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Abstract

Quantum key growing, often called quantum cryptography or quantum key distribution,
is a method using some properties of quantum mechanics to create a secret shared cryp-
tography key even if an eavesdropper has access to unlimitedcomputational power. A
vital but often neglected part of the method is unconditionally secure message authen-
tication. This thesis examines the security aspects of authentication in quantum key
growing. Important concepts are formalized as Python program source code, a com-
parison between quantum key growing and a classical system using trusted couriers is
included, and the chain rule of entropy is generalized to anyRényi entropy. Finally and
most importantly, a security flaw is identified which makes the probability to eavesdrop
on the system undetected approach unity as the system is in use for a long time, and a
solution to this problem is provided.

Keywords: Quantum key growing, Quantum key generation, Quantum key distribu-
tion, Quantum cryptography, Message authentication, Unconditional security,
Rényi entropy.
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Chapter 1

Introduction

The history of cryptography has been an arms race between code makers and code
breakers. Today the code makers are far ahead of the code breakers. Anyone with a
computer and some knowledge can send and receive encrypted and signed messages,
and nobody can decrypt them or produce false signatures within a reasonable time
frame. At least not someone limited to using the computers and the publicly known
algorithms of today, and limited to attacking the messages themselves rather than ex-
ploiting human errors and software bugs, compromising physical security or something
similar.

We trust cryptography so much that it now is hard to imagine what a modern society
without working cryptography would look like. Code breakers getting ahead in the race
tomorrow would not mean the end of civilization, but we wouldhave to rethink much
of what we have come to depend on and there would be a lot of changes around us. Not
entirely different from the computer problems that were feared to appear on the arrival
of the new millennium, but this time making some small bug fixes in old computer
code would not be enough, many systems would need to be redesigned completely,
and some would simply not be possible anymore.

Nobody knows if the code breakers will be better than the codemakers ever again,
but some fear that it might happen within years or at least within decades. One threat is
the advancement of quantum computers. A quantum computer can solve certain types
of problems much faster than a conventional computer. Breaking cryptography is one
of those problems, but making more secure codes is not. Quantum computers have been
built, but fortunately for the code makers no quantum computer nearly large enough to
be usable is expected to be possible to build in the immediatefuture. The fear that they
will exist in the near future is however, even though it may not be well-founded, real.
As is the fear that new mathematical tools will make code breaking much easier.

The primary cryptography tools used today are symmetrical encryption, symmet-
rical authentication, asymmetrical encryption, and digital signatures. In the first two,
both the sender and the receiver have a copy of the same secretkey. The other two are
similar but the sender and the receiver have different related keys, of which only one

Cederl̈of, 2005. 1



2 Chapter 1. Introduction

needs to be secret. The difference between encryption and digital signatures/authentication
is explained in Chapter 5. Methods of using one secret and onepublic key was a major
breakthrough of cryptography, but all those risk being insecure if the code breakers
gain enough computational or algorithmic power. Even worse, the future code break-
ers would also be able to decrypt old stored encrypted messages. Luckily, the first two
cryptography tools have been mathematically proven to be unbreakable if they are done
right, so no matter what breakthroughs the future brings us they will still be available.
Unfortunately, to do them right requires the secret key to bevery large and to be dis-
carded after use. This is quite impractical and seldom done today, and it will be even
harder if asymmetrical cryptography is no longer available.

Handling those large keys, especially without asymmetrical cryptography, is today
considered too impractical for most people to even considerdoing it. This is not very
strange considering we have much simpler tools to accomplish the same thing. If those
tools disappeared handling those large keys might still be more practical than living
without cryptography. All that is needed is a good and fast random number generator,
good storage media and trusted couriers. Since the keys are discarded after use, the
couriers will need to bring new keys each time nothing is leftof the old ones.

Quantum Key Growingis both a fascinating application of quantum mechanics and
another way to solve the key distribution problem. By using some quantum mechanical
properties of single photons two persons in two different places sharing a small secret
key can make that key grow to a larger key, and anyone trying tointercept the key will
be detected. Unlike most classical cryptography, QKG makesno assumptions about
the computational capacity of the enemy. Instead, the security is based on the enemy
being limited by the laws of quantum mechanics.

QKG is also often calledQuantum Cryptographyor Quantum Key Distribution.
These expressions have given rise to the idea that the message to be encrypted or a
chosen secret key is sent as quantum information, when in fact the secret key generated
is pretty random. The expressionQuantum Key Growingis less frequently used but
also emphasizes that an initial shared secret key is needed for the process to work,
something which is often forgotten in popular scientific explanations of QKG.

The typical key generation rate of QKG systems available today is, according to
[1], very low, 1000 bits/s at best and often much lower. This bit rate is far too low to
be usable in an unbreakable one-time pad system for most applications. Instead, QKG
is often promoted as a way of enhancing the security of classical cryptography like
AES through constantly replacing the encryption key with fresh ones from the QKG
system. This will of course invalidate any claims of unconditional security, since the
encryption will be breakable to an eavesdropper with large enough computing power
or good enough algorithms, but it is often argued that this isgood enough security.

However, providing good enough security is necessary but not sufficient. It must
also be as cheap and good as other ways to achieve the same or better level of security.
Chapter 2 compares QKG with the less interesting but old and well-tried method of
simply sending the key with a courier.

There are many different ways to implement a QKG system. See [2] for a very good
review. This chapter will give a brief description of the basics. A good and detailed de-
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scription of an example QKG system can be found in [3]. Chapter 3 introduces discrete
random variables, Chapter 4 discusses different definitions of the entropy contained in
a discrete random variable and generalizes the chain rule ofentropy. Unconditionally
secure authentication with a completely secret authentication key is explained in Chap-
ter 5, and in Chapter 6 the key is allowed to be only partly secret. A vulnerability
is identified and solutions are presented. Finally, Chapter7 describes how the results
apply to QKG. Much of what is explained in these chapters is also given as Python
source code in appendix A.

1.1 Setup

Whenever cryptography is involved, it is common practice to refer to the sender, re-
ceiver and eavesdropper as Alice, Bob and Eve, respectively. If the eavesdropper is
allowed to modify messages as well she is sometimes called Mallory, but most of the
time, and here, she will be called Eve.

To set up a QKG system Alice and Bob need one quantum channel between them
where they can send and receive quantum bits,qubits, from Alice to Bob. The channel
is typically an optical fibre carrying single photons with the qubit coded in the photon’s
polarization, but many other possibilities exist. In a perfect channel every qubit sent by
Alice is received and correctly measured by Bob, to the extent permitted by quantum
mechanics, and Bob receives no qubits which Alice has not sent. In practice, such
channels don’t exist, and they are not needed. The actual channel used can lose almost
all qubits in transit, make Bob think he received qubits never sent by Alice and modify
some of the qubits that do go from Alice to Bob. As long as the errors are within some
limits QKG will still produce a key that is both shared and secret.

They will also need one classical information channel. The alternatives include
but are not limited to the Internet, the same optical fibre used above, and a network
cable parallel to the optical fibre. Note that many descriptions describe a system where
messages on the classical channel can be eavesdropped but can never be modified by
Eve. Such a system merely turns a quantum channel and an unmodifiable channel
into a channel safe from eavesdropping. Such unmodifiable channels don’t exist in
the real world, and they are not needed. In reality, Eve must be assumed to have
complete control over the classical channel as well as the quantum channel. Using
message authentication Alice and Bob can detect Eve’s modification attempts with a
high probability. Message authentication is the topic of this thesis.

Alice and Bob will also need a shared secret key to begin with.It does not need to
be very large at first, the sole purpose of the QKG system is to make this shared key
grow by using and discarding small parts of it to produce larger keys. The initial key
only needs to be large enough to enable the message authentication needed to create a
larger key, which typically would mean being able to authenticate two messages, one
from Alice to Bob and one in the other direction. Alice and Bobwill also need random
number generators, and of course computers.
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1.2 Running the system

QKG was first proposed by Charles H. Bennett and Gilles Brassard in the paper [4]
in 1984. The protocol they described is now known asBB84. They assumed that the
quantum channel was perfect but they did describe how to do message authentication
to prevent Eve from modifying messages on the classical channel.

Figure 1.1 is a schematic view of a QKG system using a modern version of the
BB84 protocol, including the error correction and privacy amplification that makes
it work over imperfect quantum channels. Many other protocols are possible where
the quantum channel is used in different ways, which also affects how the sifting is
done, but that doesn’t affect the rest of the system. One notable alternative is the
Ekertor Einstein-Podolsky-Rosenprotocol where Eve has full control over the photon
transmitter and Alice and Bob has one photon receiver each. It allows key growing as
long as the photon transmitter sends photons from entangledpairs to Alice and Bob.
Whenever Eve tries to cheat by e.g. sending non-entangled photons, she is detected and
the generated key is discarded.

The QKG process is assumed to work in rounds, where each roundconsists of
first using the quantum channel to transmit some photons and then using the classical
channel to performsifting, error correction , privacy amplification andauthentica-
tion. During theauthentication a piece of the shared key is used and destroyed, but if
everything succeeds a larger piece can be added to the sharedkey.

In the BB84 protocol, the quantum transmission consists of Alice trying to send
lots of photons to Bob, where each photon is transmitted in one of two bases, selected
by the arrow that goes into the top of the photon transmitter box in figure 1.1. The
photon also has one of two values, selected by the arrow that enters the box from the
left, giving a total of four possible photon states. For example, the two values in the first
base can be represented by horizontal and vertical polarization, while the two values in
the second base are represented by +45◦ and -45◦ polarization. She stores the values
of all photons sent in this round in1A and remembers the bases until thesifting step.

Bob measures each received photon in a base randomly chosen from the same two
bases, selected by the arrow at the top of the photon receiverbox in the figure. If he
used the same base as Alice and there were no transmission errors, the same value
Alice used will come out on the right side of the box in the figure and be a part of
1B. It is important that those random choices are unpredictable. Quantum mechanics
says that if Eve doesn’t know the base of the photon she cannotcopy a photon and
resend it undisturbed. She can try to guess the base, but she has only a 50% chance
to be correct, and if she is wrong she will only receive a random value and can not
retransmit the photon to Bob undisturbed. If she introducesenough errors Alice and
Bob will get suspicious, but there are always some errors on the channel anyway, so
if Eve only makes some measurements the errors she introduces won’t be seen behind
the normal noise of the quantum channel. At least in theory she might even replace the
optical fibre with a perfect photon channel, which gives her the possibility to introduce
as many errors through measurements as the old fibre did by just being imperfect.
Exactly what measurements she can make is the subject of muchresearch, but for the
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current purposes it is sufficient to know that some information must be assumed to have
leaked to her.

After the quantum transmission Alice and Bob will discuss over the classical chan-
nel what photons were received by Bob and which bases they both used. The values in
1A that Bob never received are discarded, as are the values in both 1A and1B where
Alice and Bob used different bases. This process is calledsifting. When the sifting
is done Alice and Bob will have the bit strings2A and2B, on average half the size
of 1B and much smaller than1A. Encrypting the sifting messages of one round would
need much a much larger key than can be generated in one round,so they must be
unencrypted and Eve will learn what bases Alice and Bob used.She will use that in-
formation to make better sense of whatever measurements shemade on the quantum
channel, but it is too late for her to base her measurements onthat information. It is
therefore important that Alice and Bob makes sure that the sifting is started after the
quantum transmission is finished, e.g. by using synchronized clocks or by sending one
random message from Alice to Bob, sending another from Bob toAlice and finally a
third from Alice to Bob before starting the sifting, and authenticating those messages
with the rest of the messages in the end of the round.

If the quantum channel was perfect and Eve didn’t do anythingthe bit strings2A
and2B would be identical. In practice the channel isn’t perfect sothe strings are not
identical, but they are similar. By using the classical channel they can performerror
correction and produce the shorter strings3A and3B which with very high probability
are identical. If Eve has measured too much they will with very high probability notice
that there are too many errors and abort.

Even though the errors were not alarmingly frequent Eve mustbe assumed to have
made some measurements and will therefore know things about3A and3B. Alice and
Bob therefore use the classical channel to performprivacy amplification . The result
is the even shorter bit strings4A and4B which Eve with very high probability knows
very little about. Unfortunately they can not remove her knowledge completely, but it
can shrink quite fast for each bit they shorten their shared string with. As long as4A
and4B are longer than the authentication keys needed the system will still create keys,
but in a slower rate if the created strings are smaller.

After error correction and privacy amplification Alice and Bob have the bit
strings4A and4B, and with very high probability those strings are both identical and
unknown to Eve. At least if Eve has not interfered with their discussions over the clas-
sical channel. As an extreme example, Eve might have cut bothcables and plugged
in her own QKG system on the loose ends, playing the part of Bobwhen talking to
Alice and the part of Alice when talking to Bob. This attack isgenerally known as a
man-in-the-middle attack. But since Eve does not know the key generated previously
or, if this is the first round, the key installed with the system, Alice and Bob can per-
form authentication of vital parts of their previous discussion using their shared key.
If the authentication goes well, the generated key is considered secret and is added
to the key storages5A and5B, ready to be used as authentication key later. The key
streams6A and6B can be taken from5A and5B as long as there always is enough left
to authenticate the next round. Those key streams are the whole point of the system.
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If the authentication fails Eve is assumed to be trying to interfere and the process
should be aborted. A complication is the fact that the error correction is not perfect.
An error can, with a small probability, sneak through. If that error is in the key used for
authentication in a later round, the authentication will fail even without an Eve being
present.

If Eve somehow manages to break the security of one round she will know the
authentication key for the next round and can break that too.No matter when she starts
eavesdropping, if she breaks any round she therefore also breaks all future rounds. This
problem might be partly possible to remedy, e.g. by making sure to always mix keys
from several previous rounds to produce an authorization key, but research in that field
is scarce.
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Chapter 2

QKG versus courier

A QKG system produces two identical secret key streams in twodifferent places. A
very old and reliable method to do the same thing is to simply have Alice generate a
random secret in two copies and let a courier transfer one of them to Bob. Alice and
Bob can then continuously read a secret key stream from theirtwo copies while erasing
whatever they read from their copies to minimize the risk of someone extracting their
key streams later.

A QKG system can theoretically create key streams forever, but the whole courier
carried secret will eventually be used and erased. If a never-ending key stream is re-
quired, a new courier will need to be sent whenever the last parts of the last secret is
about to be used. How often that needs to be done depends on therequired bit rate and
how much each courier can carry. A famous quote from [5] goesNever underestimate
the bandwidth of a station wagon full of tapes hurtling down the highway, often up-
dated to more modern conditions asNever underestimate the bandwidth of a 747 filled
with DVDs. However, with the limited range and bit rate of QKG systems,a courier
carrying a hard disk by foot is enough to provide serious competition.

A courier is also needed for both the initial key and the QKG device in the QKG
case. The difference in the pure courier method is that the initial key is made much
larger and the device is neither transferred nor used. This chapter provides a compari-
son between a QKG system and a courier system.

2.1 Manufacturing and transferring

In both a QKG system and a courier system Alice needs to generate a random key to be
copied and transferred to Bob. The courier system needs a larger key initially, which
is a disadvantage. On the other hand, no QKG device needs to bemanufactured and
transferred. In addition, the amount of random data a QKG system needs when running
is many times greater than the key it can produce, so the totalamount of random data
needed is much smaller in the courier case, but it needs to be available earlier.

Cederl̈of, 2005. 9



10 Chapter 2. QKG versus courier

The company IdQuantique which sells QKG systems also offersPCI card quantum
random number generators capable of providing a 16 Mbit/s stream of random data to
a normal computer, but much faster alternatives will surelysurface if there is a high
demand for them. An alternative to buying a random number generator is to buy the
random numbers themselves. Companies may specialize in continuously manufactur-
ing random secrets and selling them to customers. These companies would need to
be trusted to not store copies of the secrets they generate and sell them to Eve, but
even random number generators can, in theory, be manufactured to return a predictable
number sequence so their manufacturers would also need to betrusted. When buying
random numbers instead of random number generators, needing the random numbers
early is no disadvantage since the sellers can be expected tohave pregenerated num-
bers available. In any case, XORing the secrets from two or more companies makes
the result secret even if only one of them is honest.

To transfer the initial key and device for the QKG system and the whole key in
the courier system a trusted courier is needed. There is not much difference between
a QKG system and a pure courier system in this step. In both cases, if Eve persuades
or bribes the courier to show her or let her modify the key, Evehas won. The fact
that the courier key is larger makes little difference. Eve will also win if she manages
to rebuild the device, e.g. to include a backdoor accessiblevia radio or one of the
channels, without Bob noticing. In both cases the trust in the courier can be enhanced
with physical seals. The keys can also be made more safe by sending several different
keys with different couriers and XORing the keys with each other to produce the real
key. Eve will have to succeed in bribing every courier to get the key. However, they
can’t XOR physical devices, so Alice and Bob will have to set up and maintain as many
QKG systems as they want couriers.

2.2 Unconditional security

QKG is often said to provide unconditional security. The security of most conventional
cryptography is conditioned on the assumption that Eve’s computational power and
algorithms are limited. The security of QKG is not, hence theuse of the term uncondi-
tional. This does not mean that the security of QKG is absolute or perfect. There exists
many threats to a QKG system but, just as with a courier system, Eve having access to
fast computers isn’t one of them.

If the quantum channel is an optical fibre, Eve might be able tosend light into the
fibre to Alice’s or Bob’s device and gain information about the random settings from
the reflected light. This attack is called a Trojan horse attack1 and QKG manufacturers
do their best to protect their devices. Unfortunately, a perfect protection seems unlikely.

The classical channel is not without hazards either. In a typical scenario it is a
network cable connecting two computers. The possibilitiesof cracking a computer if
having access to a network cable are quite a few. Bugs in the computer software or in

1Not to be confused with what is usually called a Trojan horse attack in computer security.
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the network card might allow Eve to sneak by just sending the right information. By
altering voltage levels she might be able to trigger just theright hardware failure that
allows her full access. Even though the channel is built to beas secure as possible,
perfect security is unattainable.

There are many other things that Eve can do that have a small but non-zero chance
of succeeding. She can make many measurements on the quantumcommunication. If
she is very lucky she will go undetected. She can also try to guess the authentication
tags. The probability of her succeeding can be made very small, but it will always be
there.

These examples have no counterpart in the courier system. There just is no commu-
nication necessary between Alice and Bob when their keys have been distributed. Lots
of other attacks are still possible of course, such as infiltrating the building or bribing
personnel, but those attacks are similar no matter what system is used.

2.3 Denial of Service attacks

The strength of QKG is that Alice and Bob can detect that Eve isattempting to intercept
the key they are growing and allows them to abort. It does not guarantee that they can
grow their key, and Eve can stop the key growing process at will. She might just cut
the cables or she might deliberately make failed attempts tointercept, but Alice and
Bob will not be able to grow their key when Eve won’t let them. In reality, complicated
systems tend to break even without deliberate sabotage so the key may stop growing
even without Eve. The courier-only system does not have the problem of these kinds of
deliberate Denial of Service attacks, and spontaneous failures should be far more rare
due to the simplicity of the system. Other kinds of Denial of Service attacks are still
possible, such as anything that physically destroys Alice’s or Bob’s device, but those
attacks work on both the QKG system and the courier system.

2.4 Mobility

In the courier-only system Alice and Bob may move around freely and bring their keys.
The QKG system is more stationary. It is hard to move devices connected through an
underground cable. They must also be very close together, typically less than 100 km,
and the bit rate decreases exponentially with the distance.

2.5 Time and price

A courier transmitted key can be used all at once or a little bit at a time, but when the
whole key is used a new courier needs to be sent. A QKG generated key can not be
used faster than it is generated, but it will in theory continue forever.

A 400 GB hard disk can today (2005) be bought for around 250 Euro. We can use
one of those to store the courier key. If we use the high key rate of 1000 bits/s from
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[1], a QKG system can be replaced with this courier-delivered key and run for over 100
years before another courier needs to be sent. The prices of commercial QKG systems
are unknown but are probably several hundred times more expensive than the hard disk.
One would think that with such a saving and knowing that it provides better security, a
courier delivering a new key once every century can be afforded. Especially since the
distance is less than 100 km.

However, if the bit rates of the QKG systems grow faster than the sizes of cheap
storage devices the couriers would have to run often enough that the QKG systems are
cheaper when the limitations in stability, mobility and distance can be tolerated.

2.6 Limited lifetime

A QKG system with a limited lifetime will during that time produce a key as big as
its key rate times its lifetime. Any such system can always bereplaced by a courier
system with a pregenerated key that big. Depending on what the future holds it might
not necessarily be more cost effective, but the security is only affected positively. In
practice everything can be expected to have a limited lifetime, but in Chapter 7 a weak-
ness is identified that limits the lifetime of a QKG system even in theory. Fortunately,
easy solutions to the problem exist and two of them are presented in the same chapter.



Chapter 3

Discrete random variables

3.1 Discrete random variables

For the current purposes it is sufficient to think of a discrete random variableX as
variable with a fixed but unknown integer value larger than orequal to zero. The
random variables we will encounter later will be mostly secret keys, messages, and
message tags. Our knowledge about the random variable is completely determined by
a vector of positive probabilitiesPX(x) ≡ P (X = x), each describing how confident
we are that the variable’s value is the specific integerx, adding up to 1. It is often better
to talk about uncertainty, or entropy, instead of knowledge. No uncertainty means full
knowledge, i.e., 100% probability for one value and 0% for the rest.

An important special case is the random variables for which all non-zero probabil-
ities are equal. These random variables are calleduniform random variables. If Alice
throws a normal, but perfect, six-sided die and keeps the result secret, the result is to
Bob a uniform random variable with six possible values. If Bob had managed to replace
Alice’s die with one that is not perfect, the variable would not have been completely
uniform. In any case, Alice knows the value so to her it is a random variable with zero
uncertainty or entropy.

The range ofX is the set of valuesX can have, even those with zero probability,
and is denotedR(X). Even though infinite ranges are possible, we will limit ourselves
to random variables with finite ranges. Without loss of generality we will only consider
ranges consisting of integers≥ 0.

The expectation value is denotedE(·) and can be defined as

E(f(X)) ≡
∑

x∈R(X)

P (X =x) f(x). (3.1)

Throughout the rest of this thesis the class of random variablesQp
n defined by (3.2)

will serve as an illustrative example. The same definition inPython code is available

Cederl̈of, 2005. 13
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as functionQ in entropies.pyline 54 on page 43.

P (Qp
n = i) ≡







p if i = 0
1−p

n if 1 ≤ i ≤ n

0 if i > n

(3.2)

Q0
n is a uniform random variable withn possible values. Ifp is largeQp

n has
one very probable andn equally improbable values. Such random variables are rather
extreme and will therefore nicely illustrate some somewhatunintuitive situations later.

3.2 Dependent random variables

Two random variablesX andY can be related in ways that are unrelated to their inter-
nal probability vectors. To completely specify both their respective probability vectors
and their relations it is sufficient (and necessary) to (be able to) specify the probability
vector of a larger random variable, theconcatenationof the two variables, written as
XY , with probabilitiesP (XY =xy) = P (X = x andY = y). Observe that neither
XY norxy are products. When the random variables are related in this way the proba-
bilities in their respective smaller probability vectors are calledmarginal probabilities.

As an example, consider the dependent random variables defined by

P (T1T2 =00) = P (T1 =0 andT2 =0) ≡ 1/3 (3.3a)

P (T1T2 =01) = P (T1 =0 andT2 =1) ≡ 1/3 (3.3b)

P (T1T2 =10) = P (T1 =1 andT2 =0) ≡ 1/3 (3.3c)

P (T1T2 =11) = P (T1 =1 andT2 =1) ≡ 0 (3.3d)

which can be seen as the two bits of the uniform random variable with values 0, 1 and
2. Their marginal distributions are

P (T1 =0) = P (T2 =0) = 2/3 (3.4a)

P (T1 =1) = P (T2 =1) = 1/3. (3.4b)

Given two random variablesX andY , when learning that the value ofY is y the
probability vector ofX can change. If they are dependentY contains information about
X and receiving information changes the probabilities. The new random variable can
be denotedX|Y =y and its probability vector is

P
(

X
∣
∣
Y =y

=x
)

=
P (XY =xy)

P (Y =y)
. (3.5)

This relation is calledBayes’ theoremand is a fundamental part of probability the-
ory, but the notation is unorthodox.

Normally P (X|Y =y =x) is written asP (X = x|Y = y) and is read asthe prob-
ability that X equalsx given thatY equalsy. Similar notations are used for other
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things, most notably for conditional entropy. We will use the unconventional nota-
tion exclusively, both to note explicitly that we are working on a new random variable
and to bring the implicit hidden expectation value in conditional entropy written the
conventional way out into the light. See Chapter 4.4.1 for more details.

Using Bayes’ theorem on the previously definedT1 andT2 yields

P
(

T1

∣
∣
T2=0

=0
)

=
P (T1T2 =00)

P (T2 =0)
=

1/3

2/3
= 1/2 (3.6a)

P
(

T1

∣
∣
T2=0

=1
)

=
P (T1T2 =10)

P (T2 =0)
=

1/3

2/3
= 1/2 (3.6b)

P
(

T1

∣
∣
T2=1

=0
)

=
P (T1T2 =01)

P (T2 =1)
=

1/3

1/3
= 1 (3.6c)

P
(

T1

∣
∣
T2=1

=1
)

=
P (T1T2 =11)

P (T2 =1)
=

0
1/3

= 0 (3.6d)

and, because of the symmetry in their definition, this also holds whenT1 andT2 are
interchanged.

With more than one random variable it can be necessary to specify the expectation
value over just one of them. A natural definition is

Ex∈R(X)(f(x, Y )) ≡
∑

x∈R(X)

P (X =x) f(x, Y ). (3.7)

3.3 Jensen’s inequality

There are lots of standard inequalities that are very usefulin connection with random
variables. We will only need one of them, Jensen’s inequality.

Jensen’s inequality is applicable to convex and concave functions. A function is
called convex if it is continuous and the whole line between every two points in its
graph lies on or above the graph. If the whole line lies above the graph it is also called
strictly convex. A functionf is concave1 or strictly concave if−f is convex or strictly
convex. In other words, for all0 < λ < 1 , x1, andx2 holds:

f is convex:λf(x1) + (1−λ)f(x2) ≥ f(λx1 + (1−λ)x2) (3.8a)

f is strictly convex:λf(x1) + (1−λ)f(x2) > f(λx1 + (1−λ)x2) (3.8b)

f is concave:λf(x1) + (1−λ)f(x2) ≤ f(λx1 + (1−λ)x2) (3.8c)

f is strictly concave:λf(x1) + (1−λ)f(x2) < f(λx1 + (1−λ)x2) (3.8d)

Jensen’s inequality states that iff is a convex or concave function, then for any
random variableX:

f is convex:f(E(X)) ≤ E(f(X)) (3.9a)

f is concave:f(E(X)) ≥ E(f(X)) (3.9b)

1Sometimesconvexis calledconvex-∪ andconcaveis calledconvex-∩.
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Furthermore, iff is strictly convex or strictly concave, equality occurs if and only if
there is only one value ofX that is assigned a non-zero probability.

For a random variable with only two possible values, Jensen’s inequality just re-
states the definition of convexity. Generalizing to arbitrary number of values by induc-
tion is pretty straightforward and is explained in many other places.

If f is convex and has an inverse, an alternative way to express Jensen’s inequality
is f−1(E(f(X))) ≥ E(X).



Chapter 4

Entropy

Entropy is an important concept in many fields, and one field where it is extensively
used is QKG. This chapter gives a general overview of entropyand presents a general-
ization of the chain rule of entropy as needed in future chapters. Alternate explanations
to most of the contents can be found in many other places, along with lots of other
useful bounds and relations. The introductory chapters of [6] are highly recommended.

4.1 Conventions

The functionf(p) = p log(p) wherep is a probability occurs frequently in connection
with entropies.0 log(0) is normally undefined but sincelimp→0 p log(p) = 0 is well-
defined we extend the function to zero by continuity.

Another convention we will follow is to letlog(·) mean the logarithm base 2. We
can choose any base, but using base 2 consequently means thateverything will be
expressed in bits, and people tend to be familiar with bits.

4.2 Shannon entropy

Entropy is a measure of uncertainty regarding a discrete random variable. For many
purposes, the Shannon entropy is the only measure needed. Shannon entropy is defined
by

HShannon(X) ≡ −

∞∑

x=0

P (X =x) log(P (X =x)) (4.1)

has the unitbits. A Python implementation is available as functionshannon_entropy
in entropies.pyline 15 on page 43.

The Shannon entropy is a fundamental measure in informationtheory. It was in-
troduced by Claude E. Shannon, now considered the father of information theory, in
[7]. Much can be said about its properties, its uniqueness, and its relation with the

Cederl̈of, 2005. 17
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thermodynamical entropy in physics, but we will only scratch a little bit on the surface
here. One way of understanding it better is to rewrite the definition as

HShannon(X) = E(− log(PX(X))) (4.2)

wherePX(X) is the probability ascribed to the value ofX that turns out to be correct.
This makesPX(X) a discrete random variable, but not necessarily with integer values.

Now it is clear that the Shannon entropy is the expectation value of− log(p) where
p is the probability assigned to the measured value of the random variable.− log(p)
can be interpreted as the needed length, in bits, of a messagecommunicating a mea-
surement that had probabilityp, which makes the Shannon entropy a measure of the
expected message length needed to communicate the measuredvalue of a random vari-
able.

The Shannon entropy of a uniform random variable withn possible values is

HShannon(Q
0
n) = E(− log(

1

n
)) = log(n) (4.3)

which means that we needlog(n) bits1 to communicate one choice fromn different
equally likely states.

Without qualifiers, the word entropy and a non-subscriptedH normally refers only
to Shannon entropy. However, when dealing with QKG, as well as most other parts
of cryptography, this measure is not sufficient. The goal of QKG is to produce a key
that is known to both Alice and Bob but to Eve is a random variable with high uncer-
tainty.− log(p) is a measure of the uncertainty of a value assigned probability p and is
therefore a measure of the security of that particular valueof the key. Shannon entropy
measures the expectation value of that security. The dangers of focusing on Shannon
entropy alone is highlighted by this theorem:

Theorem 1. There exists finite discrete random variables with arbitrarily high Shan-
non entropy which the chance of guessing at one try is arbitrarily close to1.

Proof. Consider guessing the value ofQp
n. The guessi = 0 has chancep to be correct.

The Shannon entropy is

HShannon(Q
p
n) =

n∑

i=0

−P (Qp
n = i) log(P (Qp

n = i))

= −p log(p) − (1 − p) log(
1 − p

n
) → ∞ whenn → ∞ ∀p < 1 (4.4)

which completes the proof.

Good security average is not good enough, and Shannon entropy alone is obviously
not a sufficient measure of the quality of a key.

1Note that if the only channel available can only transmit bits, the value must be rounded up to the nearest
whole bit.



4.3. Guessing entropy 19

4.3 Guessing entropy

Another measure more closely related to the difficulty of guessing the value of a ran-
dom variable was introduced by Massey in [8]. He did not name it but in [6] it is called
guessing entropy. Note, however, that while most other entropies have the unit bits the
guessing entropy is measured in units ofnumber of guesses. Without loss of generality
we can assume that the values ofX are sorted with decreasing probability, in which
case the guessing entropy ofX is defined as

G(X) =

max(R(X))
∑

x=0

P (X =x) (x+1). (4.5)

That is, the guessing entropy is simply the average number ofguesses needed to guess
the value of a random variable using the optimal strategy. The definition formalized to
Python code is available as functionguessing_entropy in entropies.pyline 36 on
page 43. We have yet again a measure of average security and similarly to theorem 1
we can write

Theorem 2. There exists finite discrete random variables with arbitrarily high Guess-
ing entropy which the chance of guessing at one try is arbitrarily close to1.

Proof. Consider guessing the value ofQp
n, wherep ≥ (1−p)/n so the values are sorted

in decreased probability. The (optimal) guessi = 0 has chancep to be correct. The
Guessing entropy is

G(Qp
n) =

n∑

i=0

P (Qp
n = i) (i+1) = p · 1 +

1 − p

n
·
2 + (n + 1)

2
n

→ ∞ whenn → ∞ ∀p < 1 (4.6)

which completes the proof.

Again we see that good security average is not good enough, and guessing entropy
alone is not a sufficient measure of the quality of a key.

4.4 Rényi entropy

A useful generalization of Shannon entropy is the Rényi entropy, which maps an en-
tropy measureHα pronouncedthe Ŕenyi entropy of orderα to every real number
0 ≤ α ≤ ∞. Rényi entropy is, just like Shannon entropy, measured in units ofbits.
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Figure 4.1: All Ŕenyi entropies for 8 different random variables.

Hα(X) ≡
1

1 − α
log

∑

x∈R(X)

P (X =x)α if α is not 0 or 1 (4.7a)

H0(X) ≡ lim
α→ 0

Hα(X) (4.7b)

H1(X) ≡ lim
α→ 1

Hα(X) = HShannon(X) (4.7c)

H∞(X) ≡ lim
α→∞

Hα(X) = − log max
x∈R(X)

P (X =x) (4.7d)

The equality in (4.7c) is easy to show using e.g. l’Hospital’s2 rule. The definition is
also available as Python code as functionentropy in entropies.pyline 23 on page 43.

An important property of Ŕenyi entropy is that forα < α′, Hα(X) ≤ Hα′(X) for
all X, with equality if and only ifX is a uniform random variable. In other words,
Hα(X) is a constant function ofα if X is uniform and strictly decreasing if not. A
full proof is given in [6] and follows quite naturally by writing Hα(X) in analogy with
(4.2) as− log

(
E[PX(X)α−1]

1

α−1

)
and using Jensen’s inequality.

Some of these measures have quite natural interpretations.Rényi entropies with
higherα parameter depend more on the probabilities of the more probable values and
less on the more improbable ones.H0(X) is logarithm of the number of values ofX

2L’Hospital is nowadays often spelled l’Ĥopital.
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that have non-zero probabilities. Any two random variableswith different probability
distributions but the same number of values with non-zero probabilities will have the
same Ŕenyi entropy of order 0.H1(·) is the Shannon entropy, in which the actual
probabilities are quite important.H2(·) is often called collision entropy, or just Rényi
entropy, and is the negative logarithm of the likelihood of two independent random
variables with the same probability distribution to have the same value. More probable
values are much more likely to collide and are therefore morevisible in the collision
entropy than in the Shannon entropy.H∞(·) is called min-entropy and is a function of
the highest probability only.

The shape ofHα(X) as a function ofα for eight different random variablesX is
shown in figure 4.1.

4.4.1 Conditional Ŕenyi entropy

Theconditional Shannon entropy forX givenY is conventionally written asH1(X|Y )
and defined by

H1(X|Y ) ≡ Ey∈R(Y )(H1(X|Y =y)). (4.8)

It expresses the expected value of the entropy ofX afterY is disclosed. The notation
clearly hides an implicit expectation value, but since Shannon entropy is an expectation
value to begin with, that doesn’t change much. Using equations (4.2) and (3.5) we can
write (4.8) more explicitly as

Ey∈R(Y )(H1(X|Y =y)) = Exy∈R(XY )

(

−
P (XY =xy)

P (Y =y)
log

(
P (XY =xy)

P (Y =y)

))

(4.9)
which is a single expectation value just like equation (4.2).

Rényi entropies of different order than 1 are not expectationvalues so things are
not quite as simple. In fact, according to [6] there is not even an agreement about
a standard definition of conditional Rényi entropy. However, the dominant definition
seems to be the same as (4.8) with bothH1:s replaced byHα. That definition will be
used here but the expectation value will always be explicitly written out. We have seen
that averaging security can be dangerous, and it is nice to not hide away something
potentially dangerous in the notation.

4.4.2 Chain rule of Ŕenyi entropy

With conditional Shannon entropy comes the chain rule of Shannon entropy, equation
(4.10b) below. One way to define conditional Rényi entropy is to choose it so the
same relation still holds when the Shannon entropies are replaced with Ŕenyi entropies.
However, the relation does not hold for the expectation value based definition chosen
above so it is clearly a different conditional entropy. Fortunately, that doesn’t stop us
from generalizing the chain rule in other ways to something that is useful with general
Rényi entropies:
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Theorem 3. LetX andY be arbitrary random variables andXY their concatenation.

Ey∈R(Y )(Hα(X|Y =y)) ≥ Hα(XY ) − H1(Y ) if α > 1 (4.10a)

Ey∈R(Y )(H1 (X|Y =y)) = H1 (XY ) − H1(Y ) (4.10b)

Ey∈R(Y )(Hα(X|Y =y)) ≤ Hα(XY ) − H1(Y ) if α < 1 (4.10c)

with equality in (4.10a) and (4.10c) if and only ifHα(X|Y =y) − log(P (Y = y)) is
constant for all valuesy of Y that have non-zero probabilities. Note that the rightmost
entropies all are Shannon entropies.

Proof. Let py be the probabilities for the marginal distribution ofY , py = P (Y = y),
and letqyx be the probability thatX = x whenY = y, qyx = P (Y=y andX=x)/P (Y=y) =
P (X|Y =y = x). It is easy to see thatP (XY = xy) = pyqyx. We begin with the old
well-known caseα = 1 as a warm-up:

Ey∈R(Y )(H1(X|Y =y)) + H1(Y )

= −
∑

y∈R(Y )

py

∑

x∈R(X)

qyx log (qyx) −
∑

y∈R(Y )

py log (py)

= −
∑

y∈R(Y )

∑

x∈R(X)

qyxpy log (qyx) −
∑

y∈R(Y )

∑

x∈R(X)

qyx

︸ ︷︷ ︸

=1

py log (py)

= −
∑

xy∈R(XY )

pyqyx log (pyqyx) = H1(XY )

(4.11)

Whenα > 1 we have instead:

Ey∈R(Y )(Hα(X|Y =y)) + H1(Y )

=
∑

y∈R(Y )

py
1

1 − α
log

( ∑

x∈R(X)

qα
yx

)
−

∑

y∈R(Y )

py log
(
py

)

=
∑

y∈R(Y )

py
1

1 − α
log

(
pα−1

y

∑

x∈R(X)

qα
yx

)

(Jensen’s)
≥

1

1 − α
log

( ∑

y∈R(Y )

pypα−1
y

∑

x∈R(X)

qα
yx

)

=
1

1 − α
log

( ∑

y∈R(Y )

pα
y

∑

x∈R(X)

qα
yx

)

=
1

1 − α
log

( ∑

xy∈R(XY )

(pyqyx)
α )

= Hα(XY ).

(4.12)
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The function 1
1−α log(·) is convex whenα > 1 so Jensen’s inequality gives us (4.10a).

Whenα < 1 the function is concave and we obtain (4.10c). Finally, equality occurs,
regardless of whetherα is smaller or larger than 1, if and only ifpα−1

y

∑

x∈R(X) qα
yx =

pα−1
y 2(1−α)Hα(X|Y =y) is constant for ally, which is equivalent toHα(X|Y =y) −

log(Py) being constant.

4.4.3 Spoiling knowledge

When learning something new about a random variable, the Shannon entropy of the
variable will decrease or stay equal on average. It is only true on average. Consider
X = Q0.99

100 and aY that is dependent onX such thatY = 0 if X = 0 andY = 1 if
not. Learning thatY is 1 will increase the Shannon entropy ofX from 0.15 to 6.64,
but learning thatY is 0 will decrease it to exactly 0. On average, the Shannon entropy
will decrease to 0.0664. On average, the Shannon entropy will always decrease for all
X andY .

However, that is not true in general for other Rényi entropies. For example, con-
siderT1 andT2 defined in (3.3a).H∞(T1) = log(3/2) ≈ 0.585. If T2 turns out to be
1 the entropy ofT1 reduces to exactly 0, if not it becomes exactly 1. On average,it will
increase to2/3 > log(3/2).

Side information that increases entropy on average like this was first mentioned in
[9] and is calledspoiling knowledge.

4.4.4 Entropy holism

The Concise Oxford English Dictionary [10] describes holism asthe theory that certain
wholes are greater than the sum of their parts. In a way, random variables normally
behave in a holistic way. To specify bothX andY the whole probability vector for
XY is needed and the size ofR(XY ) is the size ofR(X) multiplied by the size of
R(Y ). This is one reason why Shannon chose to primarily use a logarithmic scale in
[7]. With a logarithmic scale the multiplications can be treated as sums and the whole
is just the sum of the parts. Quoting Shannon:One feels, for example, that two punched
cards3 should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

It should come as no surprise that an important property of Shannon entropy is that
the total entropy of a system is never greater than the sum of the parts’ entropies,

H1(XY ) = H1(X) + H1(Y ) − M(X,Y ) (4.13)

whereM(X,Y ) is called themutual information ofX andY . It can be defined by this
relation and can be shown to be non-negative. There is no Shannon entropy holism.
The whole is equal to the sum of the parts minus whatever they share.

3This was published in 1948. Information storage has evolved quite a bit since.
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On the other hand, what might come as a surprise is that this isnot true in general
for other Ŕenyi entropies. There existsXY andα such that

Hα(XY ) > Hα(X) + Hα(Y ). (4.14)

For example, considerT1 andT2 defined in (3.3a) again.H∞(T1T2) = log(3) but
H∞(T1) + H∞(T2) = log(3/2) + log(3/2) = log(9/4) < log(3). This is a case
where the whole actually is greater than the sum of the parts.



Chapter 5

Unconditionally secure
authentication

The two most important areas of cryptography are encryptionand authentication –
making sure that no one except the legitimate receiver readsthe message and making
sure that nobody except the legitimate sender writes or modifies it. A typical encryption
scenario is Alice wanting to send Bob a secret message, but instead of sending the
message directly she sends something that Bob can transformto the real message but
which means nothing to anyone else. A typical authentication scenario is Alice sending
Bob a message which Bob wants to be sure originates from Aliceand nobody else.
Alice sends the message as-is but also attaches atag1, a few bytes large, which depends
on the message. Typically only one tag is valid for each possible message and nobody
except Alice and Bob2, knows beforehand which one. When Bob has received both the
message and the tag he can verify that the tag is correct and conclude that the message
really originated from Alice, or at least someone with access to Alice’s key, and has
not been tampered with on the way to him.

Whenever encryption is explained theone-time pad encryption, commonly referred
to as simplyOTP, almost always serves as an enlightening example. OTP was co-
invented in 1917 by Gilbert Vernam and Major Joseph Mauborgne (see e.g. [11])
and and in the 40’s Claude Shannon proved both that it was unbreakable and that any
unbreakable encryption is essentially equivalent to OTP. The encryption is very simple.
For Alice to send Bob a messagem they need to share a secret completely random key
k, the one-time pad, which needs to be at least as long as the message and must never
be reused. Alice simply sendsm XORk and Bob calculates(m XORk) XORk = m.3

OTP is almost never used in practice. There exists many otherencryption schemes that

1Often calledMessage Authentication Code, MAC.
2In the case of digital signatures, Bob can validate the tag but he can not compute it before he has seen

it. With symmetrical message authentication Bob can both calculate and validate the tag.
3Many other functions than XOR will also work, but XOR is normally used in examples.
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26 Chapter 5. Unconditionally secure authentication

require smaller keys, don’t require a key known by both Aliceand Bob and permits
reusing of keys. They are all theoretically breakable givenenough computation power
or maybe good enough algorithms, but are by most regarded secure enough. OTP
serves mainly as an example.

Even though OTP is universally known for providing unbreakable encryption, few
know that something similar exists for authentication. It was invented in the late 70’s
by J. Lawrence Carter and Mark N. Wegman who published their discoveries in [12]
and [13]. It is commonly referred to asWegman-Carter (type) authentication. One
can only speculate why it is almost completely unheard of in the popular science , but
contributing factors are surely that it is much newer than OTP, that it is much more com-
plicated to explain and that authentication itself is more complicated and often regarded
as less interesting. Furthermore, one example of unbreakability is maybe enough for
most purposes. On top of that, if something is encrypted withOTP it is impossible to
extract any information at all about the message, but with any authentication scheme it
is always possible for Eve to produce a random tag and hope it is the correct one for the
message she wants to make Bob believe Alice has sent. The bestthat can be done for
authentication is to make the probability that Eve succeedsarbitrarily small, and that is
exactly what Wegman-Carter authentication does.

The main problem with OTP is that the required key needs to be at least as long
as the message to be encrypted. Wegman-Carter authentication does not share this
problem. The keys can be much shorter, in the order of a few bytes. The fact that the
required keys can be much shorter than the message to be authenticated is essential
for QKG. Each round of a QKG protocol generates a certain amount of shared secret
key and requires far more communication which needs to be authenticated. If the key
consumed by the authentication process is larger than the generated key we don’t have
Quantum Key Growing but Quantum Key Shrinking which would bequite pointless.

Other authentication methods exist where instead of just one tag being sent from
Alice to Bob a dialogue is held with several messages going back and forth. They can
be more effective in terms of consumed key but are not necessary for QKG and are
beyond the scope of this work. This chapter describes unconditionally secure message
authentication in the theoretical scenario where Alice andBob share a completely se-
cret key and wish to transmit an unmodified message through a channel completely
controlled by Eve, not necessarily as part of a QKG system. Inthe next chapter the
authentication is made more realistic for a QKG scenario by assuming that the key is
not completely secret, and in Chapter 7 everything is put into a QKG context.

5.1 Universal families of hash functions

A very useful tool in cryptography is the concept of cryptographically secure hash func-
tions. Unfortunately, like most cryptography used in the real world they are only secure
against what is believed to be practical attacks and can be broken with enough compu-
tation power or, if they exist, good enough algorithms. It isimpossible to construct an
unbreakable cryptographically secure hash function. See e.g. [14] for definitions and
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proofs.
Cryptographically secure hash functions can be used for many things, one of them

being message authentication. Although hash functions cannot be unbreakable, mes-
sage authentication can. A word of warning is in place here regarding terminology.
The fundamental building block of the unbreakable Wegman-Carter authentication is
calleduniversal families4 of hash functions, but those hash functions are quite different
from the cryptographically secure hash functions mentioned above. They have simi-
larities and both deserve to be called hash functions, but the individual hash functions
of Wegman-Carter are not, and need not be, cryptographically secure in the classical
sense.

Families of hash functions can be used for many things and many different require-
ments can be put on them. A system has evolved to express the requirements a family
fulfills. For authentication a definition ofǫ-almost strongly-universal2 (ǫ-ASU2) is suf-
ficient. Wegman and Carter began with a stronger requirementin [12] but the keys
needed to be far too big for authentication to be practical. In [13] they showed that by
loosening the requirements somewhat the authentication can still be acceptably secure
but the required length of the keys shrinks considerably. Although they defined similar
requirements and presented an example of anǫ-almost strongly-universal2 family, they
gave it no formal definition. The first formal definition appeared in [15].

Definition 1. LetM andT be finite sets and call functions fromM to T hash func-
tions. Let ǫ be a positive real number. A setH of hash functions isǫ-almost strongly-
universal2 if the following two conditions are satisfied:

(a) The number of hash functions inH that takes an arbitrarym1 ∈ M to an
arbitrary t1 ∈ T is exactly|H |/|T |.

(b) The fraction of those functions that also takes an arbitrarym2 6= m1 in M

to an arbitraryt2 ∈ T (possibly equal tot1) is no more thanǫ.

Note that it is not possible to have anǫ < 1/|T |. The special caseǫ = 1/|T |

was the unnecessarily strong requirement in [12] and those families are simply called
strongly universal2 (SU2). In theoryǫ can be as large as 1, but in practice the family
will not be of much use unlessǫ is rather close to1/|T |. One example of a 1-almost
strongly-universal2 family is the|T | hash functions simply defined ashi(m) = (m +
i) mod |T |, wheremod is the modulo operation from computing, the remainder after
division, rather than the modular arithmetic of algebra. The number of hash functions is
equal to the number of tags, but a message/tag pair uniquely identifies the hash function
which makes the family unsuitable for use in authentication.

Note also that the number of hash functions in the family mustbe at least|T |/ǫ, so
the key needed to specify a member of the family must be largerthan the generated tag.

A strongly universal2 family is in computer science often calledpairwise indepen-
dent family of hash functions. When hashing two distinct messages using the same

4They are sometimes calledclassesor setsinstead offamilies.
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random hash function, the two resulting tags are statistically independent. This is the
significance of the number 2 in the subscript. Note that even though a set of random
variables are pairwise independent, they are not necessarily mutually independent or
even 3-wise independent. In general, a strongly universalk family is the same thing a
k-wise independent family and means that all sets ofk distinct messages are mapped
to statistically independent tags, which is a stronger condition for higherk.

5.2 Examples

Wegman and Carter proposed several strongly universal2 families in [12] and one2/|T |-
almost strongly universal2 in [13]. The hash families of Wegman-Carter are by no
means unique or most effective, but since they are the original ones they are both inter-
esting from a historical point of view and are often referenced. Furthermore, they are
quite easy to understand and their performance is, althoughnot optimal, good enough
for many examples and applications.

One of the families they described is a simple strongly universal2 family they called
H1. Actually, the family is not really strongly universal2. It is however “close” (their
quotation marks) and they treat it as if it was strongly universal2. We will do the same.

An implementation of the family is available as functionH1 in hashfunctions.py
line 85 on page 45. In words, the family of hash functions mapping a message0 ≤
m < a to a tag0 ≤ t < b needs a key consisting of three parts. The first part is any
prime numberp≥a and need not be secret. The other two parts are two secret integers
0<q <p and0≤r<p. The hash function defined by this key simply maps a message
m to a hash value((qm+r) mod p) mod b. As Wegman and Carter write in [13],
this can be generalized using all polynomials of degree5 less than 2 over any Galois
field, and if the size of the Galois field is divisible with the number of possible tags the
family is strongly universal2. If not, the mapping from the field to a tag,mod b above,
will favor the lower tags somewhat. In our case the size of thefield is always a prime
number and larger than the highest message, so unless the tags can be larger than the
message the mapping can not be perfect, but will be quite close.

The secret key needed to select a hash function from this family needs to be very
big, roughly twice as big as the message to be hashed. A QKG system could never
work using this family as authentication. The traffic that needs authentication each
round is much larger than the generated key, so the shared secret key would shrink.
The next family is not quite as secure but the probability of guessing a tag is at most
doubled and the required key size grows much slower than the message size.

This 2/|T |-almost strongly universal2 family works by picking several hash func-
tions from a much smaller but strongly universal2 family and applying them in a hierar-
chical manner. Let the smaller family consist of hash functions mapping bit strings of
length2s to bit strings of lengths, wheres is slightly larger than the length of the tag
we want to produce. Divide the message into substrings of length 2s, padding the last

5Polynomials of higher degree are also possible and usable. When allowing all polynomials of degree
less thann a strongly universaln family is created.
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Figure 5.1: Schematic of the2/|T |-almost strongly universal2 family of hash functions
described in [13]. Each horizontal box is a bit string of length s, except the somewhat
shorter tag. The subkeyskn are bit strings long enough to select any hash function
from the strongly universal2 family used.
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substring with zeroes if necessary. Pick a hash function from the small family, apply
that function to each of the substrings and concatenate the results. Repeat until only
one substring of lengths is left, using a new hash function each repetition. Discard the
most significant bits that won’t fit into the tag. What is left isthe final tag.

One round of hashing halves the length of the message, regardless of its size, but
uses only one hash function, and only one small key to pick that hash function. The to-
tal key length needed therefore grows with approximately the logarithm of the message
length. This means a QKG system can always be designed with large enough rounds
to make the key used for authentication acceptably small in comparison to the created
shared secret.

For the full details of this family, see either [13] or the Python implementation
function Hprime in hashfunctions.pyline 123 on page 45. For an implementation
using that function together with the strongly universal2 from the previous example,
see functionHprime_H1 in hashfunctions.pyline 186 on page 46. A functionally
equivalent but more compact implementation of the same function that might be easier
to get an overview of, at the expense of not following the Wegman-Carter papers as
closely, is available at functionHprime_H1_compact in hashfunctions.pyline 214
on page 46.

5.3 Authentication

Any ǫ-almost strongly-universal2 family of hash functionsH can be used for Wegman-
Carter authentication. Suppose Alice and Bob share a secretkeyk just large enough to
select any hash functionhk ∈ H , 0 ≤ k < |H |. Alice wants Bob to have the message
m1 ∈ M and sends bothm1 andt = hk(m1). Bob verifies thatt really equalshk(m1)
and accepts the message as authentic if it does. The keyk is then discarded and never
reused.

Now suppose Eve has control over the channel between Alice and Bob and wants
Bob to accept a faked messagem2 ∈ M . To her the secret key is a random variable
K uniform over its whole rangeR(K) = [0, |H |[. If the key is a random variable,
so is the correct tagT2 = hK(m2). The first condition of definition 1 says that ifK
is uniform over its whole range, so isT2. She can take a guess, but any guess has
probability1/|T | to be correct.

She may also wait until Alice tries to send an authenticated message to Bob, pick
up the message and the tag, and make sure Bob never see them. With bothm1 and
t1 = hK(m1) at her disposal she can, given enough computing power, rule out all keys
that do not match and be left with just1/|T | of the keys to guess from. However, the
second condition of definition 1 says that even with this knowledge she has, withK
uniform over its whole range, at best the probabilityǫ to guess the correct tagt2 for
anym2 6= m1.

ǫ is never smaller than1/|T | so ǫ is clearly an upper limit on the probability that
Eve makes the right guess and manages to fool Bob into accepting a fake message, at
least if Eve knows nothing about the key beforehand.
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5.4 Encrypted tags

If the same key is used twice for authentication, the definition of ǫ-almost strongly-
universal2 families makes no guarantees about how hard it is to guess thecorrect tag
corresponding to a third message. The keys must therefore never be reused. For each
authenticated message, Alice and Bob must sacrificelog(|R(K)|) = log(|H |) bits
of their shared secret. Wegman and Carter describes in chapter 4 in [13] a method of
sacrificing onlylog(|T |) bits for each message. Begin by choosing a hash functionh
randomly from anǫ-almost strongly-universal2 family. This hash function will be used
for all messages, but the tag is calculated ast = h(m) XORk. In other words, the tag
is one-time pad encrypted using the one-time padk the same size as the tag.

If h(·) is ǫ-almost strongly-universal2, so ish(·) XORk. The key, secret or not,
merely reorders the tags which has no effect on definition 1. Eve’s chance to guess
the tag is therefore still limited byǫ. The one-time pad encryption makes sure no
information about the hash function leaks to Eve, so the hashfunction can be safely
reused an arbitrary number of times as long as new one-time pads are used each time.

To authenticate the first message both a hash function and a one-time pad needs
to be chosen so the required key is larger than in the authentication described above.
However, each message after the first needs just a key of the same size as the tag, so
the average sacrificed key length per message will approach the size of the tag.
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Chapter 6

Authentication with partially
secret key

In the previous chapter we assumed that Eve had no information on the secret key used
in the authentication, i.e., to Eve the keyK was a random variable uniform over its
whole range. As explained in Section 1.2 that is an unrealistic requirement in QKG.
Information leakage in the quantum transmission phase is unavoidable but the damage
can be reduced using privacy amplification. Through the privacy amplification process
Eve’s knowledge of the key is reduced, but not to exactly zero. As soon as the whole
initial key is used Alice and Bob will have to start trusting authentication with a key
that is not completely secret. This chapter deals with authentication with a partially
secret key in general, while the next chapter puts the results into the context of QKG.

If Eve holds some information about the authentication key,her chance of forgery
may be much higher for some messages than others. For example, imagine Alice and
Bob are authenticating messages using the second hash family in Section 5.2. Remem-
ber that those hash functions works by applying a number of smaller hash functions,
each hash function halving the length of the message. If Eve knows the first hash func-
tion with certainty but nothing else and sees a valid message/tag pair from Alice, she
can divide the message into substrings and change each substring to another that yields
the same hash after the first step. No matter what the other hash functions are, the
fact that the internal state after the first step is the same guarantees that the same tag is
produced. However, if she wants to forge another message sheis not helped at all by
knowing the first hash function. But that is a weak comfort forAlice and Bob. Their
goal was for Bob to verify that exactly the message he received was sent by Alice. No
matter how limited Eve’s choices are when choosing a forged message, Alice and Bob
have failed if Eve makes any undetected change to the message. To be on the safe side
we will consider the possibility of Eve to make an undetectedchange at all, without
being bothered with how happy she is with the choice of message.

Cederl̈of, 2005. 33
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6.1 Active and passive chance of forgery

Eve’s main goal is to make Bob accept a fake message, but her secondary goal is to
avoid raising suspicions if she fails. If she has the possibility to first perform passive
eavesdropping on the message and tag sent by Alice, and then decide whether she will
launch a full-fledged active attack and send a forged messageto Bob, it makes sense to
divide Eve’s chance of forgery into a passive part and an active part.

We can number the different states that Eve may be in after theeavesdropping phase
depending on what message/tag pair she sees, denote the probability that she is in state
i with ppas

i and the probability that an active attack succeeds if she chooses to launch
one withpact

i . Her total chance of succeeding is

ptot =
∑

i

ppas
i pact

i . (6.1)

As long as Eve stays passive she does not risk detection, but if she chooses to make
an active attack the chance of success ispact

i depending on the state she is in. If she
fails to guess the tag correctly she is detected when Bob notices that it does not match
the message. We will see that this difference between Eve’s total and active chance of
forgery is especially important in QKG and in other scenarios where many messages
are sent and Eve only needs to forge one of them.

If Eve just needs to forge one message from an infinite stream of messages, she
will wait until she after the eavesdropping phase is in the state with highest probability
to guess a correct tag. As long as the passive probability forthat state is non-zero,
the probability that she will sometime reach that state willgo to 1 as the number of
messages goes to infinity, and Eve’s chance of having forged amessage will approach
pact

max. If pact
max is not acceptably small, Alice and Bob must be prepared for the day when

Eve succeeds.

6.2 No message/tag pairs seen

Eve doesn’t need to know the whole key to be able to forge a message without any risk
of being discovered, even when she cannot see a valid message/tag pair. The key is
always larger than the tag and Eve needs only as much information that is contained in
the tag. In other words, there are many hash functions that takes a single message to
the same tag, and if her uncertainty about the key just makes her incapable of knowing
which of those hash functions is used she still knows the correct tag with certainty.
On the other hand, any information that just helps her pinpoint the exact hash function
within the subsets that maps her message to the same tags is quite worthless.

Fortunately for Eve, what is worthless key information whentrying to forge one
message need not be when trying to forge another. The first condition of definition 1
states that exactly|H |/|T | keys or hash functions take a single message to a single tag.
The second condition implies that the grouping of keys is different for each message.
A natural upper bound for Eve’s active chance to forge any message is therefore the
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sum of probabilities for the|H |/|T | most probable keys. The min-entropy of the key,
H∞(K), is the negative logarithm of the highest probability so if we letlK denote the
key length in bits andlT the tag length, a somewhat looser but simpler bound is given
by

pact
max ≤

|H |

|T |
2−H∞(K) = 2lK−H∞(K)−lT . (6.2)

If Eve knows nothing about the key her key (min-)entropy equals the size of the
key and chance is bounded by2−lT as expected.

6.3 Encrypted tags

The method of one-time pad encryption of the tag described in(5.4) makes authenti-
cation of a constant stream of messages cheap and works fine when completely secret
one-time pads are available. However, when the one-time pads are not guaranteed to
be completely secret, Eve will learn something about the hash function for each mes-
sage/tag pair she sees. The information she has about the one-time padOi will equal
the knowledge she gains abouth when she seesmi andh(mi) XOROi.

If Eve is unlucky she will only gain information she already had. The exact knowl-
edge ofh she gains depends not only on her exact knowledge ofOi but also onmi, so
it is very hard to put restrictions only on Eve’s knowledge that guarantees that she does
not learn anything new.

All Eve has to do to exploit this weakness is to passively eavesdrop the messages
and the encrypted tags and combine that information with whatever she knows about
the one-time pads until she has enough confidence in her knowledge of the hash func-
tion that she can mount an attack that succeeds with acceptable probability. In other
words, her active chance of forgery will increase for (almost) each message/tag pair she
sees if encrypted tags are used. Therefore, using the encrypted tags method is not ad-
visable unless the one-time pads are known to be completely secret. Using the normal
method of selecting a new hash function for each message doesnot share this problem.

6.4 A message/tag pair seen

If Eve sees a message/tag pair from Alice to Bob she is given information about the
authentication key, and she will combine that information with whatever she knew
about the key initially. We will call the initial key before she has seen the tagK0 and
the key it reduces to after the tagt is revealedK = K0|T=t.

The change of her uncertainty about the key when she sees the tag is quite simple.
The|H |/|T | keys consistent with the message/tag pair seen are singled out and normal-
ized and the rest are set to 0. A limit for the average Rényi entropy of order 1 or larger
of the resulting key is given by theorem 3,

Et∈R(T )(Hα(K0|T=t)) ≥ Hα(K0) − H1(T ) ≥ Hα(K0) − lT . (6.3)



36 Chapter 6. Authentication with partially secret key

This is only a limit on the expectation value of the entropy, and we have seen
several examples of very misleading averages. Fortunatelywe also have some limits
on the individual entropies. They cannot be negative and they cannot be larger than
lK − lT . These limits will of course apply to the average as well. Combining these
limits yields

Hα(K0) − lT ≤ E(Hα(K)) ≤ lK − lT

0 ≤ Hα(K) ≤ lK − lT
(6.4)

which gives some kind of picture of how the entropies of the final key are distributed.
Note thatHα(K0) typically will be pretty close tolK unless Eve initially knew very
much about the authentication key.

6.4.1 The problem

If Alice and Bob wish to authenticate a stream of messages andare concerned about
Eve’s chances to forge any message in the long run the averagevalue doesn’t matter
much. The average entropy might give an idea of the total chance of forgery, but if she
gets infinitely many opportunities for an attack, even if sheonly can make one active
attack, only the minimum possible entropy matters.

As an example, suppose Eve receives information that makes one of the keys twice
as likely as before, while all other keys still have the same probability as each other.
That is, the initial keyK0 is the random variableQ

2/|H |

|H |−1. Since the highest probability
has doubled, the min-entropy of the key is reduced by exactly1 bit. When she sees a
message/tag pair she will rule out all but the|H |/|T | keys consistent with the pair. If
the more probable key is not among those, the entropy of the resulting keyK will be
maximal,lK − lT , since she has no information about those keys. If the more probable
key is among those left, the new maximal probability is givenby renormalizing the
probability2/|H |.

max
k∈R(K)

P (K =k) =

2
|H |

2
|H | + ( |H |

|T | − 1)
1− 2

|H |

|H |−1

≈
2

2 + ( |H |
|T | − 1)

≈ 2
|T |

|H |
(6.5)

The probability of the most likely key is still approximately twice as high as if Eve
had no information at all, which like before means her min-entropy is reduced by 1 bit.
Thus, in this case 1 bit of reduced min-entropy in the initialkey gives Eve normally
no information about the final key and sometimes approximately 1 bit of reduced min-
entropy of the final key. The message in the message-tag pair does not matter in this
case. Eve’s maximum active chance of forgery is just doubled.

As another example, suppose Eve’s knowledge of the initial key K0 is that out of
the|H | possible keys, she has a list of|H |/|T |−1 keys that she knows are not the real
one. Furthermore, all those keys select hash functions thattake Alice’s message to the
same tag.
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Figure 6.1: Eve can wait undetected until she knows she can make a successful attack.

The entropy for this key is very close to the entropy of a completely unknown key,
which is the same thing as the length of the key. Since the distribution is uniform the
Rényi entropy does not depend onα so we have for anyα

lK − Hα(K0) = log(|H |) − log(|H | −
|H |

|T |
+ 1)

= − log(1 −
1

|T |
+

1

|H |
) <

1

|T | ln(2)
−

1

|H | ln(2)
<

1

|T | ln(2)

(6.6)

which is pretty small. A realistic tag size might be 32 bits, which would mean that the
entropy is reduced with less than four billionths of a bit. Nevertheless, if the tag Alice
sends is the right one, Eve will know the key with total certainty andHα(K) = 0. The
chance of that tag being the right one is just one in|H |− |H |/|T |+1 and for any other
tag Eve has no use for her prior information, so the average entropy will still be very
close tolK − lT , as is required by (6.4).

Eve’s active chance of forgery is exactly 1 in this case. If the message is changed
to one where the|H |/|T | − 1 keys with 0 probability instead are spread out as evenly
as possible over the|T | tags, Eve’s entropy for the final key is independent of both the
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tag andα and is bounded by

Hα(K) ≥ log(
|H |

|T |
−

|H |

|T |2
) = log(

|H |

|T |
) + log(1 −

1

|T |
) =

lK − lT + log(1 −
1

|T |
) > lK − lT −

1

|T | ln(2)

(6.7)

which leaves her maximum active chance of forgery pretty much unaffected when Alice
sends this particular message.

6.4.2 The solution

We have seen that simply sending a tag along with each messageto prove authenticity
does not work in the long run if Eve has a small but non-zero knowledge of the authen-
tication key used. However, only minor adjustments are needed to make Eve’s active
chance of forgery equal to her passive chance, and thereforemakes her chances of suc-
cessful forgery before being detected equal to her maximum total chance of forgery.

One theoretical solution is for Alice and Bob to have synchronized clocks and agree
before each message at which time the message should arrive.At that time Alice will
send the message, wait for a time interval longer than the precisions of their clocks,
and send the tag. Eve will not know if she will be able to forge amessage/tag pair
before she sees the real tag, but by then it will be too late to change the message.
Keeping the clocks synchronized and agreeing upon fixed times for messages seem
kind of problematic though, so this is probably not a good idea.

A simpler solution that does not need clocks is for Alice to send the message to
Bob, who replies with a random fix-sized temporary bit string, called thesalt, which
Eve must not be able to guess before she sees it. Alice calculates a tag based on the
concatenation of the message and the salt and sends that tag to Bob. Before Eve has
seen the tag she will not know if she will be able to forge a message/salt/tag triplet, and
she will not see the tag before she sends the salt to Alice. Since she cannot send fake
salt to Alice and be sure to get away with it before she has seenthe real tag, she can
either send the real message to Bob and fail but stay undetected or send Alice faked salt
and Bob a faked message and with only a very small probabilitybe able to send Bob the
right tag. With almost certainty the tag she receives from Alice won’t give her enough
information so she will probably get caught. This solution requires slightly more time
for Alice and Bob to communicate and, since the message to be authenticated now
includes the salt, a slightly larger authentication key.
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Figure 6.2: Two different solutions. In both versions Eve isforced to launch her attack
before she knows if she will succeed and can therefore, with very high probability,
never launch an attack undetected.mn ‖sn is the concatenation of the message and the
salt.
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Chapter 7

Authentication in QKG

As we saw in Section 2.6, a QKG system with a limited lifetime can only generate a
limited amount of shared secret key and can be replaced with apregenerated courier
delivered shared key with increased security. Some of the messages of each round need
to be authenticated and once the initial key is used a key generated in previous rounds
needs to be used. Section 1.2 explains why Eve will have a small but non-zero amount
of information about that key.

In Chapter 6 the method of encrypting the authentication tags proposed by Wegman
and Carter is shown to be unsuitable when completely secret keys are not available.
Using that method in a QKG system would each round give Eve more knowledge
about the hash function, which would limit the lifetime of the system to the time when
she is expected to know enough to launch an attack.

Chapter 4 gave many examples of the dangers of good security only on average.
Chapter 6 reveals that even if Eve initially has very little information about the authen-
tication key, when she has seen Alice’s message/tag pair only the expectation value of
her knowledge is bounded. If we assume that the authentication tag is sent along with
the message and that Eve only needs to forge one message to gain enough power over
the key growing process to be able to forge the next message, the risk that Eve is in
control of the QKG system will increase for each round and approach unity without
Eve ever risking being detected. This would put a theoretical limit to the lifetime of the
system.

Fortunately simple solutions exist and two of them are also presented in Chapter 6.
They both force Eve to make her attack before she knows that itwill succeed by making
sure Alice will not send the authentication tag until eitherBob has received the message
or Eve has done something that would reveal her if she cannot produce the correct tag
for her forged message. A QKG system might already have similar properties since
a round normally consists of a dialogue of several messages and an authentication tag
for all of them at the very end of the round. Whether that is enough to keep the system
secure depends on the details of the system, but implementing one of the solutions is
cheap and requires no deep analysis of the system.

Cederl̈of, 2005. 41
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Finally note that the proposed solutions only makes the authentication secure if
Eve’s initial knowledge of the key is limited. If the privacyamplification only limits
heraverageknowledge of the authentication key, she will eventually know enough of
the key to safely launch an attack regardless of the details of the authentication process.



Appendix A

Source code
entropies.py

1 #!/usr/bin/env python
2 # -*- coding: iso-8859-1 -*-
3
4 from __future__ import division
5 from math import *
6
7 # Yes, this is a quite ugly way to get an infinity constant, but it
8 # works, and we really get an IEEE 754 floating point infinity
9 # constant. Module fpconst should solve the problem.

10 infty = 1e300000000000000
11
12 def log2(x):
13 return log(x, 2)
14
15 def shannon_entropy(l):
16 """Return the Shannon entropy of random variable with probabil ity
17 vector l. """
18 return sum([-p*log2(p) for p in l if p > 0])
19 def min_entropy(l):
20 """Return the min-entropy of random variable with probability
21 vector l. """
22 return -log2(max(l))
23 def entropy(l, alpha=1):
24 """Return the R ényi entropy of order alpha of random variable with
25 probability vector l. """
26 if abs(alpha - 1) < 10**-10:
27 return shannon_entropy(l)
28 elif alpha == infty:
29 return min_entropy(l)
30 try:
31 # "if p>0" saves us from 0**0 trouble.
32 return log2(sum([p**float(alpha) for p in l if p>0]))/(1-alpha)
33 except (ZeroDivisionError, OverflowError):
34 return min_entropy(l)
35
36 def guessing_entropy(l):
37 """Return the Shannon entropy of random variable with probabil ity
38 vector l. """
39 tmp = l[:] # Copy the probability vector.
40 tmp.sort()
41 tmp.reverse() # Highest probability first.
42 return sum([p*i for (i,p) in enumerate(l)]) + 1
43
44 def normalize_inplace(l):
45 "Normalize a probability vector in-place. "
46 s = sum(l)
47 for i, p in enumerate(l):
48 l[i] = p/s
49 def normalize(l):
50 "Return a normalized probability vector. "
51 s = sum(l)
52 return [ p/s for p in l ]
53
54 def Q(p, n):
55 return [p]+[(1-p)/n]*n
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hashfunctions.py
1 #!/usr/bin/env python
2 # -*- coding: iso-8859-1 -*-
3
4 from __future__ import division
5 from math import *
6 import Crypto.Util.number as cn
7
8 def log2(x):
9 return log(x, 2)

10
11 def logint(x, base, __cache=[(8, 2), 3]):
12 "Return int(ceil(log(x, base))) without rounding errors. "
13 # Rounding error example:
14 #>>> log(2**96, 2**12)
15 #8.0000000000000018
16 if (x, base) == __cache[0]:
17 return __cache[1]
18 c = int(ceil(log(x, base))) # This works most of the time.
19 while x > base**c:
20 c += 1 # If not, this will fix it.
21 while x <= base**(c-1):
22 c -= 1 # Or this.
23 __cache[:] = (x, base), c
24 return c
25
26 def istwopower(x, __cache={}):
27 c = __cache.get(x)
28 if c is not None:
29 return c
30 c = 0L # This must be a long, or 1<<c will lose bits.
31 while x > 1<<c:
32 c += 1
33 if x != 1<<c:
34 return None
35 __cache[x] = c
36 return c
37
38 def int2list(x, xmax=None, s=256):
39 """Return the integer x as a little-endian list of bytes with s
40 states each. s is the number of states, not the number of bits.
41 If xmax is given, the returned list will be large enough to
42 contain xmax-1. """
43 if xmax is None:
44 xmax = x+1
45 assert 0 <= x < xmax
46 l = [0] * logint(xmax, s)
47 c = istwopower(s)
48 if c is None:
49 for i in xrange(len(l)):
50 l[i] = int(x%s)
51 x = x//s
52 else: # s is exactly 2**c==1<<c so we can optimize somewhat.
53 mask = (1<<c)-1
54 for i in xrange(len(l)):
55 l[i] = int(x&mask)
56 x = x>>c
57 return l
58
59 def list2int(l, s=256):
60 """Return list interpreted as a little-endian list of bytes wit h s
61 states each. s is the number of states, not the number of bits. """
62 while len(l) > 1:
63 l[-2] += l[-1]*s
64 del l[-1]
65 return l[0]
66
67 def nextprime(begin=1, __cache=[7,7]):
68 """Return the lowest prime >= begin. """
69 if begin == __cache[0]:
70 return __cache[1]
71 n = begin
72 if not n%2: n+=1
73 while not cn.isPrime(long(n)):
74 n += 2
75 __cache[:] = begin, n
76 return int(n)
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77
78 # The following functions were first described by J. Lawrenc e Carter
79 # and Mark N. Wegman in their papers "Universal classes of has h
80 # functions" (1979) and "New hash functions and their use in
81 # authentication and set equality" (1981).
82 # All functions try to follow the Wegman-Carter papers as clo sely as
83 # possible and all quotes are from the papers.
84
85 def H1(a, b, key=None):
86 """Return a member of the hash family H_1 from Wegman-Carter 197 9
87 Inputs:
88 a -- Number of input states
89 b -- Number of output states
90 key -- a tuple (p, m, n):
91 p -- A (non-secret) prime larger than or equal to a
92 q -- Half of the secret key. 0< q<p
93 r -- Half of the secret key. 0<=r<p
94 Output:
95 Normal mode:
96 A hash function mapping range(a) to range(b)
97 Parameter mode:
98 If H1 is called with no key, the smallest possible p is
99 returned to ease construction of a key.

100 """
101 if key is None:
102 return nextprime(a)
103 p, q, r = key
104 assert (a>b) and (p>=a) and (0<q<p) and (0<=r<p)
105 def g(x): # "A natural choice for g is the residue modulo b."
106 return x % b
107 def h(m):
108 return (q*m+r) % p
109 def f(m):
110 # Docstring is set below
111 assert 0<=m<a
112 return g(h(m))
113 f.__doc__ = \
114 """This is a hash function from the hash family H_1 from
115 Wegman-Carter 1979 using the key %s.
116 Inputs:
117 m -- The integer to be hashed in range(%d)
118 Output:
119 A hash value in range(%d)
120 """ % (str(key), a, b)
121 return f
122
123 def Hprime(aprime, bprime, flist=None):
124 """Return a member of the hash family H’ from Wegman-Carter 1980
125 Inputs:
126 aprime -- Number of input bits
127 bprime -- Number of output states
128 flist -- A sequence of secret hash functions
129 Output:
130 Normal mode:
131 A hash function mapping range(2**aprime) to range(2**bpri me)
132 Parameter mode:
133 Hprime needs a sequence flist of hash functions from a
134 universal_2 family. The number of functions, input states a nd
135 output states are dependent on the inner workings of Hprime
136 and need not be exposed to the outside. Instead, if Hprime is
137 called without flist those specifications are returned as a
138 tuple (a, b, len_f):
139 a -- Number of input states of each hash function
140 b -- Number of output states of each hash function
141 len_f -- Number of hash functions in flist
142 """
143 s = bprime + int(ceil(log2(log2(aprime))))
144 # "Let H be some strongly universal_2 class of functions whic h map
145 # bit strings of length 2s to ones of length s"
146 a = 2**(2*s)
147 b = 2**( s)
148 # The "or 1" is needed because the length calculation in W-C-8 0
149 # doesn’t account for the extra padding when the message is
150 # smaller than s from the beginning.
151 len_f = int(ceil(log2(ceil(aprime/s)))) or 1
152 if flist is None:
153 return (a, b, len_f)
154 assert len(flist) == len_f
155 def f(substrings, hashfunction):
156 # Apply hashfunction to all substrings and concatenate pair wise
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157 for i in xrange(len(substrings)//2):
158 substrings[i:i+2] = [hashfunction(substrings[i ]) +
159 hashfunction(substrings[i+1]) * 2**s]
160 if len(substrings)%2:
161 substrings[-1] = hashfunction(substrings[-1])
162 def fprime(m):
163 # Docstring is set below
164 assert 0 <= m < 2**aprime
165 # "The message is broken into substrings of length 2s."
166 substrings = int2list(m, xmax=2**aprime, s=2**(2*s))
167 for f_i in flist[:-1]:
168 assert len(substrings) > 1
169 f(substrings, f_i)
170 # "This process is repeated using f_2,f_3,... until only one
171 # substring of length s is left."
172 assert len(substrings) == 1
173 substring = flist[-1](substrings[0])
174 assert 0 <= substring < 2**s
175 # "The tag is the low-order b’ bits of this substring."
176 return substring % 2**bprime
177 fprime.__doc__ = "This is a hash function from the hash family H’ " \
178 "from Wegman-Carter 1980.\n " \
179 " Inputs:\n " \
180 " m -- A %d bit integer to be hashed\n " \
181 " Output:\n " \
182 " A %d bit hash value\n " \
183 % (aprime, bprime)
184 return fprime
185
186 def Hprime_H1(aprime, bprime, key=None):
187 """Return a member of the hash family H’ from Wegman-Carter 1980
188 using the sub-hash family H_1 from Wegman-Carter 1979
189 Inputs:
190 aprime -- Number of input bits
191 bprime -- Number of output bits
192 key -- A secret key
193 Outputs:
194 Normal mode:
195 A hash function mapping range(2**aprime) to range(2**bpri me)
196 Parameter mode:
197 If Hprime_H1 is called without a key an integer maxkey is
198 returned. The key should be in range(maxkey).
199 """
200 # Get key parameters
201 a, b, len_f = Hprime(aprime, bprime)
202 p = H1(a, b)
203 maxkey = ((p-1)*p)**len_f
204 if key is None:
205 return maxkey
206 assert 0 <= key < maxkey
207 flist = []
208 for thiskey in int2list(key, xmax=maxkey, s=(p-1)*p):
209 q, r = divmod(thiskey, p)
210 q += 1
211 flist.append(H1(a, b, (p, q, r)))
212 return Hprime(aprime, bprime, flist)
213
214 def Hprime_H1_compact(aprime, bprime, key=None):
215 """A more compact implementation of Wegman-Carter 1980 with H1
216 from W-C 1979.
217 The functions above are written to mimic the language of
218 Wegman-Carter as much as possible. Sometimes it might be eas ier to
219 understand a more compact language. This code should do exac tly
220 the same as the one above, but in far less lines and with no erro r
221 checking. It is approximately three times faster than Hprim e_H1().
222 Inputs:
223 aprime -- Number of input bits
224 bprime -- Number of output bits
225 key -- A secret key
226 Outputs:
227 Normal mode:
228 A hash function mapping range(2**aprime) to range(2**bpri me)
229 Parameter mode:
230 If Hprime_H1_compact is called without a key an integer maxk ey
231 is returned. The key should be in range(maxkey).
232 """
233 s = bprime + int(ceil(log2(log2(aprime))))
234 p = nextprime(2**(2*s))
235 len_f = int(ceil(log2(ceil(aprime/s)))) or 1
236 maxkey = ((p-1)*p)**len_f
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237 if key is None:
238 return maxkey
239 keys = []
240 for thiskey in int2list(key, xmax=maxkey, s=(p-1)*p):
241 q, r = divmod(thiskey, p)
242 q += 1
243 keys.append( (q,r) )
244 def fprime(m):
245 "This is a hash function returned by Hprime_H1_compact(). "
246 substrings = int2list(m, xmax=2**aprime, s=2**(2*s))
247 for q,r in keys:
248 for i in xrange(len(substrings)//2):
249 substrings[i:i+2] = [(((q*substrings[i ]+r)%p)%(2**s)) + \
250 (((q*substrings[i+1]+r)%p)%(2**s)) * 2**s]
251 if len(substrings)%2:
252 substrings[-1] = (((q*substrings[ -1]+r)%p)%(2**s))
253 return substrings[0] % 2**bprime
254 return fprime
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ändras eller presenteras i sådan form eller i s̊adant sammanhang som̈ar kr̈ankande
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