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Abstract

Quantum key growing, often called quantum cryptographyuangum key distribution,
is a method using some properties of quantum mechanicsdtecesecret shared cryp-
tography key even if an eavesdropper has access to unlicotegutational power. A
vital but often neglected part of the method is unconditilgreecure message authen-
tication. This thesis examines the security aspects ofeatittation in quantum key
growing. Important concepts are formalized as Python pnogsource code, a com-
parison between quantum key growing and a classical sysserg trusted couriers is
included, and the chain rule of entropy is generalized toR&yyi entropy. Finally and
most importantly, a security flaw is identified which makes pinobability to eavesdrop
on the system undetected approach unity as the system is fioua long time, and a
solution to this problem is provided.

Keywords: Quantum key growing, Quantum key generation, Quantum kstyiloli-
tion, Quantum cryptography, Message authentication, Dditional security,
Rényi entropy.
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Chapter 1

Introduction

The history of cryptography has been an arms race between madlers and code
breakers. Today the code makers are far ahead of the codestse@dnyone with a
computer and some knowledge can send and receive encrymdesicgimed messages,
and nobody can decrypt them or produce false signaturesnvatlieasonable time
frame. At least not someone limited to using the computedstha publicly known
algorithms of today, and limited to attacking the messagemselves rather than ex-
ploiting human errors and software bugs, compromising ishysecurity or something
similar.

We trust cryptography so much that it now is hard to imaginatvehmodern society
without working cryptography would look like. Code breakgetting ahead in the race
tomorrow would not mean the end of civilization, but we wohhil/e to rethink much
of what we have come to depend on and there would be a lot ofjelsaaround us. Not
entirely different from the computer problems that weredeao appear on the arrival
of the new millennium, but this time making some small bugdike old computer
code would not be enough, many systems would need to be gegescompletely,
and some would simply not be possible anymore.

Nobody knows if the code breakers will be better than the endkers ever again,
but some fear that it might happen within years or at leastiwilecades. One threat is
the advancement of quantum computers. A quantum computesadee certain types
of problems much faster than a conventional computer. Bngatryptography is one
of those problems, but making more secure codes is not. Quectimputers have been
built, but fortunately for the code makers no quantum compugarly large enough to
be usable is expected to be possible to build in the immefiiatee. The fear that they
will exist in the near future is however, even though it may i@ well-founded, real.
As is the fear that new mathematical tools will make code kirepmuch easier.

The primary cryptography tools used today are symmetricafygtion, symmet-
rical authentication, asymmetrical encryption, and digsignatures. In the first two,
both the sender and the receiver have a copy of the same kegrdthe other two are
similar but the sender and the receiver have differentedl&eys, of which only one

Cederbf, 2005. 1



2 Chapter 1. Introduction

needs to be secret. The difference between encryption gitdldiignatures/authentication
is explained in Chaptér 5. Methods of using one secret angobléc key was a major
breakthrough of cryptography, but all those risk being @use if the code breakers
gain enough computational or algorithmic power. Even wattse future code break-
ers would also be able to decrypt old stored encrypted messagckily, the first two
cryptography tools have been mathematically proven to beaakable if they are done
right, so no matter what breakthroughs the future bringeg will still be available.
Unfortunately, to do them right requires the secret key todry large and to be dis-
carded after use. This is quite impractical and seldom dodayt and it will be even
harder if asymmetrical cryptography is no longer available

Handling those large keys, especially without asymmaétdgtography, is today
considered too impractical for most people to even congldarg it. This is not very
strange considering we have much simpler tools to accomttisssame thing. If those
tools disappeared handling those large keys might still beempractical than living
without cryptography. All that is needed is a good and fasticem number generator,
good storage media and trusted couriers. Since the keyssaaded after use, the
couriers will need to bring new keys each time nothing isdééthe old ones.

Quantum Key Growings both a fascinating application of quantum mechanics and
another way to solve the key distribution problem. By usioge quantum mechanical
properties of single photons two persons in two differeatps sharing a small secret
key can make that key grow to a larger key, and anyone tryimgtéocept the key will
be detected. Unlike most classical cryptography, QKG makeassumptions about
the computational capacity of the enemy. Instead, the #ggdsibased on the enemy
being limited by the laws of quantum mechanics.

QKG is also often calledQuantum Cryptographwyr Quantum Key Distribution
These expressions have given rise to the idea that the neetsdg encrypted or a
chosen secret key is sent as quantum information, whentithlasecret key generated
is pretty random. The expressi@uantum Key Growings less frequently used but
also emphasizes that an initial shared secret key is needatid process to work,
something which is often forgotten in popular scientific lex@ations of QKG.

The typical key generation rate of QKG systems availablayadd, according to
[1], very low, 1000 bits/s at best and often much lower. Thigdte is far too low to
be usable in an unbreakable one-time pad system for mostatphs. Instead, QKG
is often promoted as a way of enhancing the security of daksryptography like
AES through constantly replacing the encryption key witsfr ones from the QKG
system. This will of course invalidate any claims of uncdiatial security, since the
encryption will be breakable to an eavesdropper with larggaugh computing power
or good enough algorithms, but it is often argued that thggisd enough security.

However, providing good enough security is necessary busuifficient. It must
also be as cheap and good as other ways to achieve the santeeoldwel of security.
Chaptef 2 compares QKG with the less interesting but old agltttvied method of
simply sending the key with a courier.

There are many different ways to implement a QKG system. der{a very good
review. This chapter will give a brief description of the tzas A good and detailed de-
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scription of an example QKG system can be found in [3]. Chétetroduces discrete
random variables, Chapter 4 discusses different defimitidrthe entropy contained in
a discrete random variable and generalizes the chain ridatodpy. Unconditionally
secure authentication with a completely secret autheitit&ey is explained in Chap-
ter 5, and in Chaptér 6 the key is allowed to be only partly etecA vulnerability
is identified and solutions are presented. Finally, Chaptaescribes how the results
apply to QKG. Much of what is explained in these chaptersss giiven as Python
source code in appendix A.

1.1 Setup

Whenever cryptography is involved, it is common practiceetfer to the sender, re-
ceiver and eavesdropper as Alice, Bob and Eve, respectiVietiie eavesdropper is
allowed to modify messages as well she is sometimes callébiyisbut most of the
time, and here, she will be called Eve.

To set up a QKG system Alice and Bob need one quantum chantvetde them
where they can send and receive quantum biibjts from Alice to Bob. The channel
is typically an optical fibre carrying single photons witle tubit coded in the photon’s
polarization, but many other possibilities exist. In a petfchannel every qubit sent by
Alice is received and correctly measured by Bob, to the éxgermitted by quantum
mechanics, and Bob receives no qubits which Alice has ndt denpractice, such
channels don't exist, and they are not needed. The actuahehased can lose almost
all qubits in transit, make Bob think he received qubits meent by Alice and modify
some of the qubits that do go from Alice to Bob. As long as thersrare within some
limits QKG will still produce a key that is both shared andregc

They will also need one classical information channel. Thermatives include
but are not limited to the Internet, the same optical fibredwezove, and a network
cable parallel to the optical fibre. Note that many des@igtidescribe a system where
messages on the classical channel can be eavesdropped mgvest be modified by
Eve. Such a system merely turns a quantum channel and an ifiabledchannel
into a channel safe from eavesdropping. Such unmodifiatd@rads don't exist in
the real world, and they are not needed. In reality, Eve masasgsumed to have
complete control over the classical channel as well as tlaatgm channel. Using
message authentication Alice and Bob can detect Eve’s roatidh attempts with a
high probability. Message authentication is the topic &f thesis.

Alice and Bob will also need a shared secret key to begin Witthoes not need to
be very large at first, the sole purpose of the QKG system isakenthis shared key
grow by using and discarding small parts of it to producedalkgys. The initial key
only needs to be large enough to enable the message autttiemticeeded to create a
larger key, which typically would mean being able to autieié two messages, one
from Alice to Bob and one in the other direction. Alice and Buabl also need random
number generators, and of course computers.
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1.2 Running the system

QKG was first proposed by Charles H. Bennett and Gilles Bressathe paper [4]
in 1984. The protocol they described is now knowrB&84 They assumed that the
guantum channel was perfect but they did describe how to disage authentication
to prevent Eve from modifying messages on the classicalradlan

Figure 1.1 is a schematic view of a QKG system using a modersiore of the
BB84 protocol, including the error correction and privaepmification that makes
it work over imperfect quantum channels. Many other pro®ewe possible where
the quantum channel is used in different ways, which alsectffhow the sifting is
done, but that doesn't affect the rest of the system. Onebteotternative is the
Ekertor Einstein-Podolsky-Rosgarotocol where Eve has full control over the photon
transmitter and Alice and Bob has one photon receiver eaehloWs key growing as
long as the photon transmitter sends photons from entamglied to Alice and Bob.
Whenever Eve tries to cheat by e.g. sending non-entangledmshe is detected and
the generated key is discarded.

The QKG process is assumed to work in rounds, where each roamsists of
first using the quantum channel to transmit some photonskardusing the classical
channel to perfornsifting, error correction, privacy amplification andauthentica-
tion. During theauthentication a piece of the shared key is used and destroyed, but if
everything succeeds a larger piece can be added to the dered

In the BB84 protocol, the quantum transmission consists lmfeAtrying to send
lots of photons to Bob, where each photon is transmitted enafriwo bases, selected
by the arrow that goes into the top of the photon transmitterib figure/ 1.1. The
photon also has one of two values, selected by the arrow theatsethe box from the
left, giving a total of four possible photon states. For epnthe two values in the first
base can be represented by horizontal and vertical pdiieizavhile the two values in
the second base are represented by 4t -45 polarization. She stores the values
of all photons sent in this round A and remembers the bases until fiféing step.

Bob measures each received photon in a base randomly chrosetthie same two
bases, selected by the arrow at the top of the photon redsdein the figure. If he
used the same base as Alice and there were no transmissag, éhe same value
Alice used will come out on the right side of the box in the figand be a part of
1B. It is important that those random choices are unpredieta@uantum mechanics
says that if Eve doesn’t know the base of the photon she cammyt a photon and
resend it undisturbed. She can try to guess the base, buashenty a 50% chance
to be correct, and if she is wrong she will only receive a rand@lue and can not
retransmit the photon to Bob undisturbed. If she introdweresugh errors Alice and
Bob will get suspicious, but there are always some errorderchannel anyway, so
if Eve only makes some measurements the errors she intreduaret be seen behind
the normal noise of the quantum channel. At least in theogynsight even replace the
optical fibre with a perfect photon channel, which gives hergossibility to introduce
as many errors through measurements as the old fibre did bygisg imperfect.
Exactly what measurements she can make is the subject of rasearch, but for the
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current purposes it is sufficient to know that some inforprathust be assumed to have
leaked to her.

After the quantum transmission Alice and Bob will discuserawe classical chan-
nel what photons were received by Bob and which bases théyused. The values in
1A that Bob never received are discarded, as are the valueshriBcand1B where
Alice and Bob used different bases. This process is caiiitithig. When the sifting
is done Alice and Bob will have the bit strin@® and 2B, on average half the size
of 1B and much smaller thabA. Encrypting the sifting messages of one round would
need much a much larger key than can be generated in one reoiridey must be
unencrypted and Eve will learn what bases Alice and Bob uSée. will use that in-
formation to make better sense of whatever measurementsiatie on the quantum
channel, but it is too late for her to base her measurementisadrinformation. It is
therefore important that Alice and Bob makes sure that tiiegiis started after the
guantum transmission is finished, e.g. by using synchrdraimcks or by sending one
random message from Alice to Bob, sending another from Badklite and finally a
third from Alice to Bob before starting the sifting, and aenticating those messages
with the rest of the messages in the end of the round.

If the quantum channel was perfect and Eve didn't do anyttiiegbit string2A
and2B would be identical. In practice the channel isn’'t perfectts® strings are not
identical, but they are similar. By using the classical cterihey can perfornerror
correction and produce the shorter stringa and3B which with very high probability
are identical. If Eve has measured too much they will withy\régh probability notice
that there are too many errors and abort.

Even though the errors were not alarmingly frequent Eve mestssumed to have
made some measurements and will therefore know things &goahd3B. Alice and
Bob therefore use the classical channel to perfprivacy amplification. The result
is the even shorter bit stringsA and4B which Eve with very high probability knows
very little about. Unfortunately they can not remove herwleaslge completely, but it
can shrink quite fast for each bit they shorten their shanedgswith. As long as#A
and4B are longer than the authentication keys needed the systiéstillcreate keys,
but in a slower rate if the created strings are smaller.

After error correction and privacy amplification Alice and Bob have the bit
strings4A and4B, and with very high probability those strings are both id=aitand
unknown to Eve. At least if Eve has not interfered with théscdssions over the clas-
sical channel. As an extreme example, Eve might have cut dadiles and plugged
in her own QKG system on the loose ends, playing the part of Blobn talking to
Alice and the part of Alice when talking to Bob. This attaclgisnerally known as a
man-in-the-middle attackBut since Eve does not know the key generated previously
or, if this is the first round, the key installed with the systeAlice and Bob can per-
form authentication of vital parts of their previous discussion using their glabkey.

If the authentication goes well, the generated key is cemsi secret and is added
to the key storageSA and5B, ready to be used as authentication key later. The key
stream$A and6B can be taken frorBA and5B as long as there always is enough left
to authenticate the next round. Those key streams are thie wbimt of the system.
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If the authentication fails Eve is assumed to be trying teriiere and the process
should be aborted. A complication is the fact that the eroorection is not perfect.
An error can, with a small probability, sneak through. Iftteeor is in the key used for
authentication in a later round, the authentication will éxen without an Eve being
present.

If Eve somehow manages to break the security of one round #h&new the
authentication key for the next round and can break thatN@omatter when she starts
eavesdropping, if she breaks any round she therefore adsg®all future rounds. This
problem might be partly possible to remedy, e.g. by making $o always mix keys
from several previous rounds to produce an authorizatigntie research in that field
is scarce.
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Chapter 2

QKG versus courier

A QKG system produces two identical secret key streams indifferent places. A
very old and reliable method to do the same thing is to simpljehAlice generate a
random secret in two copies and let a courier transfer onbeshtto Bob. Alice and
Bob can then continuously read a secret key stream fromttheicopies while erasing
whatever they read from their copies to minimize the riskashsone extracting their
key streams later.

A QKG system can theoretically create key streams foreverthe whole courier
carried secret will eventually be used and erased. If a rewding key stream is re-
quired, a new courier will need to be sent whenever the lass pé the last secret is
about to be used. How often that needs to be done depends muythieed bit rate and
how much each courier can carry. A famous quote from [5] dé&ger underestimate
the bandwidth of a station wagon full of tapes hurtling dowwa highway often up-
dated to more modern conditionsidsver underestimate the bandwidth of a 747 filled
with DVDs However, with the limited range and bit rate of QKG systemspurier
carrying a hard disk by foot is enough to provide serious catitipn.

A courier is also needed for both the initial key and the QK@icein the QKG
case. The difference in the pure courier method is that tiialikey is made much
larger and the device is neither transferred nor used. Tapter provides a compari-
son between a QKG system and a courier system.

2.1 Manufacturing and transferring

In both a QKG system and a courier system Alice needs to geng@random key to be
copied and transferred to Bob. The courier system needgerlkey initially, which
is a disadvantage. On the other hand, no QKG device needsrtmbefactured and
transferred. In addition, the amount of random data a QK@&syseeds when running
is many times greater than the key it can produce, so thedaotalint of random data
needed is much smaller in the courier case, but it needs tedilalale earlier.

Cederbf, 2005. 9



10 Chapter 2. QKG versus courier

The company IdQuantique which sells QKG systems also off@iscard quantum
random number generators capable of providing a 16 Mbitast of random data to
a normal computer, but much faster alternatives will sugseigface if there is a high
demand for them. An alternative to buying a random numbeegggar is to buy the
random numbers themselves. Companies may specialize iimgounsly manufactur-
ing random secrets and selling them to customers. Theseatvegpwould need to
be trusted to not store copies of the secrets they generdtsaiinthem to Eve, but
even random number generators can, in theory, be manugddinreturn a predictable
number sequence so their manufacturers would also needttadted. When buying
random numbers instead of random number generators, meg@inandom numbers
early is no disadvantage since the sellers can be expectea/éopregenerated num-
bers available. In any case, XORing the secrets from two aemmompanies makes
the result secret even if only one of them is honest.

To transfer the initial key and device for the QKG system dmal whole key in
the courier system a trusted courier is needed. There is nohmifference between
a QKG system and a pure courier system in this step. In bo#scésEve persuades
or bribes the courier to show her or let her modify the key, Bas won. The fact
that the courier key is larger makes little difference. Evk also win if she manages
to rebuild the device, e.g. to include a backdoor accessilleadio or one of the
channels, without Bob noticing. In both cases the trusténaburier can be enhanced
with physical seals. The keys can also be made more safe bingeseveral different
keys with different couriers and XORing the keys with eadieotto produce the real
key. Eve will have to succeed in bribing every courier to et key. However, they
can't XOR physical devices, so Alice and Bob will have to geand maintain as many
QKG systems as they want couriers.

2.2 Unconditional security

QKG is often said to provide unconditional security. Thewsiyg of most conventional

cryptography is conditioned on the assumption that Evefaprdational power and
algorithms are limited. The security of QKG is not, henceube of the term uncondi-
tional. This does not mean that the security of QKG is absauperfect. There exists
many threats to a QKG system but, just as with a courier sydEmhaving access to
fast computers isn’t one of them.

If the quantum channel is an optical fibre, Eve might be abketd light into the
fibre to Alice’s or Bob’s device and gain information about ttandom settings from
the reflected light. This attack is called a Trojan horsecttand QKG manufacturers
do their best to protect their devices. Unfortunately, dgmiprotection seems unlikely.

The classical channel is not without hazards either. In &&scenario it is a
network cable connecting two computers. The possibiltiesracking a computer if
having access to a network cable are quite a few. Bugs in timpeter software or in

INot to be confused with what is usually called a Trojan hots&ck in computer security.
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the network card might allow Eve to sneak by just sending itjiet information. By
altering voltage levels she might be able to trigger justrigkt hardware failure that
allows her full access. Even though the channel is built t@a®secure as possible,
perfect security is unattainable.

There are many other things that Eve can do that have a smabbtzero chance
of succeeding. She can make many measurements on the quastumunication. If
she is very lucky she will go undetected. She can also try &sgithe authentication
tags. The probability of her succeeding can be made veryl sbhuglit will always be
there.

These examples have no counterpart in the courier systeene Just is no commu-
nication necessary between Alice and Bob when their keys haen distributed. Lots
of other attacks are still possible of course, such as iafiiftg the building or bribing
personnel, but those attacks are similar no matter whagsyist used.

2.3 Denial of Service attacks

The strength of QKG is that Alice and Bob can detect that Ee¢ténpting to intercept
the key they are growing and allows them to abort. It does natantee that they can
grow their key, and Eve can stop the key growing process &t @ile might just cut
the cables or she might deliberately make failed attempistéscept, but Alice and
Bob will not be able to grow their key when Eve won't let them réality, complicated
systems tend to break even without deliberate sabotageedeethmay stop growing
even without Eve. The courier-only system does not haverihidgm of these kinds of
deliberate Denial of Service attacks, and spontaneougéailshould be far more rare
due to the simplicity of the system. Other kinds of Denial ef\ice attacks are still
possible, such as anything that physically destroys Adice’Bob’s device, but those
attacks work on both the QKG system and the courier system.

2.4 Mobility

In the courier-only system Alice and Bob may move aroundyraed bring their keys.
The QKG system is more stationary. It is hard to move devioemected through an
underground cable. They must also be very close togethmcatyy less than 100 km,
and the bit rate decreases exponentially with the distance.

2.5 Time and price

A courier transmitted key can be used all at once or a litleba time, but when the
whole key is used a new courier needs to be sent. A QKG genekatecan not be
used faster than it is generated, but it will in theory camgifiorever.

A 400 GB hard disk can today (2005) be bought for around 25@ Bive can use
one of those to store the courier key. If we use the high key #&tL000 bits/s from
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[1], a QKG system can be replaced with this courier-deligidsey and run for over 100
years before another courier needs to be sent. The pricesrohercial QKG systems
are unknown but are probably several hundred times morenekethan the hard disk.
One would think that with such a saving and knowing that itites better security, a
courier delivering a new key once every century can be adfrdEspecially since the
distance is less than 100 km.

However, if the bit rates of the QKG systems grow faster themndizes of cheap
storage devices the couriers would have to run often encaghtie QKG systems are
cheaper when the limitations in stability, mobility andtdisce can be tolerated.

2.6 Limited lifetime

A QKG system with a limited lifetime will during that time pdoce a key as big as
its key rate times its lifetime. Any such system can alwaysdmaced by a courier
system with a pregenerated key that big. Depending on wkdtithire holds it might
not necessarily be more cost effective, but the securityig affected positively. In
practice everything can be expected to have a limitedifetibut in Chapter|7 a weak-
ness is identified that limits the lifetime of a QKG systemreiretheory. Fortunately,
easy solutions to the problem exist and two of them are ptedén the same chapter.



Chapter 3

Discrete random variables

3.1 Discrete random variables

For the current purposes it is sufficient to think of a diseretndom variableX as
variable with a fixed but unknown integer value larger tharequal to zero. The
random variables we will encounter later will be mostly sedeeys, messages, and
message tags. Our knowledge about the random variable igletaly determined by
a vector of positive probabilitieBy () = P(X = x), each describing how confident
we are that the variable’s value is the specific integexdding up to 1. It is often better
to talk about uncertainty, or entropy, instead of knowledge uncertainty means full
knowledge, i.e., 100% probability for one value and 0% fer tbst.

An important special case is the random variables for whilahce-zero probabil-
ities are equal. These random variables are calléfbrmrandom variables. If Alice
throws a normal, but perfect, six-sided die and keeps thdtrescret, the result is to
Bob a uniform random variable with six possible values. IbBad managed to replace
Alice’s die with one that is not perfect, the variable woulat have been completely
uniform. In any case, Alice knows the value so to her it is acan variable with zero
uncertainty or entropy.

The range ofX is the set of valueX' can have, even those with zero probability,
and is denote®(X). Even though infinite ranges are possible, we will limit @lves
to random variables with finite ranges. Without loss of galigrwe will only consider
ranges consisting of integersO0.

The expectation value is denoté&t]-) and can be defined as

BE(f(X))= Y, P(X=a)f(a). 3.1)

z€R(X)

Throughout the rest of this thesis the class of random viesaly?,. defined by/((3.2)
will serve as an illustrative example. The same definitioRython code is available

Cederbf, 2005. 13
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as functionQin entropies.pyine[54 on page 43.

P ifi=0
P(Qh=i)=< 2 if1<i<n (3.2)
0 if i >n

Q" is a uniform random variable with possible values. 1 is large Q® has
one very probable and equally improbable values. Such random variables arerathe
extreme and will therefore nicely illustrate some somewimattuitive situations later.

3.2 Dependent random variables

Two random variableX andY can be related in ways that are unrelated to their inter-
nal probability vectors. To completely specify both thespective probability vectors
and their relations it is sufficient (and necessary) to (He &) specify the probability
vector of a larger random variable, tbencatenatiorof the two variables, written as
XY, with probabilitiesP (XY =zy) = P(X =« andY =y). Observe that neither
XY norzy are products. When the random variables are related in thjishvegoroba-
bilities in their respective smaller probability vectore @alledmarginal probabilities
As an example, consider the dependent random variablesdddin

P(T'T,=00) = P(Ty =0 andT>=0) = 1/3 (3.3a)
P(T1T,=01) = P(Ty =0 andTy=1) = 1/3 (3.3b)
P (T1T,=10) = P(T; =1 andT, =0) = 1/3 (3.3c)
P(I1Ty=11) = P(Ty=1andT>,=1) =0 (3.3d)

which can be seen as the two bits of the uniform random variaiih values 0, 1 and
2. Their marginal distributions are

P(Tl :0) = P(TQZO) = 2/3 (343.)

Given two random variableX andY’, when learning that the value &f is y the
probability vector ofX can change. If they are depend&ntontains information about
X and receiving information changes the probabilities. Téw random variable can
be denoted\|y—, and its probability vector is

\ _ P(XY=uy)
P(X)Y:y_x) e (3.5)

This relation is calledBayes’ theorenand is a fundamental part of probability the-
ory, but the notation is unorthodox.

Normally P (X|y=,=x) is written asP(X = z|Y =y) and is read athe prob-
ability that X equalsz given thatY” equalsy. Similar notations are used for other
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things, most notably for conditional entropy. We will use thnconventional nota-
tion exclusively, both to note explicitly that we are wor§gion a new random variable
and to bring the implicit hidden expectation value in coiotial entropy written the
conventional way out into the light. See Chapter 4.4.1 foremtetails.

Using Bayes’ theorem on the previously defingdand7s yields

P (Tilrg=0) = pipmg = 2 = 2 (3.6a)
P (Tily,_y=1) = %2;@ - Z—i = 1/2 (3.6b)
P(Ti|y,_,=0) = % - z—i =1 (3.60)
P(Tily,_,=1) = PI(DT(17€2=11)1) = % —0 (3.60)

and, because of the symmetry in their definition, this aldd$whenT; andT; are
interchanged.

With more than one random variable it can be necessary tafgplee expectation
value over just one of them. A natural definition is

Ererx)(f )= Y P(X=z)f(zY). (3.7)
zeR(X)

3.3 Jensen’s inequality

There are lots of standard inequalities that are very useftbnnection with random
variables. We will only need one of them, Jensen’s inequalit
Jensen’s inequality is applicable to convex and concavetifums. A function is
called convex if it is continuous and the whole line betweearg two points in its
graph lies on or above the graph. If the whole line lies abbeggraph it is also called
strictly convex. A functionf is concavé or strictly concave if- f is convex or strictly
convex. In other words, for all < A\ < 1, z1, andzs holds:
fisconvex:Af(zy) + (1=X)f(x2) > f(Ax1 + (1—N)a2) (3.8a)
fis strictly convex:Af(x1) + (1=A) f(z2) > f(Az1 + (1=N)x2) (3.8b)
fisconcaveAf(z1) + (1-N)f(z2) < f(Azy + (1—=N)z2) (3.8¢)
f is strictly concaveA f(z1) + (1—A) f(z2) < f(Az1 + (1—XN)z2) (3.8d)
Jensen’s inequality states thatfifis a convex or concave function, then for any
random variableX:
fisconvex:f(E(X)) < E(f(X)) (3.93)
fis concavef (E(X)) > E(f(X)) (3.9b)

1Sometimesonvexs calledconvexs) andconcaves calledconvexe.
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Furthermore, iff is strictly convex or strictly concave, equality occurs iiidaonly if
there is only one value oX that is assigned a non-zero probability.

For a random variable with only two possible values, Jersse@quality just re-
states the definition of convexity. Generalizing to arbitnaumber of values by induc-
tion is pretty straightforward and is explained in many ofhlaces.

If fis convex and has an inverse, an alternative way to exprasseid's inequality

is fTHE(f(X))) = E(X).



Chapter 4

Entropy

Entropy is an important concept in many fields, and one fieldrefit is extensively
used is QKG. This chapter gives a general overview of entamyglypresents a general-
ization of the chain rule of entropy as needed in future araptAlternate explanations
to most of the contents can be found in many other placesgaiath lots of other
useful bounds and relations. The introductory chapter§]afie highly recommended.

4.1 Conventions

The functionf(p) = plog(p) wherep is a probability occurs frequently in connection
with entropies.0 log(0) is normally undefined but sindém,, .o plog(p) = 0 is well-
defined we extend the function to zero by continuity.

Another convention we will follow is to letog(-) mean the logarithm base 2. We
can choose any base, but using base 2 consequently mearevehghing will be
expressed in bits, and people tend to be familiar with bits.

4.2 Shannon entropy

Entropy is a measure of uncertainty regarding a discretdoranvariable. For many
purposes, the Shannon entropy is the only measure needath@hentropy is defined

by
Hshanot X) = — > P (X =x)log(P (X =x)) (4.1)

x=0
has the unibits. A Python implementation is available as functgimannon_ent r opy
in entropies.pyine 15 on page 43.
The Shannon entropy is a fundamental measure in informétieory. It was in-
troduced by Claude E. Shannon, now considered the fatherfafiation theory, in
[7]. Much can be said about its properties, its uniquenesd,its relation with the

Cederbf, 2005. 17
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thermodynamical entropy in physics, but we will only scheadlittle bit on the surface
here. One way of understanding it better is to rewrite thend&fn as

Hshannok X)) = E(—log(Px(X))) (4.2)

wherePx (X) is the probability ascribed to the value &fthat turns out to be correct.
This makesPx (X) a discrete random variable, but not necessarily with integleles.
Now it is clear that the Shannon entropy is the expectatiduevaf — log(p) where
p is the probability assigned to the measured value of thearanehriable. — log(p)
can be interpreted as the needed length, in bits, of a messag®unicating a mea-
surement that had probabilify, which makes the Shannon entropy a measure of the
expected message length needed to communicate the mesaluedf a random vari-
able.
The Shannon entropy of a uniform random variable withossible values is

Hsnamof Q%) = B(~ log()) = log(n) (4.3)
which means that we neddg(n) bits! to communicate one choice fromdifferent
equally likely states.

Without qualifiers, the word entropy and a non-subscrigfedormally refers only
to Shannon entropy. However, when dealing with QKG, as welnast other parts
of cryptography, this measure is not sufficient. The goal Kf3Js to produce a key
that is known to both Alice and Bob but to Eve is a random vaeiatith high uncer-
tainty. — log(p) is a measure of the uncertainty of a value assigned probabiind is
therefore a measure of the security of that particular vafdke key. Shannon entropy
measures the expectation value of that security. The damgdocusing on Shannon
entropy alone is highlighted by this theorem:

Theorem 1. There exists finite discrete random variables with arbitsahigh Shan-
non entropy which the chance of guessing at one try is anfiiiyralose to1.

Proof. Consider guessing the value@f,. The guess = 0 has chance to be correct.
The Shannon entropy is

n

Hsnanok Q%) = Y —P (Qh =i) log(P (Q%, =1))

i=0
1 —

= —plog(p) — (1 —p) log(—p) —oowhenn — oo Vp<1l (4.4)
n

which completes the proof. O

Good security average is not good enough, and Shannon gratliape is obviously
not a sufficient measure of the quality of a key.

INote that if the only channel available can only transmit,liite value must be rounded up to the nearest
whole bit.
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4.3 Guessing entropy

Another measure more closely related to the difficulty ofsgpirg the value of a ran-
dom variable was introduced by Massey in [8]. He did not narbatiin [6] it is called
guessing entropyNote, however, that while most other entropies have thehitsithe
guessing entropy is measured in unit;afmber of guesseVithout loss of generality
we can assume that the valuesXofare sorted with decreasing probability, in which
case the guessing entropy &fis defined as

max(R(X))
GX)= Y P(X=z)(z+1). (4.5)

x=0

That is, the guessing entropy is simply the average numbguedses needed to guess
the value of a random variable using the optimal stratege définition formalized to
Python code is available as functignessi ng_ent r opy in entropies.pyine/36 on
page 43. We have yet again a measure of average securitynaifarlsi to theorem 1
we can write

Theorem 2. There exists finite discrete random variables with arbilsahigh Guess-
ing entropy which the chance of guessing at one try is arhiyralose to1.

Proof. Consider guessing the value@f,, wherep > (1-p)/» so the values are sorted
in decreased probability. The (optimal) guéss 0 has chance to be correct. The
Guessing entropy is

1—p 24+ (n+1)
. n

G@) =Y P =i)(i+1)=p-1+ .

i=0
— oowhenn — oo Vp<1 (4.6)

which completes the proof. O

Again we see that good security average is not good enoudlguessing entropy
alone is not a sufficient measure of the quality of a key.

4.4 Rényi entropy

A useful generalization of Shannon entropy is tHnR entropy, which maps an en-
tropy measuref, pronouncedthe Renyi entropy of orderx to every real number
0 < a < oo. Rényi entropy is, just like Shannon entropy, measured irsusfibits.
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Rényi entropies

Q?b%o

0.9

100

Q3

Q2

[0.25,0.21,0.20,0.19,0.15]

Q4

[0.55, 0.44,0.0050, 0.0049, 0.0001]
[0.60,0.25,0.15]

Figure 4.1: All Renyi entropies for 8 different random variables.

1
Ho(X) = 1—
Ho(X) = lim
Hy(X) = lim

Hoo(X) = lim.

1 P(X=x)" ifai tOorl
~log > P(X=x)" ifaisnot0or

TER(X)
Ho(X)

Ha (X) = HShannor{X)

H,(X)= flogzgg))(()P(X:x)

(4.7a)

(4.7b)
(4.7¢c)
(4.7d)

The equality in[(4.7c) is easy to show using e.g. I’Hosrﬁ?alUle. The definition is
also available as Python code as funciart r opy in entropies.pyine 23 on page 43.
An important property of Bnyi entropy is that forv < o/, H,(X) < H,/(X) for
all X, with equality if and only ifX is a uniform random variable. In other words,
H,(X) is a constant function ok if X is uniform and strictly decreasing if not. A
full proof is given in [6] and follows quite naturally by wiitg H,, (X ) in analogy with
(4.2) as—log (E[PX(X)afl]ﬁ) and using Jensen’s inequality.
Some of these measures have quite natural interpretatR&syi entropies with
highera parameter depend more on the probabilities of the more ptebalues and
less on the more improbable ond3y(X) is logarithm of the number of values &f

2’Hospital is nowadays often spelled IBpital.
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that have non-zero probabilities. Any two random variabléhk different probability
distributions but the same number of values with non-zeobabilities will have the
same Rnyi entropy of order 0.H,(-) is the Shannon entropy, in which the actual
probabilities are quite important/y(-) is often called collision entropy, or justéRyi
entropy, and is the negative logarithm of the likelihood wbtindependent random
variables with the same probability distribution to have $ame value. More probable
values are much more likely to collide and are therefore mi@ible in the collision
entropy than in the Shannon entrop¥.. (+) is called min-entropy and is a function of
the highest probability only.

The shape oH,,(X) as a function ofx for eight different random variable¥ is
shown in figuré 4.1.

4.4.1 Conditional Renyi entropy

Theconditional Shannon entropy fdf givenY” is conventionally written a&f; (X|Y)
and defined by
Hi(X]Y) = Eyeriy)(Hi(X|y=y))- (4.8)

It expresses the expected value of the entrop¥ affterY is disclosed. The notation
clearly hides an implicit expectation value, but since Stwarentropy is an expectation
value to begin with, that doesn’t change much. Using eqnat{d.2) and (3/5) we can
write (4.8) more explicitly as

P(XY=x P(XY=x
Fucnn Xy ) = By (P20 g (PO =)

P(Y=y) P(Y=y)

which is a single expectation value just like equation (4.2)

Rényi entropies of different order than 1 are not expectat@nes so things are
not quite as simple. In fact, according to [6] there is notreg@ agreement about
a standard definition of conditionaleRyi entropy. However, the dominant definition
seems to be the same as (4.8) with bAths replaced byH,,. That definition will be
used here but the expectation value will always be expfiwititten out. We have seen
that averaging security can be dangerous, and it is nice tthiide away something
potentially dangerous in the notation.

4.4.2 Chain rule of Renyi entropy

With conditional Shannon entropy comes the chain rule oh8ba entropy, equation
(4.10b) below. One way to define conditionaé®i entropy is to choose it so the
same relation still holds when the Shannon entropies ateaeg with Renyi entropies.
However, the relation does not hold for the expectatione/dlased definition chosen
above so it is clearly a different conditional entropy. Eodtely, that doesn't stop us
from generalizing the chain rule in other ways to somethirag ts useful with general
Rényi entropies:
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Theorem 3. Let X andY be arbitrary random variables and' Y their concatenation.

Eyeriyy(Ha(X|y=y)) > Ho(XY) = Hi(Y)if o> 1 (4.10a)
Eyery)(H1 (X|y=y)) = Hi (XY) — Hi(Y) (4.10b)
Eyene)(Ha(X|y=y)) < Ho(XY) = Hy(Y) if a < 1 (4.10c)

with equality in|(4.10a) and (4.10c) if and only i, (X|y=,) — log(P(Y =y)) is
constant for all valueg of Y that have non-zero probabilities. Note that the rightmost
entropies all are Shannon entropies.

Proof. Let p, be the probabilities for the marginal distribution¥f p, = P(Y =y),
and letg,, be the probability thak’ = = whenY =y, ¢, = PY=vandX=e)/p(y=)) =
P(X|y=y =x). Itis easy to see tha®(XY = zy) = pyqy.. We begin with the old
well-known casex = 1 as a warm-up:

Eyerv)(H1(X|y=y)) + Hi1(Y)

= >y Y Gyaloglay) = > pylog(py)

YeR(Y)  @€R(X) e R(Y)
= > > aepylog(aye) = D> D dyapylog(py)
yER(Y) zE€R(X) yER(Y) z€R(X)

=1

= - Z PyQyax IOg (pryw) = Hl (XY)

zyeR(XY)
(4.11)
Whena > 1 we have instead:
Eyeriy)(Ha(X|y=y)) + Hi1(Y)
1 (e}
= Z pyl_alog( Z qyx)_ Z pylog(py)
YER(Y) zER(X) YyER(Y)
1 _
D DI ZEmo 1 (S S )
yeR(Y) zER(X)
(Jensens 1 o o 412
> —log ( S ooyt D a) (4.12)
YyER(Y) zER(X)

=——log( > 2y D ap)

YyER(Y)  z€R(X)

1 @
= 1_alog( Z (pryx) ) :HOZ(XY)
zyeR(XY)
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The function— log(-) is convex whemy > 1 so Jensen's inequality gives us (4.10a).
Whena < 1 the function is concave and we obtain (4.10c). Finally, étyuaccurs,
regardless of whether is smaller or larger than 1, if and onlym‘j*1 erR(X) Ty =
pg 120 Ha(Xlv=) is constant for ally, which is equivalent taH (X |y—,) —
log(P,) being constant. O

4.4.3 Spoiling knowledge

When learning something new about a random variable, therdimaentropy of the
variable will decrease or stay equal on average. It is onig tn average. Consider
X = QY% and aY that is dependent o such thaty’ = 0if X = 0 andY = 1 if
not. Learning that” is 1 will increase the Shannon entropy ®ffrom 0.15 to 6.64,
but learning that” is O will decrease it to exactly 0. On average, the Shannaoent
will decrease to 0.0664. On average, the Shannon entropglwiys decrease for all
X andY.

However, that is not true in general for otheeri¥i entropies. For example, con-
siderT) andT defined in|(3.3a) Hy (71) = log(3/2) ~ 0.585. If T, turns out to be
1 the entropy off} reduces to exactly 0, if not it becomes exactly 1. On aveliag&!)
increase t@/3 > log(3/2).

Side information that increases entropy on average likewiais first mentioned in
[9] and is calledspoiling knowledge

4.4.4 Entropy holism

The Concise Oxford English Dictionary [10] describes hulisthe theory that certain
wholes are greater than the sum of their parta a way, random variables normally
behave in a holistic way. To specify both andY the whole probability vector for
XY is needed and the size &f(XY') is the size ofR(X) multiplied by the size of
R(Y). This is one reason why Shannon chose to primarily use aithgac scale in
[7]. With a logarithmic scale the multiplications can beatied as sums and the whole
is just the sum of the parts. Quoting Shann@me feels, for example, that two punched
card$ should have twice the capacity of one for information steramnd two identical
channels twice the capacity of one for transmitting infotiom

It should come as no surprise that an important property ah8bn entropy is that
the total entropy of a system is never greater than the suhegddrts’ entropies,

H{(XY)=Hi(X)+H(Y)- M(X,Y) (4.13)
whereM (X,Y) is called themutual information ofX andY’. It can be defined by this

relation and can be shown to be non-negative. There is nonBhaentropy holism.
The whole is equal to the sum of the parts minus whatever thases

3This was published in 1948. Information storage has evolwsi e bit since.
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On the other hand, what might come as a surprise is that thistisue in general
for other Renyi entropies. There exisf§Y anda such that

Ho(XY) > Ho(X) + Ho(Y). (4.14)

For example, considéf; andT; defined in|(3.3a) againt .. (717%) = log(3) but
Hoo(Th) + Hoo(To) = log(3/2) + log(3/2) = log(9/4) < log(3). This is a case
where the whole actually is greater than the sum of the parts.



Chapter 5

Unconditionally secure
authentication

The two most important areas of cryptography are encrypioth authentication —
making sure that no one except the legitimate receiver regdsessage and making
sure that nobody except the legitimate sender writes orfiesdi. A typical encryption
scenario is Alice wanting to send Bob a secret message, bt#taid of sending the
message directly she sends something that Bob can trantfdim real message but
which means nothing to anyone else. A typical authentioa@znario is Alice sending
Bob a message which Bob wants to be sure originates from Alickenobody else.
Alice sends the message as-is but also attactes aa few bytes large, which depends
on the message. Typically only one tag is valid for each ptessnessage and nobody
except Alice and Bof) knows beforehand which one. When Bob has received both the
message and the tag he can verify that the tag is correct anatluce that the message
really originated from Alice, or at least someone with ascesAlice’s key, and has
not been tampered with on the way to him.

Whenever encryption is explained thee-time pad encryptigmommonly referred
to as simplyOTP, almost always serves as an enlightening example. OTP was co
invented in 1917 by Gilbert Vernam and Major Joseph Mauber(gee e.g. [11])
and and in the 40’s Claude Shannon proved both that it wasakhble and that any
unbreakable encryption is essentially equivalent to OTie @ncryption is very simple.
For Alice to send Bob a messagethey need to share a secret completely random key
k, the one-time pad, which needs to be at least as long as tteageand must never
be reused. Alice simply sends XOR k and Bob calculategn XOR k) XORk = m?3
OTP is almost never used in practice. There exists many eti@yption schemes that

10ften calledViessage Authentication CoddAC.

2In the case of digital signatures, Bob can validate the tagibican not compute it before he has seen
it. With symmetrical message authentication Bob can both tzkeand validate the tag.

3Many other functions than XOR will also work, but XOR is norigalsed in examples.
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require smaller keys, don't require a key known by both Aicel Bob and permits
reusing of keys. They are all theoretically breakable gieaugh computation power
or maybe good enough algorithms, but are by most regardedesenough. OTP
serves mainly as an example.

Even though OTP is universally known for providing unbrdakaencryption, few
know that something similar exists for authentication. #swnvented in the late 70’s
by J. Lawrence Carter and Mark N. Wegman who published thsaosteries in[[12]
and [13]. It is commonly referred to a¥egman-Carter (type) authenticatio®ne
can only speculate why it is almost completely unheard ofh@gopular science , but
contributing factors are surely that it is much newer thaiQfiat it is much more com-
plicated to explain and that authentication itself is mammplicated and often regarded
as less interesting. Furthermore, one example of unbrdakad® maybe enough for
most purposes. On top of that, if something is encrypted ®Ifi® it is impossible to
extract any information at all about the message, but witheathentication scheme it
is always possible for Eve to produce a random tag and hopéhigicorrect one for the
message she wants to make Bob believe Alice has sent. Théhbhesan be done for
authentication is to make the probability that Eve succeebisrarily small, and that is
exactly what Wegman-Carter authentication does.

The main problem with OTP is that the required key needs tot beast as long
as the message to be encrypted. Wegman-Carter autheoriickies not share this
problem. The keys can be much shorter, in the order of a feesbykhe fact that the
required keys can be much shorter than the message to benticaled is essential
for QKG. Each round of a QKG protocol generates a certain anolushared secret
key and requires far more communication which needs to beeatitated. If the key
consumed by the authentication process is larger than thergied key we don'’t have
Quantum Key Growing but Quantum Key Shrinking which wouldjoite pointless.

Other authentication methods exist where instead of justtag being sent from
Alice to Bob a dialogue is held with several messages goiweg bad forth. They can
be more effective in terms of consumed key but are not negefzaQKG and are
beyond the scope of this work. This chapter describes urittonally secure message
authentication in the theoretical scenario where Alice Bod share a completely se-
cret key and wish to transmit an unmodified message throudtaanel completely
controlled by Eve, not necessarily as part of a QKG systenthénmnext chapter the
authentication is made more realistic for a QKG scenariodsyming that the key is
not completely secret, and in Chagter 7 everything is potanQKG context.

5.1 Universal families of hash functions

A very useful tool in cryptography is the concept of crypighically secure hash func-
tions. Unfortunately, like most cryptography used in thed weorld they are only secure
against what is believed to be practical attacks and candiebwith enough compu-
tation power or, if they exist, good enough algorithms. ihipossible to construct an
unbreakable cryptographically secure hash function. Sgee[#4] for definitions and
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proofs.

Cryptographically secure hash functions can be used foyridngs, one of them
being message authentication. Although hash functionsatdre unbreakable, mes-
sage authentication can. A word of warning is in place hegangding terminology.
The fundamental building block of the unbreakable WegmartéZ authentication is
calleduniversal familie$ of hash functionsout those hash functions are quite different
from the cryptographically secure hash functions mentiomgove. They have simi-
larities and both deserve to be called hash functions, leuinitividual hash functions
of Wegman-Carter are not, and need not be, cryptograppisatiure in the classical
sense.

Families of hash functions can be used for many things ang wifferent require-
ments can be put on them. A system has evolved to expressghieer@ents a family
fulfills. For authentication a definition efalmost strongly-universal(e-AS,) is suf-
ficient. Wegman and Carter began with a stronger requireinefi?] but the keys
needed to be far too big for authentication to be practica[18] they showed that by
loosening the requirements somewhat the authenticatiostdhbe acceptably secure
but the required length of the keys shrinks considerablih@lgh they defined similar
requirements and presented an example efalmost strongly-universafamily, they
gave it no formal definition. The first formal definition appeain [15].

Definition 1. Let.# and.7 be finite sets and call functions fram# to .7 hash func-
tions Lete be a positive real number. A set’ of hash functions is-almost strongly-
universay if the following two conditions are satisfied:

(&) The number of hash functions i that takes an arbitraryn, € .# to an
arbitrary t; € 7 is exactlyl¢1/| 7.

(b) The fraction of those functions that also takes an arbitrary # my in .#
to an arbitraryt, € .7 (possibly equal t@,) is no more thar.

Note that it is not possible to have an< 1/|7|. The special case = /|7
was the unnecessarily strong requirement in [12] and tharsdiés are simply called
strongly universal (SW,). In theorye can be as large as 1, but in practice the family
will not be of much use unlessis rather close td/|.7|. One example of a 1-almost
strongly-universal family is the|.7| hash functions simply defined as(m) = (m +
i) mod |.7 |, wheremod is the modulo operation from computing, the remainder after
division, rather than the modular arithmetic of algebrae ibmber of hash functions is
equal to the number of tags, but a message/tag pair unicilesiyifies the hash function
which makes the family unsuitable for use in authentication

Note also that the number of hash functions in the family rbesat least7 /., so
the key needed to specify a member of the family must be ldingerthe generated tag.

A strongly universal family is in computer science often callpdirwise indepen-
dent family of hash functionsWhen hashing two distinct messages using the same

4They are sometimes callethsser setsinstead offamilies
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random hash function, the two resulting tags are statisticadependent. This is the
significance of the number 2 in the subscript. Note that elilengh a set of random
variables are pairwise independent, they are not nechssautually independent or
even 3-wise independent. In general, a strongly univerfsahily is the same thing a
k-wise independent family and means that all sets dfstinct messages are mapped
to statistically independent tags, which is a stronger gtmrdfor higherk.

5.2 Examples

Wegman and Carter proposed several strongly univefaaiilies in [12] and oné/| 7 |-
almost strongly universglin [13]. The hash families of Wegman-Carter are by no
means unique or most effective, but since they are the ailigimes they are both inter-
esting from a historical point of view and are often refershcFurthermore, they are
quite easy to understand and their performance is, althoagbptimal, good enough
for many examples and applications.

One of the families they described is a simple strongly usik family they called
H,. Actually, the family is not really strongly universallt is however “close” (their
guotation marks) and they treat it as if it was strongly urseg. We will do the same.

An implementation of the family is available as functibth in hashfunctions.py
line 85 on page 45. In words, the family of hash functions niraga messagé <
m < a to atag0 <t < b needs a key consisting of three parts. The first part is any
prime numbep > a and need not be secret. The other two parts are two secrgéiste
0<g<pand0<r<p. The hash function defined by this key simply maps a message
m to a hash valué€(gm +r) mod p) mod b. As Wegman and Carter write in [13],
this can be generalized using all polynomials of dé@#ees than 2 over any Galois
field, and if the size of the Galois field is divisible with thember of possible tags the
family is strongly universal If not, the mapping from the field to a tamod b above,
will favor the lower tags somewhat. In our case the size ofitild is always a prime
number and larger than the highest message, so unless theatadpe larger than the
message the mapping can not be perfect, but will be quiteclos

The secret key needed to select a hash function from thidyfareeds to be very
big, roughly twice as big as the message to be hashed. A QK®mysould never
work using this family as authentication. The traffic thatde authentication each
round is much larger than the generated key, so the shareet &ey would shrink.
The next family is not quite as secure but the probability @égsing a tag is at most
doubled and the required key size grows much slower than dssage size.

This 2/|.7|-almost strongly universalfamily works by picking several hash func-
tions from a much smaller but strongly univegstmily and applying them in a hierar-
chical manner. Let the smaller family consist of hash fuorimapping bit strings of
length2s to bit strings of lengths, wheres is slightly larger than the length of the tag
we want to produce. Divide the message into substrings gfthe2s, padding the last

5Polynomials of higher degree are also possible and usablen\all@ving all polynomials of degree
less tham a strongly universal family is created.
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Message

e

Key

2| 7-ASU,

Figure 5.1: Schematic of tH#| 7 |-almost strongly universafamily of hash functions
described in [13]. Each horizontal box is a bit string of léng except the somewhat
shorter tag. The subkeys, are bit strings long enough to select any hash function
from the strongly universalfamily used.
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substring with zeroes if necessary. Pick a hash functiom fitee small family, apply
that function to each of the substrings and concatenateethdts. Repeat until only
one substring of lengthis left, using a new hash function each repetition. Disched t
most significant bits that won't fit into the tag. What is leftli final tag.

One round of hashing halves the length of the message, ftegarf its size, but
uses only one hash function, and only one small key to pidkdtash function. The to-
tal key length needed therefore grows with approximatedyldigarithm of the message
length. This means a QKG system can always be designed with émough rounds
to make the key used for authentication acceptably smabinparison to the created
shared secret.

For the full details of this family, see either [13] or the Rgh implementation
function Hpr i me in hashfunctions.pyine[123 on pagé 45. For an implementation
using that function together with the strongly univessiibm the previous example,
see functionHpr i me_H1 in hashfunctions.pjine 186 on page 46. A functionally
equivalent but more compact implementation of the sametifumthat might be easier
to get an overview of, at the expense of not following the WagCarter papers as
closely, is available at functioHpr i me_H1_conpact in hashfunctions.piine[214
on page 46.

5.3 Authentication

Any e-almost strongly-universafamily of hash functions# can be used for Wegman-
Carter authentication. Suppose Alice and Bob share a dexyétjust large enough to
select any hash functidn, € 57,0 < k < |57|. Alice wants Bob to have the message
my € .# and sends bot; andt = hy(m4). Bob verifies that really equaldi, (m1)
and accepts the message as authentic if it does. Thé lsethen discarded and never
reused.

Now suppose Eve has control over the channel between AliddBab and wants
Bob to accept a faked messagg € .#. To her the secret key is a random variable
K uniform over its whole rang®(K) = [0,|27|[. If the key is a random variable,
so is the correct ta@s = hy (ms). The first condition of definition 1 says thatif
is uniform over its whole range, so &,. She can take a guess, but any guess has
probability /|| to be correct.

She may also wait until Alice tries to send an authenticatedsage to Bob, pick
up the message and the tag, and make sure Bob never see thémboiim,; and
t; = hx(m1) at her disposal she can, given enough computing power, ntlalidkeys
that do not match and be left with just.7| of the keys to guess from. However, the
second condition of definition] 1 says that even with this kieolge she has, witlk’
uniform over its whole range, at best the probabilitip guess the correct tag for
anyms # my.

e is never smaller thaty|7| soe is clearly an upper limit on the probability that
Eve makes the right guess and manages to fool Bob into angepfiake message, at
least if Eve knows nothing about the key beforehand.
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5.4 Encrypted tags

If the same key is used twice for authentication, the definitf e-almost strongly-
universa} families makes no guarantees about how hard it is to guessotiect tag
corresponding to a third message. The keys must therefoss be reused. For each
authenticated message, Alice and Bob must sacrifigg R(K)|) = log(]##|) bits

of their shared secret. Wegman and Carter describes inerhajm [13] a method of
sacrificing onlylog(|.7|) bits for each message. Begin by choosing a hash funétion
randomly from are-almost strongly-universafamily. This hash function will be used
for all messages, but the tag is calculated ash(m) XORE. In other words, the tag
is one-time pad encrypted using the one-time pdlde same size as the tag.

If h(-) is e-almost strongly-universal so ish(-) XORk. The key, secret or not,
merely reorders the tags which has no effect on definition de’sschance to guess
the tag is therefore still limited by. The one-time pad encryption makes sure no
information about the hash function leaks to Eve, so the lfasttion can be safely
reused an arbitrary number of times as long as new one-tinkegra used each time.

To authenticate the first message both a hash function ané-tirne pad needs
to be chosen so the required key is larger than in the autiaioth described above.
However, each message after the first needs just a key of the size as the tag, so
the average sacrificed key length per message will apprbacsize of the tag.
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Chapter 6

Authentication with partially
secret key

In the previous chapter we assumed that Eve had no informatidhe secret key used
in the authentication, i.e., to Eve the ké&y was a random variable uniform over its
whole range. As explained in Section 1.2 that is an unréalistjuirement in QKG.
Information leakage in the quantum transmission phasedsaidable but the damage
can be reduced using privacy amplification. Through theggghamplification process
Eve’s knowledge of the key is reduced, but not to exactly z&®soon as the whole
initial key is used Alice and Bob will have to start trustingtlaentication with a key
that is not completely secret. This chapter deals with atib&tion with a partially
secret key in general, while the next chapter puts the el the context of QKG.

If Eve holds some information about the authentication key,chance of forgery
may be much higher for some messages than others. For examatgne Alice and
Bob are authenticating messages using the second hask far8gction 5.2. Remem-
ber that those hash functions works by applying a number aflemhash functions,
each hash function halving the length of the message. If Bowk the first hash func-
tion with certainty but nothing else and sees a valid megsageair from Alice, she
can divide the message into substrings and change eachisghstanother that yields
the same hash after the first step. No matter what the othérfoastions are, the
fact that the internal state after the first step is the saraeagtiees that the same tag is
produced. However, if she wants to forge another messagis siw¢ helped at all by
knowing the first hash function. But that is a weak comfortAdice and Bob. Their
goal was for Bob to verify that exactly the message he redeias sent by Alice. No
matter how limited Eve’s choices are when choosing a forgegsage, Alice and Bob
have failed if Eve makes any undetected change to the mesEage on the safe side
we will consider the possibility of Eve to make an undeteatbdnge at all, without
being bothered with how happy she is with the choice of messag

Cederbf, 2005. 33
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6.1 Active and passive chance of forgery

Eve’s main goal is to make Bob accept a fake message, but bendary goal is to
avoid raising suspicions if she fails. If she has the pobfitid first perform passive
eavesdropping on the message and tag sent by Alice, and ¢k&tedvhether she will
launch a full-fledged active attack and send a forged megsed®@b, it makes sense to
divide Eve’s chance of forgery into a passive part and anegiart.

We can number the different states that Eve may be in afterabesdropping phase
depending on what message/tag pair she sees, denote tlabifitpithat she is in state
i with pP® and the probability that an active attack succeeds if shesg®to launch
one withp?®, Her total chance of succeeding is

P =D (6.1)

As long as Eve stays passive she does not risk detectiorf,dhé chooses to make
an active attack the chance of succesgif$depending on the state she is in. If she
fails to guess the tag correctly she is detected when Bobew®that it does not match
the message. We will see that this difference between Evtsdnd active chance of
forgery is especially important in QKG and in other scermmdere many messages
are sent and Eve only needs to forge one of them.

If Eve just needs to forge one message from an infinite strefamegsages, she
will wait until she after the eavesdropping phase is in tlagestvith highest probability
to guess a correct tag. As long as the passive probabilityhatr state is non-zero,
the probability that she will sometime reach that state gillto 1 as the number of
messages goes to infinity, and Eve’s chance of having forgedssage will approach
. If p3< is not acceptably small, Alice and Bob must be prepared fdty when
Eve succeeds.

6.2 No message/tag pairs seen

Eve doesn’t need to know the whole key to be able to forge aagessithout any risk
of being discovered, even when she cannot see a valid mésgagair. The key is
always larger than the tag and Eve needs only as much infammiiat is contained in
the tag. In other words, there are many hash functions thkasta single message to
the same tag, and if her uncertainty about the key just madeimtapable of knowing
which of those hash functions is used she still knows theecbiag with certainty.
On the other hand, any information that just helps her pimgbie exact hash function
within the subsets that maps her message to the same tagteis/qtthless.
Fortunately for Eve, what is worthless key information wheying to forge one
message need not be when trying to forge another. The firslitocmm of definition 1
states that exactly?l/| 7| keys or hash functions take a single message to a single tag.
The second condition implies that the grouping of keys itedint for each message.
A natural upper bound for Eve’s active chance to forge anysamgs is therefore the
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sum of probabilities for thé#l/| 7| most probable keys. The min-entropy of the key,
H. (K), is the negative logarithm of the highest probability so & leti denote the
key length in bits and; the tag length, a somewhat looser but simpler bound is given

by

pﬁqcéx < H%yplZHoo(K) _ QIKfHOO(K)flT. (62)
If Eve knows nothing about the key her key (min-)entropy dgjtiae size of the
key and chance is bounded Ry!” as expected.

6.3 Encrypted tags

The method of one-time pad encryption of the tag describe8.4) makes authenti-
cation of a constant stream of messages cheap and works farea@mpletely secret
one-time pads are available. However, when the one-time aeginot guaranteed to
be completely secret, Eve will learn something about thé fiaisction for each mes-
sage/tag pair she sees. The information she has about thémpadO; will equal
the knowledge she gains abdutvhen she sees,; andh(m;) XORO;.

If Eve is unlucky she will only gain information she alreadydth The exact knowl-
edge ofh she gains depends not only on her exact knowledge; dfut also onm;, so
itis very hard to put restrictions only on Eve’s knowledgatthuarantees that she does
not learn anything new.

All Eve has to do to exploit this weakness is to passively sdr@p the messages
and the encrypted tags and combine that information withtevieat she knows about
the one-time pads until she has enough confidence in her kdgelof the hash func-
tion that she can mount an attack that succeeds with acdegiadbability. In other
words, her active chance of forgery will increase for (altheach message/tag pair she
sees if encrypted tags are used. Therefore, using the g¢adriggs method is not ad-
visable unless the one-time pads are known to be completehgts Using the normal
method of selecting a new hash function for each messagendbsbare this problem.

6.4 A message/tag pair seen

If Eve sees a message/tag pair from Alice to Bob she is giviemnration about the
authentication key, and she will combine that informatioithwvhatever she knew
about the key initially. We will call the initial key beforéne has seen the tdg, and
the key it reduces to after the tags revealedX’ = Ko|r—;.

The change of her uncertainty about the key when she seeasgli®duite simple.
Thel#l/|7| keys consistent with the message/tag pair seen are singiemd normal-
ized and the rest are set to 0. A limit for the averag@ay entropy of order 1 or larger
of the resulting key is given by theorém 3,

Eieriry(Ho(Kolr=t)) > Ho(Ko) — Hi(T) > Ho(Ko) — 7. (6.3)
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This is only a limit on the expectation value of the entropyd ave have seen
several examples of very misleading averages. Fortunatelglso have some limits
on the individual entropies. They cannot be negative ang ta@not be larger than
lx — lr. These limits will of course apply to the average as well. Gmimg these
limits yields

Ho(Ko) —lr < E(Ho(K)) < g —Ir (6.4)

0< Hy(K) <Ilg—lr .
which gives some kind of picture of how the entropies of thalfkey are distributed.
Note thatH, (Ky) typically will be pretty close tdx unless Eve initially knew very
much about the authentication key.

6.4.1 The problem

If Alice and Bob wish to authenticate a stream of messagesemdoncerned about
Eve’s chances to forge any message in the long run the aveshge doesn’'t matter
much. The average entropy might give an idea of the totalahahforgery, but if she
gets infinitely many opportunities for an attack, even if shé/ can make one active
attack, only the minimum possible entropy matters.

As an example, suppose Eve receives information that maleesfdhe keys twice
as likely as before, while all other keys still have the samabability as each other.

That is, the initial key is the random variabl@gé‘;ﬂl. Since the highest probability
has doubled, the min-entropy of the key is reduced by exdchlif. When she sees a
message/tag pair she will rule out all but thél/|.7| keys consistent with the pair. If
the more probable key is not among those, the entropy of thetieg key K will be
maximal,lx — [, since she has no information about those keys. If the malegie
key is among those left, the new maximal probability is givsnrenormalizing the
probability2/|.#|.
ol 2 T
max P(K=k)= G ~ ~ 2 7 (6.5)

keER(K 9 Ve 1— 57 R R
" Z+ A -0 2+ 0m -1 7]

The probability of the most likely key is still approximagedivice as high as if Eve
had no information at all, which like before means her mitr@py is reduced by 1 bit.
Thus, in this case 1 bit of reduced min-entropy in the inikiey gives Eve normally
no information about the final key and sometimes approxipatéit of reduced min-
entropy of the final key. The message in the message-tag @asr mbt matter in this
case. Eve’s maximum active chance of forgery is just doubled

As another example, suppose Eve’s knowledge of the inigglA, is that out of
the|s#| possible keys, she has a listléf /| 7| — 1 keys that she knows are not the real
one. Furthermore, all those keys select hash functiongakatAlice’s message to the
same tag.
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Figure 6.1: Eve can wait undetected until she knows she c&e mauccessful attack.

The entropy for this key is very close to the entropy of a catgly unknown key,
which is the same thing as the length of the key. Since thelision is uniform the
Rényi entropy does not depend arso we have for any

H
i — Ha(Ko) = log(|#]) — log(|.#] - |7|' L)
1 1 1 1 (6'6)

1
712 N 7 - A hE © [7mE)

= —log(l —

which is pretty small. A realistic tag size might be 32 bitsiieh would mean that the
entropy is reduced with less than four billionths of a bitvhigheless, if the tag Alice
sends is the right one, Eve will know the key with total cettpandH,, (K) = 0. The
chance of that tag being the right one is just ongifi| — |#1/|.7| + 1 and for any other
tag Eve has no use for her prior information, so the averagemnwill still be very
close tolx — Iy, as is required by (6.4).

Eve’s active chance of forgery is exactly 1 in this case. df tessage is changed
to one where thé”1/|.7| — 1 keys with O probability instead are spread out as evenly
as possible over the7 | tags, Eve’s entropy for the final key is independent of both th
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tag andn and is bounded by

2 12 N _
1 1 '

which leaves her maximum active chance of forgery prettyimumaffected when Alice
sends this particular message.

6.4.2 The solution

We have seen that simply sending a tag along with each messagave authenticity
does not work in the long run if Eve has a small but non-zeraadge of the authen-
tication key used. However, only minor adjustments are eged make Eve's active
chance of forgery equal to her passive chance, and themsfakes her chances of suc-
cessful forgery before being detected equal to her maxinutah ¢hance of forgery.

One theoretical solution is for Alice and Bob to have synaoiwed clocks and agree
before each message at which time the message should #titleat time Alice will
send the message, wait for a time interval longer than theigioas of their clocks,
and send the tag. Eve will not know if she will be able to forgmassage/tag pair
before she sees the real tag, but by then it will be too latehtmge the message.
Keeping the clocks synchronized and agreeing upon fixedstiimemessages seem
kind of problematic though, so this is probably not a gooaide

A simpler solution that does not need clocks is for Alice tads¢éhe message to
Bob, who replies with a random fix-sized temporary bit strioglled thesalt, which
Eve must not be able to guess before she sees it. Alice cedsudatag based on the
concatenation of the message and the salt and sends thatBai.t Before Eve has
seen the tag she will not know if she will be able to forge a ragesalt/tag triplet, and
she will not see the tag before she sends the salt to AliceeeSihe cannot send fake
salt to Alice and be sure to get away with it before she has 8eereal tag, she can
either send the real message to Bob and fail but stay unddtecsend Alice faked salt
and Bob a faked message and with only a very small probab#igble to send Bob the
right tag. With almost certainty the tag she receives fromsedWwon’t give her enough
information so she will probably get caught. This solutiequires slightly more time
for Alice and Bob to communicate and, since the message tatierticated now
includes the salt, a slightly larger authentication key.
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Figure 6.2: Two different solutions. In both versions Evéiged to launch her attack
before she knows if she will succeed and can therefore, vétly tiigh probability,
never launch an attack undetected, || s,, is the concatenation of the message and the
salt.
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Chapter 7

Authentication in QKG

As we saw in Sectioh 2.6, a QKG system with a limited lifetine®m ©nly generate a
limited amount of shared secret key and can be replaced witegenerated courier
delivered shared key with increased security. Some of thssages of each round need
to be authenticated and once the initial key is used a keyrgttkin previous rounds
needs to be used. Section 1.2 explains why Eve will have d sutaton-zero amount
of information about that key.

In Chapter 6 the method of encrypting the authenticatios pagposed by Wegman
and Carter is shown to be unsuitable when completely seeset &re not available.
Using that method in a QKG system would each round give Eveerkoowledge
about the hash function, which would limit the lifetime o&thystem to the time when
she is expected to know enough to launch an attack.

Chapter 4 gave many examples of the dangers of good secutityoa average.
Chaptel 6 reveals that even if Eve initially has very littiformation about the authen-
tication key, when she has seen Alice’s message/tag pajitioalexpectation value of
her knowledge is bounded. If we assume that the authemtict is sent along with
the message and that Eve only needs to forge one message tngaigh power over
the key growing process to be able to forge the next messhgeisk that Eve is in
control of the QKG system will increase for each round andreggh unity without
Eve ever risking being detected. This would put a theorHiioé to the lifetime of the
system.

Fortunately simple solutions exist and two of them are atesgnted in Chapter 6.
They both force Eve to make her attack before she knows thlt #ucceed by making
sure Alice will not send the authentication tag until eitBeb has received the message
or Eve has done something that would reveal her if she canndupe the correct tag
for her forged message. A QKG system might already have aimpiloperties since
a round normally consists of a dialogue of several messagkamauthentication tag
for all of them at the very end of the round. Whether that is gihao keep the system
secure depends on the details of the system, but implengemitie of the solutions is
cheap and requires no deep analysis of the system.
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Finally note that the proposed solutions only makes theeauittation secure if
Eve’s initial knowledge of the key is limited. If the privagmplification only limits
heraverageknowledge of the authentication key, she will eventuallpwrenough of
the key to safely launch an attack regardless of the defaife@uthentication process.
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Appendix A

Source code

entropi es. py

#l/usr/bin/env python
# -*- coding: 1s0-8859-1 -*-

from__future__ inport division
frommth inport *

# Yes, this is a quite ugly way to get an infinity constant, but it
# works, and we really get an IEEE 754 floating point infinity

# constant. Module fpconst should solve the problem.

infty = 1e300000000000000

def IogZ(x?:
return log(x, 2)

def shannon_entropy(l):
e Retlurn the Shannon entropy of random variable with probabil ity
vector
return sun([- P*Iogz(p) for pinl if p>0])
def m n_entropy(
""" Return It‘he min-entropy of random variable with probability

vector |.
return -| ogZ(rTax(I)
def entropy(l, alpha=1

""" Return the R enyi entropy of order alpha of random variable with
probability vector I.
I f abs(al pha - 1) < 10**-10:
return shannon_entropy(l)
elif alpha == infty:
return mn_entropy(l)
try:
# "if p>0" saves us from 0**0 trouble.
return | og2(sun([p**fl oat(al Fha) for p inl if p>0]))/(1-al pha)
except (ZeroDivisionError, OverflowError)
return mn_entropy(l)

def guessing_entropy(l):
n Retlurn —he Shannon entropy of random variable with probabil ity
vector . "
tnp = I [: # Copy the probability vector.
tnp. sort(
tnp.reverse() # Highest probability first.
return sum([p*i for (i,p) in enunerate(l)]) + 1

def normalize_inplace(l):
" Norma:’iée a probability vector in-place.
S = su
for i, p in enunerate(l):

I'[ = f) s
def normalize(
"Return a normallzed probability vector.
S = su
returnn} p/s for pinl ]

def , :
€ rggrnngp]ﬂ(l-p)/n]*n

Cederbf, 2005.
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hashfuncti ons. py
#llusr/bin/env python
# -*- coding: 1s0-8859-1 -*-

from_ future i mport division
frommath inport *
import Crypto.Util.nunber as cn

def 10g2(x
retgrg ?og(x 2)

def |ogint(x, base, cache=[ (8, 2)
" Return |nt(ce|l(log(x ﬁse))) without roundlng “errors.
# Rounding error example:
#>>> Iog(gz**% 2**12)
#8.0000 0000000018
if (x, base) == __cache[O0]:
return _ cache[ 1L
c =int(ceil(l og(x ase))) # This works most of the time.
V\h| le x > base**

c +=1 # If not, this will fix it.
while x <= base**(c-1):
c-=1 # Or this.
__cache[:] = (x, base), c
return c
def i stwopower (x, cache= :
c = __gache(ge t (X) th
if ¢ is not None:
return c

c = 0L # This must be a long, or 1<<c will lose bits.
while x > 1<<c:
c +=1
if x 1= l<<c:
return None
__cache[x] =c
return c

def int2list(x, xmax=None, s=256):
“vReturn the integer x as a little-endian list of bytes with s
states each. s is the number of states, not the number of bits.
If xmax is given, the returned list will be large enough to
contain xmax-1. """
if xmax is None:

Xxmax = x+1

assert 0 <= x < xmax

I =10] * logint(xmax, s)
c = I stwopower (s)
if cis None:
for i in xrange(len(l)):
I[i] = int(x%)
x =x/ls
el se: # s is exactly 2**c==1<<c so we can optimize somewhat.
mask = (1<<c)-1
for i in xrange(len(l ):
ITi] = int(x&mask
X = X>>C
return |
def list2int(l, s=256):
v Return list interpreted as a little-endian list of bytes wit h's

states each. s is the number of states, not the number of bits.
while len(l) > 1:

I[-2J += I[-1]*s

del -1]
return [ [0]

def nextprime(begin=1, _ cache=[7,7]):
""" Return the lowest pnme >= begin.

if begin == __cache[0]:
return _“cache[ 1]
n = begin

if not n%: n+=1

while not cn.isPrime(long(n)):
n += 2

__cache[:] = begin, n

return int(n)
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The following functions were first described by J. Lawrenc e Carter
and Mark N. Wegman in their ﬁapers "Universal classes of has h
functions” (1979) and "New hash functions and their use in

authentication and set equality” (1981).

All functions try to follow the Wegman-Carter papers as clo sely as
possible and all quotes are from the papers.

def Hl(a, b, key=None):
"""Return a member of the hash family H_1 from Wegman-Carter 197 9
Inputs:
a -- Number of input states
b -- Number of output states
key -- a tuple (p, m, n):
p -- A (non- secret) prime Iar%er than or equal to a
g -- Half of the secret key. 0< g<p
r -- Half of the secret key. 0<=r<p
Output:
Normal mode:
A hash function mapping range(a) to range(b)
Parameter mode: ) )
If H1 is called with no key, the smallest possible p is
e returned to ease construction of a key.
if key is None:
return next pri ne(a)
p, g, = Key
assert (a>b) and (p>=a) and (0<q<p) and (0<=r<p)
def g(x): # "A natural choice for g is the residue modulo b."
return x %b
def h(m:
return (g*mtr) %p
def f(m:

# Docstring is set below

assert 0<=nxa

return g(h(m)

__doc__ =\ ) )

""" This is a hash function from the hash family H_1 from
\INegman—Carter 1979 using the key %s.
nputs:

m -- The integer to be hashed in range(%d)
Output:

A hash value in range(%d)

""" % (str(key), a, b
return f

def Hprine(aprime, bprine, flist=None):
'I' “"Return a member of the hash family H’ from Wegman-Carter 1980
nputs:
aprime -- Number of input bits
bprime -- Number of output states
flist -- A sequence of secret hash functions
Output:
Normal mode:
A hash function mapping range(2**aprime) to range(2**bpri me)
Parameter mode:
Hprime needs a sequence flist of hash functions from a
universal_2 family. The number of functions, input states a nd
ougaut sfates are dependent on the inner workmgs of Hprime
need not be exposed to the outside. Instead, if Hpnme is
called without fllst those specifications are returned as
tuple (a, b, len_f
2~ Number of input states of each hash function
b -- Number of output states of each hash function
len_f -- Number of hash functions in flist
s = bprine + |nt(ce|I(Iogz(Io?2(a rime))))
# "Let H be some strongly universal_2 class of functions whic h map
# bit strings of length 2s to ones of length s"
a = 2** *
b = 2** s
# The "or 1" is needed because the length calculation in W-C-8 0
# doesn’'t account for the extra padding when the message is
# smaller than s from the beginning
len_f = |nt(cell(IogZ(celI(aprerE/s)))) or
if flist is Non
return §a b Ien f)
assert len(flist) == l'en_f
def f(substrings, hashfunction
# Apply hashfunction to all substnngs and concatenate pair wise
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157 for i in xrange(l en(subst ri ngs)/lz

158 substrings[i:i+2] = [hashfunction(substrings B

159 hashfunction(substrings |+1 * 2%*s]
160 if len(substrings)9R: )

161 substrings[- = hashfunction(substrings[-1])

162 def fprime(m

163 # Docstring is set below

164 assert 0 <= m< 2**aprine

165 # "The message is broken into substrings of length 2s.”

166 substrings = int2li st(m xmax=2**apri me, s=2**(2*s))

167 for f_i inflist[:-1]:

168 assert Ien(substrl ngs) > 1

169 f(substrings, f_i) .

170 # "This process is repeated usmg f_2,f 3,... until only one

171 # substring of length s is left."

172 assert Ien(substrl ngs) ==

173 substring = flist[- 1](substr|ngs[0])

174 assert 0 <= substring < 2**

175 # "The tag is the low-order b’ blts of this substring."

176 return substrln%%Z**b prime

177 fprime.__doc__ is is a hash function from the hash family H’ "\
178 "from Wegman-Carter 1980.\n \

179 " Inputs:\n

180 " m -- A %d bit integer to be hashed\n "\

181 " Output\n " \

182 " A %d bit hash value\n " \

183 % (aprime, bprine)

184 return fprime

185

186 | def Hprime_Hl(aprime, bprinme, key=None):

187 """Return a member of the hash family H' from Wegman-Carter 1980

188 using the sub-hash family H_1 from Wegman-Carter 1979

189 Inputs:

190 aprime -- Number of input bits

191 bprime -- Number of output bits

192 key - A secret key

193 Outputs:

194 Normal mode: )

195 A hash function mapping range(2**aprime) to range(2**bpri me)
196 Parameter mode:

197 If Hprime_H1 is called without a key an integer maxkey is

198 returned. The key should be in range(maxke%

199 wan

200 # Get key parameters .

201 a, b, len_f = Hprine(aprime, bprine)

202 p = Hl(a b)

203 maxkey = ((p-1)*p)**len_f

204 if key is None

205 return n'axkey

206 assert 0 <= key < maxkey

207 flist =

208 for thiskey in int2list(key, xmax=maxkey, s=(p-1)*p):

209 g, r = di vnod(thiskey, p)

210 += 1

211 flist.append(Hl(a, b, (p, q, r);)

212 return Hprine(aprinme, bprlne fli

213

214 | def Hpri n‘e_Hl_corrpact(af)rl ne, bprinme, key=None):

215 """ A more compact imp ementation of Wegman -Carter 1980 with H1

216 from W-C 1979

217 The functions above are written to mimic the language of )

218 Wegman-Carter as much as possible. Sometimes it ml?ht be eas ier to
219 understand a more compact language. This code should do exac tly
220 the same as the one_ above, but in far less lines and with no erro r
221 checking. It is approximately three times faster than Hprim e_H1().
222 Inputs: )

223 aprime -- Number of input bits

224 bprime -- Number of output bits

225 key -- A secret key

226 Outputs:

227 Normal mode: )

228 A hash function mapping range(2**aprime) to range(2**bpri me)
229 Parameter mode:

230 If Hprime_H1_compact is called without a key an integer maxk ey
231 is returned. The key should be in range(maxkey).

232 e

233 :bprirre+int(ceil(IogZ(IogZ(aprirre))))

234 P = nextprime(2**(2*s

235 en_f =|nt(ceiI(IogZ(celI(apnne/s)))) or 1

236 maxkey = ((p-1)*p)*
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if key is None:
return maxkey

keys = L

for this ey inint2list(key, xmax=maxkey, s=(p-1)*p):
g, r = divnod(thiskey, p)

q +=

keys. append( (a.r) )
def fﬁ

" This is a hash function returned by Hprime_H1 comgact(). "

substrings = int2list(m xmax=2**aprine, **(2*%s))

for q,r In keys:

for i in xrange(len(subs ring
substrings[i:i+2] q substrl ngs +r) %p) Y 2**s +\
q* substrlngs |+1 +r) %) % 2**s)) * 2**s]

if len(substrings)oR:
substrings[-1 = (((q substrings[ -1]+r) %) % 2**s))
return substrings[0] % 2**bpri me
return fprine
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