bars.

Results 81

Figure 4.9 shows the IDL method basic get MO containment short for two
reference runs, ref 1 and ref 2 with whisker bars.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

et
im

e

Time

Get_MO Whiskerbars Combined

Original 1
Original 2

Figure 4.9: Comparing basic get MO containment short for two reference
runs with whisker bars.

82 4.2. Mean with whisker bars

Figure 4.10 shows the IDL method get MO attributes for reference run 2
and test run with 2 separate swap partitions with whisker bars.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

et
im

e

Time

Attributes Whiskerbars Combined

1 swap partition
2 swap partitions

Figure 4.10: Comparing get MO attributes for reference run 2 and a swap
run with whisker bars.

Results 83

Figure 4.11 shows the IDL method basic create MO for reference run 2 and
test run with 2 separate swap partitions with whisker bars.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

et
im

e

Time

Create_MO Whiskerbars Combined

1 swap partition
2 swap partitions

Figure 4.11: Comparing basic create MO for reference run 2 and a swap
run with whisker bars.

84 4.3. Swug-times

Figure 4.12 shows the IDL method basic get MO containment short for
reference run 2 and test run with 2 separate swap partitions with whisker
bars.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

et
im

e

Time

Get_MO Whiskerbars Combined

1 swap partition
2 swap partitions

Figure 4.12: Comparing basic get MO containment short for reference run
2 and a swap run with whisker bars.

4.3 Swug-times

We plotted time differences for SWUG cycles from start of SWUG to end
of nesync. Figure 4.13 shows the difference times for SWUGs for reference
run 1 and 2.

Results 85

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

T
im

e

Nr of Swug

Swugtimes-diff

Original 1 Max
Original 1 Min

Original 2 Max
Original 2 Min

Figure 4.13: Time difference for SWUGs for two reference runs.

Figure 4.14 shows the difference times for SWUGs for reference run 2 and
for a test run with swap on 2 separate partitions.

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30

T
im

e

Nr of Swug

Swugtimes-diff

1 swap partition Max
1 swap partition Min

2 swap partitions Max
2 swap partitions Min

Figure 4.14: Time difference for SWUGs for two test runs.

86 4.4. Memory usage

4.4 Memory usage

When we run a simulation with 10 nets on a computer with 8 GB RAM
the memory usage increased during the simulation run and the computer
started to swap after 10–12 hours, see figure 4.15.

Figure 4.15: Memory and swap usage.

The memory and swap used increased and after 15–17 hours the swap
reached around 5GB then the swap started to level out, see figure 4.16.

Results 87

Figure 4.16: Memory and swap usage where the swap levels out.

88 4.4. Memory usage

Figure 4.17 shows CPU and memory usage for 8 nets on a computer with
8GB RAM. The maximum memory used was 4521 MB RAM. This run was
little to short for the swap to level out.

Figure 4.17: CPU, memory and swap usage for 8 nets.

Figure 4.18 shows CPU and memory usage for 10 nets on a computer with
8GB RAM. The maximum memory used was 4736 MB RAM and used
swap was 5239 MB.

Results 89

Figure 4.18: CPU, memory and swap usage for 10 nets.

90 4.4. Memory usage

Figure 4.19 shows CPU and memory usage for 11 nets on a computer with
8GB RAM. The maximum memory used was 4922 MB RAM and used
swap was 5676 MB.

Figure 4.19: CPU, memory and swap usage for 11 nets.

Results 91

Figure 4.20 shows CPU and memory usage for 12 nets on a computer with
8GB RAM. The maximum memory used was 5294 MB RAM and used
swap was 6298 MB.

Figure 4.20: CPU, memory and swap usage for 12 nets.

92 4.4. Memory usage

When using 8 GB RAM the limit for the computer was 10 nets. There
where a few minor errors with 10 nets and more and more serious errors
for 11 nets.

There where 3 lgfmNumRenewalsAttempedTooLate, for 10 nets, see figure
4.21. LgfmNumRenewalsAttempedTooLate bigger than zero indicate that
the load generator is overloaded and do not manages to renewals FM, fault
management, subscription in time. lgfmNumRenewalsAttempedTooLate is
a measurepoint in NETSim to detect error behaviour.

Figure 4.21: FM for 10 nets.

Results 93

There where no errors for PM for 10 nets, lgpmNumFailedRops are zero,
see figure 4.22. LgpmNumFailedRops are a counter for all failures in pre-
formance monitoring, like IDL method invocations errors and downloading
data errors.

Figure 4.22: PM for 10 nets.

94 4.4. Memory usage

For FM for 11 nets the lgfmNumRenewalsAttemptedTooLate was 8, see
figure 4.23.

Figure 4.23: FM for 11 nets.

For PM for 11 nets the lgpmNumFailedRops was 1 and the lgpmNumFaile-
dIdlMethodInvocations was 1, see figure 4.24.

Results 95

Figure 4.24: PM for 11 nets.

96 4.4. Memory usage

On the same computer we used for most of the tests we halved the amount
of RAM from 8 GB to 4 GB. With 8 GB RAM the limit was 10 nets and
with 4 GB the limit was 6 nets.

Figure 4.25 shows SWUG’s for 6 nets and figure 4.26 shows SWUG’s for 7
nets. There were no errors for 6 nets and several errors for 7 nets.

Figure 4.25: SWUG for 6 nets on a computer with 4 GB RAM showing no
errors.

Results 97

Figure 4.26: SWUG for 7 nets on a computer with 4 GB RAM showing
several errors.

98 4.4. Memory usage

Chapter 5

Discussion, conclusions,
recommendations and
future work

5.1 Discussion and conclusions

In figures 4.1, 4.2 we can see that the difference for get MO attributes be-
tween two reference runs is bigger than get MO attributes when we com-
pare swap on two partitions with a reference run (original 1).

The figures 4.3 and 4.4 shows that basic create MO for swap on two par-
titions is almost the same as for reference run 1 (original 1) and the figure
shows that there is a big difference between the two reference runs.

For basic get MO containment short the response times is little lower than
for the two reference runs but the difference between the two reference runs
are as big as the difference between swap on two partitions and the reference

99

100 5.1. Discussion and conclusions

run.

The quartiles 1 and 3 and min95 and max95 in figures 4.7, 4.8 and 4.9 for
the three reference runs shows that there are big variations. If we study
the figures 4.10, 4.11 and 4.12, showing a reference run and a run with two
swap partitions, we can see that the variations are overlapping.

A SWUG is a heavy operation so we studied and compared the times it
took for each SWUG. Figure 4.13 shows the time difference for two reference
runs and figure 4.14 shows the time differences for a reference run and swap
on two partitions. As one can see in figure 4.14 the times are overlapping
and the max values and min values are almost the same for the two runs.
This gives that it is not possible to draw any conclusions that the SWUG
times for one test run is better than for another test run.

The memory usage is approximately linear for NETSim. On a computer
with 8 GB RAM the limit was 10 nets and on the same computer with 4
GB RAM the limit was 6 nets. The size of the swap partition was 16 GB
in both cases.

During a run the swap usage increased and leveled out. With 8 GB RAM
and 8 nets the maximum memory used was 4521 MB, for 10 nets it was
4736 MB RAM, for 11 nets it was 4922 MB RAM and for 12 nets 5294
MB RAM. Figure 5.1 shows the memory usage plotted for 8, 10, 11 and 12
nets.

Discussion, conclusions, recommendations and future work 101

Figure 5.1: Memory usage for 8, 10, 11 and 12 nets.

102 5.1. Discussion and conclusions

The swap leveled out at 5239 MB for 10 nets, at 5676 MB for 11 nets and
at 6298 MB for 12 nets.

Figure 5.2: Swap usage for 8, 10, 11 and 12 nets.

Unfortunately the simulation runs are nondeterministic. This gives that to
be certain one needs to run several simulation runs. This was not practically
possible because one simulation run took at least 16 hours which gives little
more than a month for all tests. This and the difference between reference
runs gives an uncertainty in the test results.

To get statistically significant values from the reference runs we calculate
a confidence interval for the three IDL methods. From every test run
we get approximately 30 SWUG cycles. Unfortunately we can not use 30
samples per test run, because the individual SWUG cycles are codependent.

Discussion, conclusions, recommendations and future work 103

We set confidence level to 0.99, and calculate with one mean value per
IDL method from each of the three original test run. For the IDL method
get MO attributes we get the confidence interval [64;77], with arithmetic
mean 71, which means that the confidence interval mean ratio is 19%. For
the IDL method basic get MO containment short we get the confidence
interval [2.0;2.8],with mean 2.4 and there 35% confidence interval mean
ratio. For the IDL method basic create MO we get the confidence interval
[-1700;5300], with mean 12000 and there 260% confidence interval mean
ratio. In an attempt to calculate how many test runs we need to get
sufficiently small intervals, maximum 5% of the arithmetic mean of the
IDL methods. We use the three test runs in round robin fashion to calculate
standard deviation and test for different values of n, see section 2.6. We get
n = 8 for get MO attributes, n = 15 for basic get MO containment short
and n = 539 for basic get MO containment short. To run 539 test runs for
every parameter is for obvious reasons not possible, but even 8 test runs is
outside time limits for this thesis.

5.2 Recommendations

The disk usage is not critical and it is needless to spend time on optimising
disk and file system parameters. The amount of memory used by the
simulations increased approximately linearly with the size of the simulation.
The amount of swap space is not critical as long as the swap size is big
enough. This gives that it is possible with more primary memory to increase
the size of the simulation on a computer. The size of the swap space is not
a limiting factor.

32-bit Erlang uses less memory than 64-bit Erlang because 64-bit Erlang use
pointers whith double size. Primary memory are the biggest limiting factor,
indicating that it is better to use 32-bit Erlang for NETSim simulations
than 64-bit Erlang.

We also recommend to do memory optimisation in NETSim.

104 5.3. Future work

Because the CPU load does not seems to be a limiting factor we recommend
using CPU intensive algorithms instead of memory intensive algorithms
where it is possible.

5.3 Future work

Today SSL is not included in Erlang core. Instead it is running in a separate
process. The Erlang core team is working on implementing SSL in Erlang.
The current SSL module uses polling and the new implementation supports
Kpoll and Epoll. One thing to do in the near future when Erlang with SSL
support included is released is to ascertain which is the best to use of Epoll
and Kpoll.

Developing a theoretical model of NETSim regarding disk usage, network
usage, CPU usage, primary memory usage and swap usage makes it possi-
ble to do theoretical studies on different parameters’ impact on NETSim.
With a theoretical model it is possible to study the parameters’ impact on
NETSim without test runs and one can determine which parameter changes
that have no or little impact and run test runs only for the parameters that
have any impact.

Another thing to ascertain is if it is possible to implement trace-driven sim-
ulation in NETSim. With trace-driven simulation all activities are recorded
and a test run can with all its activities be replayed at a later time. This
gives a deterministic system that is easier to test. One advantage is that it
is possible to run a single test run and compare it with another single test
run based on the same tracking with a changed parameter. In that way it
is possible to draw conclusions on a few test runs.

Another advantage with a deterministic system is that it is possible to test
several parameters at the same time with fractional factorial design. In
fraction factorial design we can test combinations of parameters in different
test run and calculate a single parameters effect of the result and synergy
effects. [32].

Discussion, conclusions, recommendations and future work 105

Further advantage with tracking is that it is possible to save specific test
runs, for example test runs known to be problematic.

106 5.3. Future work

Appendix A

Abbreviations

A.1 Abbreviations

ATM Asynchronous Transfer Mode

AUC Authentication Centre

AVC Attribute Value Change

AXE An Ericsson telecom platform.

BBC Best Balanced Choice

BSC Base Station Controller

BTS Base Transceiver Station

CSH Context Sensitive Help

EIR Equipment Identity Register

FAQ Frequently Asked Questions

107

108 A.1. Abbreviations

FTP File Transfer Protocol

GGSN Gateway GPRS Support Node

GMSC Gateway MSC

GPRS General Packet Radio Service

GSM Global System for Mobile

GTP GPRS Tunnel Protocol

GUI Graphical User Interface

HLR Home Location Register

IDL Interface Description Language

IIOP Internet Inter-ORB Protocol (Corba over TCP/IP)

IP Internet Protocol

L1 Layer 1

LSP Logical Scoring of Preferences

MGw Media Gateway

MIB Management Information Base

MO Managed Objects

MSC Mobile Service Switching Center

MTP Message Transfer Protocol

NE Network Element

NME NETSim Management Extension

NMS Network Managing Subsystem

Node B Base Station in UTRAN networks

Abbreviations 109

O&M Operation & Maintenance

OSS Operations and Support System

PFRA Page Frame Reclaiming Algorith

PLMN Public Land Mobile Networks

PM Performance Monitoring

PSTN Public Switched Telephone Network

PSTU Packet Switched Termination Unit

RANAG Radio Access Network Aggregator

RANOS Radio Access Network Operation Support

RBS Radio Base Station.

RNC Radio Network Controller

RNS Radio Network Subsystem

ROAS Region of Acceptable Solutions

RXI Older version of RANAG

SAS Serial Attached SCSI

SCP Service Control Point

SFTP Secure File Transfer Protocol

SGSN Serving GPRS Support Node

SNIA Storage Networking Industry Association

SNMP Simple Network Management Protocol

SRP System Requirement and Parameter tree

SSL Secure Sockets Layer

110 A.1. Abbreviations

SSLIOP Secure Socket Layer Inter-ORB Protocol (IIOP over SSL).

STN Site Transport Node

SWUG SoftWare UpGrade

UE User Equipment

UMTS Universal Mobile Telecommunications System

UTRAN UMTS Terrestrial Radio Access Network

VLR Visitor Location Register

X.25 A standard for packet networks.

Bibliography

[1] NETSim User’s Guide. Ericsson AB, 2006. 1553-CRL 121 03 Uen Rev
AS 2006-12-14.

[2] Jansson L. Annerberg ULf, Boija Beatrice. OSS-Overview, Operation
and Support System Trainee’s Guide. Ericsson Radio Systems AB,
1996.

[3] Toskala A. Holma H. WCDMA for UMTS. John Wiley & Sons Ltd.,
2001.

[4] Gunnarsson Frida Knutsson Björn, Björsson Anders. Radio Access
Network (UTRAN) Modeling for Heterogenous Network Simulations,
A Brief Description. 2003.

[5] Johansson Christer Hameleers Heino. IP Technology in
WCDMA/GSM core networks. Ericsson AB, 2002. Ericsson
Review No. 1, 2002.

[6] UMTS Overview. Ericsson AB, 1999. ERA/UX/T-99:108 Rev PA1.

[7] Althoff M. P. Walke B., Seidenberg P. UMTS The Fundamentals. John
Wiley & Sons Ltd., 2003.

[8] Ericsson Tomas Narup Micael, Helgeson Claes. Att först̊a Telekommu-

nikation 1. Studentlitteratur, Ericsson Telecom AB, Telia AB, 1997.
SV/LZT 101 1402R1B.

111

112 BIBLIOGRAPHY

[9] NETSim basics course material. Ericsson AB, 2006. From 2006-04-10.

[10] The NETSim programming course material. Ericsson AB, 2007. From
2007-03-16.

[11] NETSim System Administrator’s Guide. Ericsson AB, 2007. 1543-
CRL 121 03 Uen Rev AF 2007-02-23.

[12] PerfCons How To Test. Ericsson AB, Fetched 2007-03-02. From an
Ericsson-internal wiki.

[13] Common RAID Disk Data Format Specification, Re-
vision 1.2 with Errata A Applied. SNIA Stor-
age Networking Industry Associattion, 2007-08-29.
http://www.snia.org/tech activities/standards/curr standards/ddf/SNIA-
DDFv1.2 with Errata A Applied.pdf.

[14] Holmquist Björn Blom Gunnar. Statistikteori med tillämpningar. Stu-
dentlitteratur, 1998.

[15] Cesati Marco Bovet Daniel P. Understanding the Linux kernel 3 ed.

O’Reilly, 2006.

[16] Florian Buchholz. The structure of the Reiser file sys-
tem, Fetched 2007-04-23. http://homes.cerias.purdue.edu/ flo-
rian/reiser/reiserfs.php.

[17] Naujok Barry. XFS Filesystem Structure. Silicon Graphics, 2006. 2nd
Edition, Revision 2.

[18] Best Steve. JFS overview. IBM, January 2000.

[19] Rivest L. Ronald H. Cormen Thomas, Leiserson E. Charles. Intro-

ductions to algorithms second edition. McGraw-Hill Companies Inc.,
Fourth printing 2003.

[20] Hans Reiser. ReiserFS v.3 Whitepa-
per. namesys.com, Fetched 2007-04-23.
http://web.archive.org/web/20030621014013/namesys.com/content table.html.

[21] Koren Dan Mostek Jim, Earl William. Porting the SGI XFS File
System to Linux. Silicon Graphics.

[22] Kleikamp Dave Best Steve. JFS layout. IBM Linux Technology Center,
May 2000.

[23] Best Steve. JFS Log, How the Journaled File System performs logging.
IBM Linux Technology Center, October 2000.

[24] Kernel changelogs from 2.6.0 to 2.6.21.

[25] Gagne Greg Silberschatz Avi, Galvin Peter. Applied Operating System

Concepts. John Wiley & Sons Inc., 2000.

[26] Documentation/filesystems/proc.txt from the Linux kernel source tree
for kernel 2.6.8.

[27] Documentation/sysctl/vm.txt from the Linux kernel source tree for
kernel 2.6.8.

[28] Blom Gunnar. Sannolikhetsteori och statistikteori med tillämpningar.
Studentlitteratur, 1980.

[29] Wittmeyer-K Linde Eldén Lars. Numeriska beräkningar - analys och

illustrationer med MATLAB. Studentlitteratur, 2001.

[30] MAY2073RC MAY2036RC HARD DISK DRIVES PROD-
UCT/MAINTENANCE MANUAL. FUJITSU, 2005. C141-
E230-01EN.

[31] Linus Torvalds. Re: [ext3][kernels >= 2.6.20.7 at least] KDE going
comatose when FS is under heavy write load (massive starvation),
Fetched 2007-04-27. http://lkml.org/lkml/2007/4/27/289.

[32] Runesson Per Berling Tomas. Efficient Evaluation of Multifactor
Dependent System Performance Using Fractional Factorial Design,
september 2003. IEEE Transactions on Software Engineering, Vol 29,
No. 9.

Avdelning, Institution

Division, Department
Datum

Date

Spr̊ak

Language

2 Svenska/Swedish

4 Engelska/English

2

Rapporttyp

Report category

2 Licentiatavhandling

4 Examensarbete

2 C-uppsats

2 D-uppsats

2 Övrig rapport

2

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer

Title of series, numbering
ISSN

Titel

Title

Författare

Author

Sammanfattning

Abstract

Nyckelord

Keywords

English
This master’s thesis investigates if it is possible to increase the size of the simula-
tions running on NETSim, Network Element Test Simulator, on a specific hardware
and operating system. NETSim is a simulator for operation and maintenance of
telecommunication networks.

The conclusions are that the disk usage is not critical and that it is needless
to spend time optimizing disk and file system parameters. The amount of mem-
ory used by the simulations increased approximately linear with the size of the
simulation. The size of the swap disk space is not a limiting factor.

Svenska
Detta exsamensarbete undersöker om det är möjligt att öka storleken p̊a simu-
leringskörningar av NETSim, Network Element Test Simulator, p̊a en specifik
h̊ardvaru- och operativsystemsplattform. NETSim är en simulator för styr och
övervakning av telekomnätverk.

Slutsatserna är att diskanvändandet inte är kritiskt och att det är onödigt att
ägna tid åt att optimera disk- och filsystemsparametrar. Minnesutnyttjandet ökar
approximativt linjärt med storleken p̊a simuleringarna. Storleken p̊a swapdisken
är inte n̊agon begränsande faktor.

SaS,
Dept. of Computer and Information Science
581 83 LINKÖPING

2008-01-18

—

LITH-IDA-EX--08/001--SE

—

Potential for increasing the size of NETSim simulations through OS-
level optimizations

Möjligheter för att öka storleken p̊a NETSim-simuleringar genom pa-
rameterjusteringar p̊a OS-niv̊a

Kjell Enblom,Martin Jungebro

NETSim, simulating UMTS networks, OS parameters,
Linux, Ericsson AB

116

LINKÖPING UNIVERSITY

ELECTRONIC PRESS

Copyright

Svenska

Detta dokument h̊alls tillgängligt p̊a Internet - eller dess framtida ersättare - under 25 år fr̊an
publiceringsdatum under förutsättning att inga extraordinära omständigheter uppst̊ar.

Tillg̊ang till dokumentet innebär tillst̊and för var och en att läsa, ladda ner, skriva ut enstaka
kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för
undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta
tillst̊and. All annan användning av dokumentet kräver upphovsmannens medgivande. För
att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och
administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning
som god sed kräver vid användning av dokumentet p̊a ovan beskrivna sätt samt skydd mot att
dokumentet ändras eller presenteras i s̊adan form eller i s̊adant sammanhang som är kränkande
för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/

English

The publishers will keep this document online on the Internet - or its possible replacement -
for a period of 25 years from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to read,
to download, to print out single copies for your own use and to use it unchanged for any
non-commercial research and educational purpose. Subsequent transfers of copyright cannot
revoke this permission. All other uses of the document are conditional on the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure
authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her
work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its proce-
dures for publication and for assurance of document integrity, please refer to its WWW home
page: http://www.ep.liu.se/

c© Kjell Enblom,
Martin Jungebro
Linköping, 18th January 2008

http://www.ep.liu.se/
http://www.ep.liu.se/

	Introduction
	Overview over the report
	Background
	Purpose and problem description
	Items to tune

	Theoretical background
	Overview over UMTS networks
	NETSim
	OSS
	The load generator
	RAID
	RAID-0
	RAID-1
	RAID-3
	RAID-4
	RAID-5
	RAID-6

	Confidence Interval
	File systems
	B+tree
	ext3
	Reiserfs
	XFS
	JFS

	I/O Scheduling Algorithms
	Virtual Memory and Swap
	Swappiness
	vfs_cache_pressure
	dirty_ratio and dirty_background_ratio
	min_free_kbytes
	page-cluster
	dirty_writeback_centisecs

	Realization
	The test environment
	Test runs and measurement of IDL methods
	Mean value calculations with sliding window
	Mean value calculations
	Times for SWUG's
	Disk access load

	The tests
	RAID
	Crypto Accelerator Card
	File systems
	I/O Scheduling Algorithms
	Virtual Memory and Swap
	swappiness
	vfs_cache_pressure
	dirty_ratio and dirty_background_ratio
	min_free_kbytes
	page-cluster
	dirty_writeback_centisecs

	Results
	Mean with sliding window
	Mean with whisker bars
	Swug-times
	Memory usage

	Discussion, conclusions, recommendations and future work
	Discussion and conclusions
	Recommendations
	Future work

	Abbreviations
	Abbreviations

	Bibliography

