Hardware reciprocal using SRT

Niels Möller

2017

1 Introduction

To compute the reciprocal using Newton iteration results in a very big circuit. To get a smaller circuit with reasonable performance for a given size, SRT division is a nice alternative. These notes cover the simplest radix- 2 variant.

1.1 Notation

Our application is computing the reciprocal. We have a word size ℓ (we will use $\ell=64$), and implied base $B=2^{\ell}$. The divisor D is assumed normalized, $B / 2 \leq D<B$. We want to compute the quotient

$$
Q=\left\lfloor\left(B^{2}-1\right) / D\right\rfloor
$$

Q is a 65-bit number, with most significant bit always one. We represent the partial remainder as a fractional number, with the binary point located so that D is added or subtracted to the integer part of P. Initially, we set

$$
P_{0}=B-1 / B=B-1+(B-1) / D
$$

The first quotient bit is then $q_{0}=1$, and we form the next partial remainder as

$$
P_{1}=2\left(P_{0}-D\right)
$$

which lies in the range $0<P_{1}<B$.

2 SRT division

The SRT division algorithm (for radix 2) works by computing a partial remainder sequence P_{k} as

$$
P_{k+1}=2\left(P_{k}-q_{k} D\right)
$$

where the quotients q_{k} are selected so that the sequence P_{k} stays within a bounded interval. For basic radix 2 SRT, quotients are selected from the set $\{-1,0,1\}$, and P_{k} is bounded by $\left|P_{k}\right|<2 D$.

Since we will be using two's complement arithmetic, it's more convenient to use a slightly asymmetric interval, $-M \leq P_{k}<M$. For the moment, drop the k subscript, and first examine the case $M=2 D$. The quotient is not uniquely determined; instead we get the following constraints:
$q=0$: Possible when $-D \leq P<D$.
$q=1$: Possible when $P \geq 0$.
$q=-1$: Possible when $P<0$.
The overlapping intervals is what enables efficient implementation: We can select a working q based only on examining the top few bits of P.

3 Representation of P

We will only represent the integer part explicitly; since the fraction is initially ℓ ones, we can handle it by just shifting in a one bit in each iteration.

Since $\left|P_{k}\right| \leq 2 D<2 B=2^{\ell+1}$, we can represent P_{k} as an $\ell+2$-bit two's complement integer. To select a working q_{k}, it is sufficient to examine the top three bits of P_{k} : If $P_{k}=000 \ldots$, then $0 \leq P<B / 2 \leq D$, and we can choose $q_{k}=0$. And in all other cases, $P \neq 0$ and with known sign, so we can choose q_{k} from the sign bit of P.

But to limit latency when adding or subtracting D, we will represent all but the top few bits of P_{k} using a redundant "carry save" representation. So we set

$$
P_{k}=S_{k}+C_{k}
$$

where S_{k} is a $\ell+2$ bits, and C_{k} is a few bits smaller. The value of the bits of P_{k} are then the corresponding top bits of S_{k} plus any carry from adding in the smaller C_{k}. To accommodate the unknown carry when going from S_{k} to P_{k}, we need one more bit when selecting q_{k}. I.e., C_{k} can be $\ell-2$ bits, 4 bits smaller than S_{k}.

This adds a complication: If $P_{k}=0111 \ldots \approx 2 B$, we must select $q_{k}=1$, but if $P_{k}=1000 \ldots \approx-2 B$, we must select $q=-1$. And if the top bits of S_{k} are 0111, which of these cases we get depends on the carry, which we don't want to compute.

Since we have $\left|P_{k}\right| \leq 2 D$, the ambiguity is possible only for D close to B. One solution is to use a smaller M in this case. If we can ensure that $P<7 B / 4$, then $P=0111 \ldots$ is no longer possible.

4 Narrowing the range

So let us set $M=\min (2 D, 7 B / 4)$. Then we rule out the border line values of the top four bits of P, since $P=0111 \ldots$ implies $P \geq M$ and $P=1000 \ldots$ implies $P<-M$.

To stay within this narrower range, the quotient selection constraints get a little stricter,
$q=0$: Possible when $-M / 2 \leq P<M / 2$.
$q=1:$ Possible when $P \geq \max (0, D-7 B / 8)$.
$q=-1$: Possible when $P<-\max (0, D-7 B / 8)$.
If we tighten this a little bit more, we get the following constraints which are sufficient for all values of D :
$q=0$: Possible when $-B / 2 \leq P<B / 2$.
$q=1$: Possible when $P \geq B / 8$.
$q=-1$: Possible when $P \leq-B / 8$.
This lets us define quotient selection based on the top S_{k} bits only. Let h denote the value of the four most significant bits of S_{k}, interpreted as a two's complement number.

We have alerady ruled out the problematic case $h=7$. So we can assume that $-8 \leq h \leq 6$, and each value corresponds the the following ranges for S_{k} and P_{k} :

$$
\begin{aligned}
& h B / 4 \leq S_{k}<(h+1) B / 4 \\
& h B / 4 \leq P_{k}<(h+2) B / 4
\end{aligned}
$$

We can therefore use the following rules:
$-8 \leq h \leq-3$: Then $-7 B / 4 \leq P_{k}<-B / 4$, use $q_{k}=-1$. Note that $h=-8$ can happen only if we do get a carry from the addition of C_{k}.
$-2 \leq h \leq 0$: Then $-B / 2 \leq P_{k}<B / 2$. Use $q_{k}=0$.
$1 \leq h \leq 6$: Then $B / 4 \leq P_{k}<7 B / 4$. Use $q_{k}=1$.
$h=7$: Can't happen.

5 Final processing

The iteration $P_{k+1}=2\left(P_{k}-q_{k} D\right)$ can be turned around to

$$
P_{k}=q_{k} D+P_{k+1} / 2
$$

After $\ell+1$ iterations, we have

$$
P_{0}=\sum_{k=0}^{\ell} q_{k} 2^{-k} D+P_{\ell+1} / 2^{\ell+1}
$$

Recall that $P_{0}=B-1 / B$ and multiply by B, to get

$$
B^{2}-1=\sum_{k=0}^{\ell} q_{k} 2^{\ell-k} D+P_{\ell+1} / 2
$$

Define

$$
Q^{\prime}=\sum_{k=0}^{\ell} q_{k} 2^{\ell-k} D \quad R^{\prime}=P_{\ell+1} / 2
$$

Then $B^{2}-1=Q^{\prime} D+R^{\prime}$, and we have $-D \leq R<D$. Hence $Q=Q^{\prime}+[R<0]$.

