
Hardware reciprocal using SRT

Niels Möller

2017

1 Introduction

To compute the reciprocal using Newton iteration results in a very big circuit. To
get a smaller circuit with reasonable performance for a given size, SRT division
is a nice alternative. These notes cover the simplest radix-2 variant.

1.1 Notation

Our application is computing the reciprocal. We have a word size ` (we will
use ` = 64), and implied base B = 2`. The divisor D is assumed normalized,
B/2 ≤ D < B. We want to compute the quotient

Q = b(B2 − 1)/Dc

Q is a 65-bit number, with most significant bit always one. We represent the
partial remainder as a fractional number, with the binary point located so that
D is added or subtracted to the integer part of P . Initially, we set

P0 = B − 1/B = B − 1 + (B − 1)/D

The first quotient bit is then q0 = 1, and we form the next partial remainder as

P1 = 2(P0 −D)

which lies in the range 0 < P1 < B.

2 SRT division

The SRT division algorithm (for radix 2) works by computing a partial remain-
der sequence Pk as

Pk+1 = 2(Pk − qkD)

where the quotients qk are selected so that the sequence Pk stays within a
bounded interval. For basic radix 2 SRT, quotients are selected from the set
{−1, 0, 1}, and Pk is bounded by |Pk| < 2D.

Since we will be using two’s complement arithmetic, it’s more convenient to
use a slightly asymmetric interval, −M ≤ Pk < M . For the moment, drop the
k subscript, and first examine the case M = 2D. The quotient is not uniquely
determined; instead we get the following constraints:

q = 0: Possible when −D ≤ P < D.

1

q = 1: Possible when P ≥ 0.

q = −1: Possible when P < 0.

The overlapping intervals is what enables efficient implementation: We can select
a working q based only on examining the top few bits of P .

3 Representation of P

We will only represent the integer part explicitly; since the fraction is initially
` ones, we can handle it by just shifting in a one bit in each iteration.

Since |Pk| ≤ 2D < 2B = 2`+1, we can represent Pk as an ` + 2-bit two’s
complement integer. To select a working qk, it is sufficient to examine the top
three bits of Pk: If Pk = 000 . . ., then 0 ≤ P < B/2 ≤ D, and we can choose
qk = 0. And in all other cases, P 6= 0 and with known sign, so we can choose qk
from the sign bit of P .

But to limit latency when adding or subtracting D, we will represent all but
the top few bits of Pk using a redundant “carry save” representation. So we set

Pk = Sk + Ck

where Sk is a ` + 2 bits, and Ck is a few bits smaller. The value of the bits of
Pk are then the corresponding top bits of Sk plus any carry from adding in the
smaller Ck. To accommodate the unknown carry when going from Sk to Pk, we
need one more bit when selecting qk. I.e., Ck can be ` − 2 bits, 4 bits smaller
than Sk.

This adds a complication: If Pk = 0111... ≈ 2B, we must select qk = 1, but
if Pk = 1000... ≈ −2B, we must select q = −1. And if the top bits of Sk are
0111, which of these cases we get depends on the carry, which we don’t want to
compute.

Since we have |Pk| ≤ 2D, the ambiguity is possible only for D close to B.
One solution is to use a smaller M in this case. If we can ensure that P < 7B/4,
then P = 0111 . . . is no longer possible.

4 Narrowing the range

So let us set M = min(2D, 7B/4). Then we rule out the border line values of
the top four bits of P , since P = 0111 . . . implies P ≥ M and P = 1000 . . .
implies P < −M .

To stay within this narrower range, the quotient selection constraints get a
little stricter,

q = 0: Possible when −M/2 ≤ P < M/2.

q = 1: Possible when P ≥ max(0, D − 7B/8).

q = −1: Possible when P < −max(0, D − 7B/8).

If we tighten this a little bit more, we get the following constraints which
are sufficient for all values of D:

q = 0: Possible when −B/2 ≤ P < B/2.

2

q = 1: Possible when P ≥ B/8.

q = −1: Possible when P ≤ −B/8.

This lets us define quotient selection based on the top Sk bits only. Let h
denote the value of the four most significant bits of Sk, interpreted as a two’s
complement number.

We have alerady ruled out the problematic case h = 7. So we can assume
that −8 ≤ h ≤ 6, and each value corresponds the the following ranges for Sk

and Pk:

hB/4 ≤ Sk < (h + 1)B/4

hB/4 ≤ Pk < (h + 2)B/4

We can therefore use the following rules:

−8 ≤ h ≤ −3: Then −7B/4 ≤ Pk < −B/4, use qk = −1. Note that h = −8 can
happen only if we do get a carry from the addition of Ck.

−2 ≤ h ≤ 0: Then −B/2 ≤ Pk < B/2. Use qk = 0.

1 ≤ h ≤ 6: Then B/4 ≤ Pk < 7B/4. Use qk = 1.

h = 7: Can’t happen.

5 Final processing

The iteration Pk+1 = 2(Pk − qkD) can be turned around to

Pk = qkD + Pk+1/2

After ` + 1 iterations, we have

P0 =
∑̀
k=0

qk2−kD + P`+1/2`+1

Recall that P0 = B − 1/B and multiply by B, to get

B2 − 1 =
∑̀
k=0

qk2`−kD + P`+1/2

Define

Q′ =
∑̀
k=0

qk2`−kD R′ = P`+1/2

Then B2 − 1 = Q′D +R′, and we have −D ≤ R < D. Hence Q = Q′ + [R < 0].

3

