
Peter Åstrand,
Cendio Systems AB

Hiveconf -
A UNIX configuration
framework

Windows registry

�

Good

�

Provides simple API to applications

�

Easy to build GUIs

�

Provides storage for configuration values in
tree structure

Windows registry

�

Bad

�

Data is stored in few, binary files

�

If the ”database” gets corrupted, the entire system
is affected.

�

Hard to backup and restore settings

�

Over used: Used for too many things

�

Few data types

�

No real network support

Windows registry

�

Bad

�

No support for meta data, ie information
about the data type, valid values etc

�

Uses the file system too little: Does not use
file permissions, for example

�

No support for alternative backends

UNIX text files

�

Good

�

Flexible. Can use common text processing
tools like M4, awk etc

�

Safe. If parts of the configuration file is
broken, the remaining part can probably be
reused

�

Flexible. The administratior can use their
favorite tools & editors

�

”One file per application”

UNIX text files

�

Bad

�

Application programmers must re-invent the
wheel every time: implement parsing etc

�

No common file format

�

Hard to make changes mechanically

�

Hard to build GUIs, especially if you want to
preserve comments and formatting. Example:
Samba/SWAT

UNIX text files

�

Bad

�

Since applications must handle configuration
themselves, only a minimum of features is
usually supported. For example, very few
applications supports storing configuration
using a LDAP server

GConf

�

Good

�

Provides API

�

Several data types

�

Support for meta data

�

”Callbacks” are useful for desktop
environment

�

Configuration data is stored (by default) in
text files, approximately one per application

�

Support for alternative backends

GConf

�

Bad

�

A per-user ”configuration daemon” is
required. When it's started, no one else must
access the configuration files

�

Lots of troubles when logging in on two machines
at the same time, for example

�

Unusable for system services!

�

Default backend is XML, which is not
human-friendly, IMHO

�

Does not preserve comments & structure in
configuration files

GConf

�

Bad

�

Machine-wide namespace

�

Not possible to run multiple instances of the same
application with different settings

�

Requires ”schemas”, ie meta data

Hiveconf

�

Tries to combine good properties from
other systems

�

Provides API for storing configuration in tree
structure

�

Easy to make changes mechanically

�

Easy to write GUIs

�

Configuration can be stored in <1, 1 or >1 files
per application

�

Support for alternative backends

�

The default backend uses INI-like text files

Hiveconf

�

Provides support for meta data, but does not
enforce the use of meta data

�

Uses the file system

�

Ordinary file permissions can be used

�

Possible future enhancements: Version control
using RCS

Hiveconf

�

If the API provides a file system like
name space, why is a configuration
framework needed at all? Why not use
the file system directly, and store every
parameter in a new file?

�

Bad:

�

Inefficient with many small files (but ReiserFS
might help)

�

Impractical: Needs to open lots of files in text
editors

�

Might be harder to version control

Hiveconf

�

 Good:

�

Fine-grained permissions

�

Clean and simple

�

Hiveconf has a ”filesystem backend”, which
supports storing parameter values in files

�

Different parameters can be stored with
different backends

Hiveconf

�

Current implementation (2003-06-21)

�

Python module

�

Usable for application programmers

�

Python tool (”hivetool”)

�

Useable as a tool for configuring Samba, KDE etc

�

Idea similiar to gconftool

�

Future

�

Implement C library

�

More backends

�

World domination...

?

