
Towards a low-delay Internet
Exploiting ack-clock stability in congestion control

Niels Möller

2012-08-30

Joint work with Krister Jacobsson and Karl Henrik Johansson.

About this talk

Short bio

◮ PhD 2008, graduate studies at KTH, automatic control.

◮ Currently at Conemtech. Network time synchronization.

◮ Spare time projects include GNU Nettle (crypto library) and
GNU GMP (bignum arithmetic).

◮ Undergraduate studies at Linköping.

Topics of this presentation

◮ Work done during my PhD time.

◮ Considering publishing in book format.

Outline

Window based congestion control

Analysis of the ack-clock

Congestion control for small queues

Simulation results

Objectives and constraints

Objectives

◮ Avoid network overload.

◮ Efficient resource utilization.

◮ “Fair” sharing of resources.

◮ Small queueing delays.

Objectives and constraints

Objectives

◮ Avoid network overload.

◮ Efficient resource utilization.

◮ “Fair” sharing of resources.

◮ Small queueing delays.

Design constraints

◮ End-to-end principle.

◮ Robustness to uncertainties.

◮ Tunability.

◮ Incremental deployability.

Notation
Single link, single flow topology

Source Destination

Constant network parameters

c capacity of bottleneck link [bytes/s]

τ end-to-end propagation delay [s]

γ proportion of capacity which is available

m packet size [bytes]

Notation
Single link, single flow topology

Source Destination

Constant network parameters

c capacity of bottleneck link [bytes/s]

τ end-to-end propagation delay [s]

γ proportion of capacity which is available

m packet size [bytes]

System state

q(t) queue size [bytes]

w(t) window size [bytes]

r(t) sending rate [bytes/s]

rtt = τ + q(t)/c

ack-clock

Window size: The amount of outstanding data.

1 2 3
︸ ︷︷ ︸

acked data

4 5 6 7 8
︸ ︷︷ ︸

Outstanding data

9 10 11
︸ ︷︷ ︸

Unsent data

ack for packet 4 received:

1 2 3 4
︸ ︷︷ ︸

acked data

5 6 7 8 9
︸ ︷︷ ︸

Outstanding data

10 11
︸ ︷︷ ︸

Unsent data

ack-clock: One packet sent for each received ack. Sending rate
roughly w/rtt.

Additive increase/multiplicative decrease
tcp Congestion avoidance algorithm

◮ All goes well: Increase w by one packet by rtt.
◮ When loss is detected: Reduce w by half.

Additive increase/multiplicative decrease
tcp Congestion avoidance algorithm

◮ All goes well: Increase w by one packet by rtt.
◮ When loss is detected: Reduce w by half.

tcp square root formula

average rate =
m

rtt

√

2(1− p)

p

Then

rate ≈
w

rtt

=⇒ p ≈ 2/n2 n = w/m, window size in packets

Additive increase/multiplicative decrease
tcp Congestion avoidance algorithm

◮ All goes well: Increase w by one packet by rtt.
◮ When loss is detected: Reduce w by half.

tcp square root formula

average rate =
m

rtt

√

2(1− p)

p

Then

rate ≈
w

rtt

=⇒ p ≈ 2/n2 n = w/m, window size in packets

Hand waving
Assume p is a function of network state, and also uniform
U(0, 4/n2). Compute mutual information over one rtt:

I(acks, network state) ≈ 0.56/n bits/RTT

Does TCP achieve the objectives?

Yes Avoid network overload.

Yes Efficient resource utilization.

Yes “Fair” sharing of resources.

No Small queueing delays.

Does TCP achieve the objectives?

Yes Avoid network overload.

Yes Efficient resource utilization.

Yes “Fair” sharing of resources.

No Small queueing delays.

Popular (as of 2008. . .) tcp research

◮ Efficiency over wireless.

◮ Efficiency over fat pipes (cτ large).

◮ Delay-related: Buffer sizing, “flow aware” networking, QoS.

Analysis of the ack-clock

A cascaded control system

Window
control

WindowTransmission
control

Rate
Internet

Acknowledgements
Observer

State
estimate

Inner loop: ack-clock.

Outer loop: Adaptation of the window size.

Measured signals: ack-packets.

◮ Two distinct control loops.

◮ Window size is a crucial state variable.

Queue dynamics

Standard fluid-flow model

q̇(t) =

{

r(t)− γc q(t) > 0

max(0, r(t)− γc) q(t) = 0

Queue dynamics

Standard fluid-flow model

q̇(t) =

{

r(t)− γc q(t) > 0

max(0, r(t)− γc) q(t) = 0

How to get from w to r?

r(t) =
w(t)

τ
“Integrator”” model. Hollot et al. Infocom 2001

q(t) = w(t)− cτ “Static model. Wang, et al. Infocom 2005

Step responses

 15

 20

 25

 30

 35

 40

 45

 10 10.5 11 11.5 12

Q
ue

ue
 s

iz
e

[p
ac

ke
ts

]

t [s]

0.2
0.4
0.7
1.0

q(t) response to a w(t)-step, for several values of γ.

A better inner loop model

r(t) =
w(t − τ)

τ + q(t − τ)/c
︸ ︷︷ ︸

Rate of received acks

+ ẇ(t)
︸︷︷︸

Direct term

q̇(t) = r(t)− γc

=
w(t − τ)

τ + q(t − τ)/c
+ ẇ(t)− γc

A better inner loop model

r(t) =
w(t − τ)

τ + q(t − τ)/c
︸ ︷︷ ︸

Rate of received acks

+ ẇ(t)
︸︷︷︸

Direct term

q̇(t) = r(t)− γc

=
w(t − τ)

τ + q(t − τ)/c
+ ẇ(t)− γc

Time constant

◮ γ ≥ 0.3: Time constant < 3.4rtt.

◮ γ < 0.3: Time constant ≈ rtt/γ.

Is the ack-clock stable for an arbitrary network?

The model extends nicely to general networks.

Stability results
Fix the window size at each source. What happens at the queues?

◮ Total number of packets is bounded (trivial).

◮ Single link, single flow topology, arbitrary delay: Globally
asymptotically stable.

◮ Single link, multiple flow topology, heterogeneous delays:
Locally asymptotically stable.

◮ General network, simplified model without signalling delays:
Globally asymptotically stable.

Large queue fluctuations seem unlikely.

Taking advantage of the stable inner loop

Lessons for outer loop design

◮ Inner loop stabilizes the system.

◮ For high cross traffic, dynamics of inner loop must not be
ignored.

◮ Design the window update law for the other objectives.

Outer loop responsibilities

◮ Fair sharing between flows.

◮ Keep equilibrium queues small.

◮ And don’t create instability.

Congestion control for small queues

New congestion control scheme

Rationale:

◮ Keep ack-clock inner-loop.

◮ Additive increase implies a “pressure” on the queues.

◮ Need balancing back-pressure to stop queue growth.

New congestion control scheme

Rationale:

◮ Keep ack-clock inner-loop.

◮ Additive increase implies a “pressure” on the queues.

◮ Need balancing back-pressure to stop queue growth.

Control laws:

◮ Usual additive increase.

◮ Packet marking probability p(t) = q(t)/(q(t) + q0)

◮ Additive decrease for each ack carrying a mark.

Comparison to traditional aqm + ecn

Source’s point of view

◮ More frequent packet marks (average one mark / rtt).

◮ Cancels the additive increase on rtt time scale.

Comparison to traditional aqm + ecn

Source’s point of view

◮ More frequent packet marks (average one mark / rtt).

◮ Cancels the additive increase on rtt time scale.

Router’s point of view

◮ Each marked packet implies one less packet arriving an rtt

later.

◮ Contrast standard ecn, where response is amplified by the
unknown window size.

◮ Single tuning knob (q0). Bad tuning cause reduced utilization
or a large queue, but not large oscillations.

Stability

Model: Single link, single flow + cross traffic.

ẇ(t) =
1

τ + q(t − τ)/c

(

m −
q(t − τ)w(t − τ)

q0 + q(t − τ)

)

q̇(t) =







w(t − τ)

τ + q(t − τ)/c
+ ẇ(t)− γc q(t) > 0

max
(

0, w(t−τ)
τ+q(t−τ)/c + ẇ(t)− γc

)

q(t) = 0

Theorem: Locally asymptotically stable if q0 ≥ cτ and γ < 1.

Further properties

Equilibrium
With q0 = cτ :

q∗ = m/γ

w∗ = γcτ +m

Further properties

Equilibrium
With q0 = cτ :

q∗ = m/γ

w∗ = γcτ +m

Hand waving
On average, p = 1/n. Mutual information received in one rtt:

I(acks, network state) ≈ 0.28 bits/RTT

independent of the window size.

Simulation results

Fluid-flow simulation (1)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1

Q
ue

ue
 s

iz
e

[p
ac

ke
ts

]

t [s]

0.3
0.5
0.7
0.9

Varying γ, fraction of capacity available.

Fluid-flow simulation (2)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

Q
ue

ue
 s

iz
e

[p
ac

ke
ts

]

t [s]

100
70
40
10

Varying the tuning parameter q0.

Packet simulation (1)

 0

 5

 10

 15

 20

 19 19.5 20 20.5 21 21.5 22

P
ac

ke
ts

t [s]

w
q

Step response: At t = 20, cross traffic increased from 20% to 40%.

Packet simulation (2)

“Parking lot” topology

S0 D0

S1 D1 S2 D2 S3 D3

Values for the leftmost link:

New Reno Vegas New protocol

Loss 1.96 0.25 0.00
Util. 2.00 1.99 1.99
Queue 11.98 8.78 4.37
dev. 4.32 4.02 2.15

Packet simulation (3)

Long and short flow
New Reno Vegas New protocol

Flow long short long short long short

Throughput 0.11 1.49 0.88 0.71 0.12 1.48
Loss rate 6.55 1.69 0.37 0.31 0.00 0.00
Window 4.49 13.05 25.48 4.40 2.94 7.06

dev. 2.01 3.57 10.08 0.75 0.75 1.26
Delay 323.05 91.29 270.83 62.56 181.30 44.63

dev. 46.30 26.29 51.95 24.14 23.59 12.49

Conclusions and further work

Nice properties

◮ Small, stable queues.

◮ Easy to tune.

◮ Robust to uncertainties (rtt, cross traffic, # of flows, . . .).

◮ Fairness properties close to New Reno.

Conclusions and further work

Nice properties

◮ Small, stable queues.

◮ Easy to tune.

◮ Robust to uncertainties (rtt, cross traffic, # of flows, . . .).

◮ Fairness properties close to New Reno.

Why?

◮ Router’s point of view: Response to packet mark predictable.

◮ Source’s point of view: More frequent feedback.

◮ Accurate model for inner-loop.

Conclusions and further work

Nice properties

◮ Small, stable queues.

◮ Easy to tune.

◮ Robust to uncertainties (rtt, cross traffic, # of flows, . . .).

◮ Fairness properties close to New Reno.

Why?

◮ Router’s point of view: Response to packet mark predictable.

◮ Source’s point of view: More frequent feedback.

◮ Accurate model for inner-loop.

Further work

◮ Behaviour with large aggregation.

◮ Using the mark bits also for switching from slow-astart to
congestion avoidance.

◮ Rigorous analysis of feedback information contents.

	Window based congestion control
	Analysis of the ACK-clock
	Congestion control for small queues
	Simulation results

