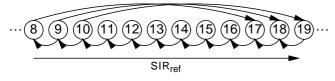


TCP over Radio Links with Power Control and Link Level Retransmissions

Niels Möller and Karl Henrik Johansson

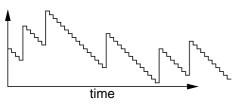
Department of Signals, Sensors and Systems, KTH, Stockholm

TCP over Radio Link



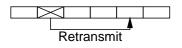
Note the four cascaded feedback loops:

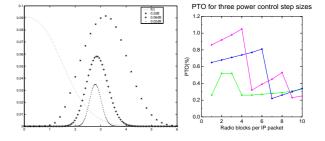
- (1) Inner loop of power control
- (2) Outer loop of power control
- (3) Retransmissions of damaged blocks
- (4) TCP congestion control


Power Control

The inner loop is a fast controller tracking SIR_{ref}. The outer loop is a Markov chain driven by block errors.

 SIR_{ref} is decreased in small steps when no error occurs, and increased by a larger step when an error occurs.


SIR_{ref}


Typical variation of SIR_{ref} with time.

Link Layer

The underlying Markov chain determines the block errors. Damaged blocks are scheduled for retransmission.

TCP properties

Left: Stationary distribution of the power control Markov chain. Right: The TCP P_{TO} probability, for three values of the SIR_{ref} step size (green is smallest, red is largest).

 $P_{\text{TO}} = P(\text{spurious timeout}) = P(X > E(X) + 4\sigma(X))$

- X uniformly distributed $\implies P_{\text{TO}} = 0$
- X Gaussian $\implies P_{\text{TO}} \approx 0.015\%$
- $\sigma(X) < \infty \implies P_{\text{TO}} < 1/16 \approx 6\%$

For our radio link, the above figures gives a P_{TO} that is of the order 1%.

Conclusions

- The control loops below the IP layer interact with TCP congestion control.
- From a model of these control loops, we can derive IP-level properties.
- In particular, we get a probability of spurious timeouts on the order of 1%, two orders of magnitude larger than for links with Gaussian delay.
- [1] A. Canton and T. Chahed, "End-to-end reliability in umts: Tcp over arq," in *Globecom 2001*, 2001.
- [2] P. M. Garrosa, "Interactions between tcp and channel type switching in wcdma," M.S. thesis, Chalmers University of Technology, 2002.
- [3] Fredrik Gunnarsson and Fredrik Gustafsson, "Power control in wireless communications networks — from a control theory perspective," survey paper in IFAC World Congress, Barcelona, 2002.
- [4] Ashwin Sampath, P. Sarath Kumar, and Jack M.Holtzman, "On setting reverse link target sir in a cdma system," in *Proc. IEEE Vehicular technology conference*, May 1997.
- [5] F. Khan, S. Kumar, K. Medepalli, and S. Nanda, "Tcp performance over cdma2000 rlp," in *Proc. IEEE 51st VTC*'2000-*Spring*, 2000, pp. 41–45.