
Quotient approximation for schoolbook division

Niels Möller

October 8, 2021

Abstract

A new more efficient way to compute an approximative quotient suit-
able for school book division of multi-precision integers.

1 Background

This section gives a short overview of schoolbook division history, as it has been
applied to the gmp [1] library.

Knuth, 1969

The classic description of schoolbook division is Knuth’s, see [4, Sec. 4.3.1,
Alg. D]. It works as follows.

To compute the most significant quotient word, start by dividing the two
most significant words of the numerator with the most significant word of the
divisor (the later is assumed normalized, i.e., most significant bit set). Next,
take one more word into account of both numerator and divisor, to check if
the approximation is a correct quotient for dividing the three most significant
numerator words with the two most significant. If it isn’t, it’s at most two units
too large, and is adjusted accordingly.

After these preliminary adjustments, the quotient word is usually correct,
with a small probability of it being one too large. So go ahead and compute the
full multi-precision remainder; check for the unlikely underflow, and do a final
adjustment of both the quotient word and the multi-precision remainder when
underflow happens.

Granlund-Montgomery, 1994

When computing one quotient word at a time, to produce a multi-precision quo-
tient, the numerator is updated incrementally by subtracting multiples of the
divisor, but the divisor itself is unchanged; it is a loop invariant. One can there-
fore speed up the computation of the quotient approximation by precomputing
an approximate reciprocal of the most significant divisor word. The initial di-
vison is then replaced by a few multiplications and adjustments, which is a big
win since division instructions are usually vastly slower than multiplication in-
structions1 The paper [3] describes one clever way to make use of a precomputed

1For example, on Intel Skylake processors, a 128-bit by 64-bit division takes 86 cycles, while
a 64-bit by 64-bit multiply with 128-bit result takes 3 cycles, and in addition, multiplication
is pipelined so that a new multiply can be started every each cycle, see [2].

1



reciprocal in schoolbook division, even though schoolbook division was not the
main topic of that paper.

Möller-Granlund, 2011

The main idea of the next paper, when applied to schoolbook division, is to use
a reciprocal based on the two most significant divisor words. The reciprocal is
still a single word, but we can simplify the adjustment steps needed for each
quotient word, by using a slightly different reciprocal. In effect, moving some of
the adjustment work out of the loop and doing it as part of the precomputation
of the reciprocal. See [5].

This algorithm divides the three most significant words of the numerator
with the two most significant words of the divisor, producing the same candi-
date quotient as used in Knuth, but with simpler adjustment steps than earlier
methods.

Current work, 2018

The algorithms above all produce a correct quotient of three words by two.
When this is ready, it is applied to compute the full multi-precision remainder.
We need a final adjustment in the unlikely case that the computation of the full
remainder underflows.

Further improvement is based on two observations. First, since we do have
a final adjustment step, we don’t need a three-by-two quotient that is correct
in all cases. Second, the influence on the correct quotient from the third most
significant word of the numerator is very small.

We therefore aim to compute a candidate quotient based on the two most
significant words of both numerator and divisor. When applied to compute the
multi-precision remainder, it must be either correct or one too large, and the
probability of error should be small. The resulting algorithm features simpler
adjustment steps than the earlier methods.

2 Notation and requirements

Let ` denote the computer word size, and let β = 2` denote the base implied by
the word size. (FIXME: ` mustn’t be too small. I think these arguments
should work wor ` ≥ 2, i.e., β ≥ 4.) Lower-case letters denote single-word
numbers, and upper-case letters represent numbers of any size. We use the
notation X = 〈xn−1, . . . , x1, x0〉 = xn−1β

n−1 + · · ·+x1β+x0, where the n-word
integer X is represented by the words xi, for 0 ≤ i < n.

We consider only one iteration of the schoolbook division algorithm, com-
puting a single quotient word; organizing the outer loop is out of scope for
these notes. Let the divisor D = 〈dn−1, . . . d0〉 consist of n > 2 words, and the
numerator U = 〈un, . . . n0〉 consist of n+ 1 words.

We assume that U < βD, so that the correct quotient bU/Dc is a single
word, and that dn−1 ≥ β/2 (normalization).

We need a function divappr, that lets us compute a candidate quotient
q ← divappr(〈un, un−1〉, 〈dn−1, dn−2〉).

2



3 The divappr function

We define a function q ← divappr(〈u1, u0〉, 〈d1, d0〉), with the following require-
ments. Input consists of four single-word numbers. We require that d1 ≥ β/2
and 〈u1, u0〉 ≤ 〈d1, d0〉. The output q is also a single word. Let R denote the
corresponding remainder

R = 〈u1, u0, 0〉 − q〈d1, d0〉

In the borderline case 〈u1, u0〉 = 〈d1, d0〉, divappr must produce q = β−1. This
corresponds to R = 〈d1, d0〉, and in the context of schoolbook divison, q = β−1
is the correct quotient, thanks to the requirement that U < βD.

When 〈u1, u0〉 < 〈d1, d0〉, we require R to belong to the range

−2β < R ≤

{
〈d1, d0〉 − 1 if q = β − 1

〈d1 − 1, d0〉 otherwise

When q is applied to the full multi-precision numbers, the corresponding re-
mainder

Rbignum = U − qD

satisfies Rbignum < D and

Rbignum > −3βn−1 ≥ − 6

β
D

ensuring that R < 0 is unlikely for random inputs.
To compute divappr, we will make use of the same approximate reciprocal

as for three-by-two division, defined as

v = b(β3 − 1)/〈d1, d0〉c − β

4 The algorithm

We now present an alrorithm that computes an approximation q ≈ 〈u1, u0, 0〉/〈d1, d0〉.
When we say that q is the correct quotient, we mean that q = b〈u1, u0, 0〉/〈d1, d0〉c.
A correct quotient in this sense doesn’t necessarily imply that it’s a quotient
that the algorithm should return, nor that its application to schoolbook division
won’t need any final adjustment.

3



q ← divappr2(〈u1, u0〉, 〈d1, d0〉)
In: β/2 ≤ d1 < β, 〈u1, u1〉 ≤ 〈d1, d0〉,

1 v = b(β3 − 1)/〈d1, d0〉c − β // Should be precomputed
2 if 〈u1, u0〉 ≥ 〈d1, d0〉 − d1
3 return β − 1
4 〈q1, q0〉 ← vu1 + 〈u1, u0〉
5 q ← q1 + 1
6 p1 ← bqd0/βc
7 r ← (u0 − qd1 − p1 − 1) mod β
8 if r ≥ q0
9 q ← (q − 1) mod β

10 r ← (r + d1 + 1) mod β
11 if r ≥ d1 − 1
12 q ← (q + 1) mod β
13 return q

Let us state the desired properties of the return value in the form of a theorem.

Theorem 1 Assume that d1 ≥ β/2 and 〈u1, u0〉 ≤ 〈d1, d0〉. Let q be the return
value of the divappr algorithm, and let R be the corresponding remainder,

R = 〈u1, u0, 0〉 − q〈d1, d0〉

Then the following holds:

1. If 〈u1, u0〉 = 〈d1, d0〉, then q = β − 1 and R = 〈d1, d0〉.

2. Otherwise, if q = β − 1, then −2β < R < 〈d1, d0〉

3. If q < β − 1, then −2β < R ≤ 〈d1 − 1, d0〉.

To prove this theorem, we need to consider several different cases. Let us start
with some preliminaries.

First check what happens when u1 = u0 = 0. We then get q0 = q1 = p1 = 0.
We get the initial quotient candidate q ← 1 on line 5. On line 7 we get r ←
(−d1 − 1) mod β, and trivially r ≥ q0. Hence the first adjustment is applied,
and the adjusted r on line 10 is zero. The second adjustment isn’t applied, and
the returned quotient is q = 0, corresponding to R = 0, which is perfectly right.
In the following, let us therefore assume that 〈u1, u0〉 > 0.

Since
〈d1, d0〉(β − 1) = β2d1 + β(d0 − d1)− d0

we have b〈u1, u0, 0〉/〈d1, d0〉c ≥ β− 1 if and only if 〈u1, u0〉 ≥ 〈d1, d0〉− d1. This
is the condition on line 2, and it follows that we return q = β − 1 for all inputs
where it’s the correct quotient, and in the borderline case 〈u1, u0〉 = 〈d1, d0〉.
Hence, when the algorithm terminates at line 3, the return value satisfies the
theorem, either case 1 or 2.

So let us assume that 〈u1, u0〉 < 〈d1, d0〉− d1; then the correct quotient is at
most β− 2. This ensures that in the cases that we return a quotient that is one
too large (i.e., R < 0), that incorrect quotient still fits in one word.

The value q1 is always upper bounded by the correct quotient (since the
reciprocal v is rounded down). Define q̃ = q1 + 1, which also fits in single word.

4



This is the initial candidate quotient, computed on line 5. Let R̃ denote the
corresponding remainder,

R̃ = 〈u1, u0, 0〉 − (q1 + 1)〈d1, d0〉

We first prove upper and lower bounds for this quantity.

Lemma 2 Assume that 0 < 〈u1, u0〉 < 〈d1, d0〉 − d1. Then R̃ is bounded as
follows:

R̃ > −D (1)

R̃ > q0β − β2 (2)

R̃ < max(β2 −D, q0β)− β (3)

Proof : We follow the analysis of three-by-two division in [5, Theorem 3] closely,
but we can get slightly tighter bounds since (i) the third most significant numer-
ator word is zero, and (ii) we take care of the largest possible values of 〈u1, u0〉
separately.

The definition of v implies that (β + v)〈d1, d0〉 = β3 − K, for some K in
the range 1 ≤ K ≤ 〈d1, d0〉. In this proof, also use the notation D = 〈d1, d0〉.
Substitution into the expression for R̃ gives

R̃ =
u1K + u0(β2 −D) + q0D

β
−D

Since all terms but the last are non-negative, and at least one of the terms
involving u1 and u0 is non-zero, Eq. (1) follows immediately. If we keep the
term depending on q0, we get Eq. (2) as

R̃ >
q0D

β
−D = −D

(
1− q0

β

)
> −β2

(
1− q0

β

)
= q0β − β2

To derive the upper bound is a bit more involved. Recall that we assume
that 〈u1, u0〉 < D − d1 ≤ D − β/2, which implies that u1 < (D − u0 − β/2)/β.
We then get

R̃ <
(D − u0 − β/2)D

β2
+
u0(β2 −D)

β
+
q0D

β
−D

=
D2

β2
+
u0(β3 − βD −D)

β2
+
q0D

β
−D − D

2β

For a moment, assume that β3 − βD −D ≥ 0. It then follows that

R̃ <
D2

β2
+

(β − 1)(β3 − βD −D)

β2
+
q0D

β
−D − D

2β

=
D2

β2
+ β2 − 2D − β +

D

β2
+
q0D

β
− D

2β

= (β2 −D)

(
1− D

β2

)
+ q0β

D

β2
− β − (β − 2)D

2β2

< max(β2 −D, q0β)− β

5



where the final inequality follows from recognising the expression as a convex
combination.

Finally, assume that β3 − βD −D < 0. This implies that D ≥ β2 − β + 1,
or d1 = β − 1 and d0 ≥ 1. It follows that u1 ≤ β − 2, v = 0, q̃ = u1 + 1, and
q0 = u0. We then get

R̃ = 〈u1, u0, 0〉 − q̃〈d1, d0〉
= β2u1 + βq0 − (u1 + 1)(β2 − β + d0)

= βq0 + (u1 + 1)(β − d0)− β2

≤ βq0 + (β − 1)(β − d0)− β2

= βq0 − β − (β − 1)d0

≤ βq0 − (2β − 1) < βq0 − β

The final expression is smaller than the bound in Eq (3), and this concludes the
proof of this lemma. �

This lemma also implies the bounds

−β2 + 1 < R̃ < β2 − β

After these preliminaries, let us complete the proof of Theorem 3.
Proof : Let r̃ denote the value computed on line 7. Let p0 denote the low half
p0 = qd0 mod β, then we have

R̃ = β [〈u1, u0〉 − (q1 + 1)d1 − p1]− p0

We see that r̃ is second least significant word of R, except that is is one too
small when p0 = 0. This can be expressed as

(R̃− 1) mod β2 = 〈r̃, β − 1− p0〉

First, consider the case that R̃ ≤ 0. Then R̃ = βr̃ + β − p0 − β2, and the
lower bound, Eq. (2), implies

〈r̃, β − 1− p0〉 = R̃+ β2 − 1 ≥ q0β

Hence, r̃ ≥ q0, and so the first adjustment condition applies.
The other lower bound, Eq. (1), implies that

βr̃ + β − p0 = R̃+ β2 ≥ β2 − 〈d1, d0〉

It follows that

r̃ + d1 + 1 ≥ β − d0
β

Since the left hand side is an integer, and d0 < β, it follows that r+ d1 + 1 ≥ β.
Let r′ denote the value after adjustment on line 10, it’s

r′ = r̃ + d1 + 1 mod β = r̃ + d1 + 1− β

The corresponding two-word remainder is

R̃+ 〈d1, d0〉 = βr̃ + β − p0 − β2 + 〈d1, d0〉
= β(r̃ + d1 + 1− β)− p0 + d0

= βr′ − p0 + d0

6



If r′ ≤ d1 − 2, then this is the final remainder R, and it follows that −β < R <
β(d1−2) +d0 ≤ 〈d1, d0〉−2β, which is in the desired range. On the other hand,
if r′ ≥ d1−1, then the second adjustment cancels the first leaving R̃ as the final
remainder, and we find that

R̃ = βr′ − p0 + d0 − 〈d1, d0〉
≥ β(d1 − 1− d1)− p0
> −2β

(and still, by assumption, also R̃ ≤ 0). This concludes the proof when R̃ ≤ 0.
Next, consider the case R̃ > 0. Then R̃ = βr̃ + β − p0. First assume that

r̃ < q0, so the first adjustment step isn’t done. If r′ ≤ d1 − 2, R̃ is the final
remainder, it it is bounded as

0 < R̃ ≤ β(d1 − 2) + β − p0 ≤ 〈d1, d0〉 − β

as required. On the other hand, if r̃ ≥ d1 − 2, the final remainder is R =
R̃ − 〈d1, d0〉. Note that Eq (3) implies that R̃ < β2 − β. In addition, d1 ≥ β/2
implies that β2 − 〈d1, d0〉 ≤ 〈d1, d0〉. It follows that

R = R̃− 〈d1, d0〉 < β2 − β − 〈d1, d0〉 ≤ 〈d1 − 1, d0〉

For the lower bound, we have

R = R̃− 〈d1, d0〉 ≥ β(d1 − 1) + β − p0 − 〈d1, d0〉 = −β + (β − p0)− d0 > −2β

Hence, in both cases

−2β < R̃ ≤ 〈d1, d0〉 ≤ 〈d1 − 1, d0〉

But what happens if r̃ ≥ q0? Then the upper bound, Eq. (3) implies

βr̃ + β − p0 = R̃ < β2 − 〈d1, d0〉 − β = β(β − d1 − 1)− d0

It follows that r̃ < β − d1 − 1, Hence, the value after the update is

r̃ + d1 + 1 mod β = r + d1 + 1 ≥ d1 − 1

so we get two adjustments canceling out, so in this case, R̃ is the final remainder.
Furthermore, since we have β2 − 〈d1, d0〉 ≤ 〈d1, d0〉, the upper bound implies

R̃ < β2 − 〈d1, d0〉 − β ≤ 〈d1 − 1, d0〉

�

References

[1] Torbjörn Granlund. GNU multiple precision arithmetic library. http://

gmplib.org/.

[2] Torbjörn Granlund. Instruction latencies and throughput for AMD and Intel
x86 processors, 2017. http://gmplib.org/~tege/x86-timing.pdf.

7



[3] Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers
using multiplication. In Proceedings of the SIGPLAN PLDI’94 Conference,
June 1994.

[4] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming. Addison-Wesley, Reading, Massachusetts, third edition,
1998.

[5] Niels Möller and Torbjörn Granlund. Improved division by invariant inte-
gers. IEEE Transactions on Computers, 60:165–175, 2011.

8


