
A 16-bit instruction set

Niels Möller

1 Introduction

This file documents an attempt to define an instruction set with 16-bit op-codes
and 16 general purpose registers. Current status: Most instructions are there,
and they do fit in 16 bits. Some important features not yet specified. I also have
a simulator and a primitive assembler.

Word size is ` = 64 bits (variants with smaller native word size are possible).

1.1 Registers

There are 16 registers, R0 to R15. R15 is the program counter, and R14 is the
link register for calls. R13 can be used as a stackpointer, but that’s an ABI issue;
the ISA and processor doesn’t require any use of a stack. R8 is the loop counter
for the special branch-if-non-zero instruction.

1.2 About load and store

Loads and stores are big-endian. We always load and store full words. To make
it easier to work with smaller quantities, unaligned effective addresses are al-
lowed, with the following trick. A load with effective address p loads the word
at p and¬7 (i.e., the low address bits are ignored for the actual memory access).
But then the result is rotated depending on the low address bits: The word read
is rotated left by 8 (p and 7) bits. So the highest byte of the result is always the
byte read from the given, possibly unaligned, address.

Stores do the inverse processing, the value to store is rotated right by
8 (p and 7) bits and stored at p and¬7.

The most performance-critical loops are expected to always load and store
full words anyway. Making access to partial words reasonably easy is intended
to help for a common case outside of the most critical loops.

For load and store with index register, we use a trick suggested by Marcus
Comstedt to encode an extra bit in the register ordering.

1.3 Constants

For most immediate values and offsets, we use 4 bits with the encoding in
Table 1, and an explicit sign bit. The meaning of the sign bit depends a bit
on the instruction, but in most cases it implies one’s complement. Note that
zero is not included. For operations where zero is a useful argument, special
instructions are needed.

1

Code Value bits
0000 32 100000
0001 1 000001
0010 2 000010
0011 3 000011
0100 4 000100
0101 5 000101
0110 6 000110
0111 7 000111
1000 8 001000
1001 10 001010
1010 12 001100
1011 14 001110
1100 16 010000
1101 20 010100
1110 24 011000
1111 28 011100

Table 1: 4-bit encoding of immediate values.

This encoding is chosen to make for fairly simple hardware mapping from
codes to values. To provide larger immediate values and offsets, adopt a sugges-
tion by Leif Stensson. Use a prefix flag and a 60-bit prefix register, and new imm
instruction including a constant, say 12 bits (could go down to 10 if needed).
When this instruction is executed, the contents of the prefix register is shifted
12 bits left, and the 12 new bits are shifted in at the low end, and the prefix
flag is set. The prefix register should be considered unsigned; sign bit is applied
in the same way both with and without an active prefix register.

Instructions accepting an immediate value or offset check the prefix flag. If
it is clear, the constant field is interpreted according to the above table. But if
the prefix flag is set, the constant field (4 or 9 bits depending on instruction)
is appended to the contents of the prefix register, and the low 64 bits are used
as the immediate value or offset. The sign bit, if applicable, is applied to the
resulting 64-bit value.

For arithmetic instructions and comparisons, the sign bit implies two’s com-
plement; to implement this, the addition unit(s) should have a carry input and
a complement input, which the sign bit can be connected to. This seems to not
work well for negative immediates to rsb (reverse subtract); for now, rsb is not
supported. For logic operations, the sign bit implies one’s complement.

The prefix flag is cleared when used, and it ought to be cleared after all
branches (including using mov with the pc as destination). Maybe it’s simplest
to have it cleared by all instructions except imm.

Branches don’t use this special coding. The instruction includes a 9 immedi-
ate bits and a sign bit. If the prefix flag is set, the 9 immediate bits are appended
to the value in the prefix register. The offset is constructed by incrementing the
immediate value, and then shifting it left one bit. Finally, this value is added or
subtracted from the address of the next instruction, depending on the sign bit.
If i denotes the unsigned immediate value (including prefix register if active),
and o is the offset to add to the program counter, then we have o = 2(i + 1) if

2

Code Meaning
00 Not modified
01 Carry out
10 Signed not borrow
11 Signed overflow (FIXME: Is this really needed?)

Table 2: Options for setting the condition flag from an addition or subtraction.

Code Mnemonic Meaning
00 xshift Shift in flag, flag unmodified.
01 xshiftc Shift in flag, set flag from bit shifted out.
10 rshiftc Shift in zero, set flag from bit shifted out.
11 ashiftc Shift in sign bit, set flag from bit shifted out.

Table 3: Right shift with carry

sign bit is clear, and o = 2¬i if the sign bit is set, so we need to wire the sign
to the complement input, and not sign to the carry input.

2 Conditional flag

There’s only a single conditional flag, used for conditional jumps, conditional
moves, and carry input to certain instructions. The flag can be set by add, sub,
cmp, tst and xshift.

For addition and subtraction, using the flag as an input carry is optional.
Subtraction is done as a + ¬b + c, so c = 1 means no borrow. When the flag is
not used for carry input, carry in is zero for add and one for sub.

For flag output there are four possibilities, see Table 2. The overflow flag
follows the ARM convention, including with carry input. The signed not borrow
condition means that the the true sign of the signed result is non-negative. This
makes the flag work as a signed greater-or-equal flag, and in addition, the result
can be sign extended to register r using sub r, cc, r.

For shift right with carry (xshift), there are four variants, see Table 3. To do
a signed (a+b)/2 as adds + xshift, we’d need to be able to shift in not carry.
We introduce a not cc intruction for this and similar purposes.

There are some important loops where each iteration uses the value of the
conditional flag produced by the previous iteration, e.g., a bignum add. To do
that we need some branch instruction where the condition is based on the value
of an ordinary register rather than the conditional flag. For this special case, we
introduce a branch-if-non-zero instruction, hardwiring R8 as the loop counter (a
register number in the instruction reduces the number of bits available for the
branch offset, and R8 was chosen to not collide with floating point registers).
There are some possible variants, like branch if non-negative, or decrement-
and-branch-if-non-zero, but branch-if-non-zero seems to be the most generally
useful. When using register R8 as both loop counter and index register, one
would often need to update it with some other constant than −1.

3

3 Shift instructions with shift count in a register

We only have one instruction for non-constant shifts, which can do all of left
shift, right arithmetic shift, and right logical shift, depending on the shift count
argument c.

If the sign bit is set, c ≥ 2`−1, we get an arithmetic right shift by s = 2` − c
bits. If s ≥ 63, the sign bit if rd is copied to all bits of the destination register.

Otherwise, c is interpreted as an ` − 1 bit two’s complement number. If it
is positive, i.e., bit ` − 2 is zero, c < 2`−2, we get a left shift by c bits, and if
c ≥ 64, the result is always zero. And if bit `−2 is set, c ≥ 2`−2, we get a logical
right shift by s = 2`−1 − c bits, and if s ≥ 64, we also get an always zero result.

I think it sounds more complicated than it is. To use this instruction, first
compute c as a signed shift count, with positive meaning left shift. If any right
shifting is intended to be arithmetic, we are done. Otherwise, clear the sign bit,
which can be done with the fabs instruction.

We also have a two operand xshift, interpreting the shift count as above, but
using the value of the condition flag for the first bit shifted in (if any; if the shift
count is zero, the condition flag is unused). The encoding is stolen from shiftl
with pc as one of the registers.

4 Multiplication

There are two multiplication instructions, mullo, returning the product mod 2`,
and umulhi, returning the high half of an unsigned product. There are currently
no immediate versions of these instructions. Several variants are missing: We
have no signed variants of mulhi, and it’s unclear if there are any usecases.

An earlier version of this document included an umull instruction, producing
a fill 2` bit product in two registers. This instructions was dropped after a
discussion with Wesley W. Terpstra. The extra output port adds significant
cost to the bypass-network in a super-scalar cpu. If we want another output
port, to be able to get low and high half in the same cycle, it’s better to add
another, independent, multiplier unit; then one gets the flexibility of doing mulhi
and mullo in parallel, or two mullo or two mulhi.

Additional input ports are not problematic in the same way. One possibly
useful three-register instruction would be an “multiply and accumulate high”,
computing b(a ∗ b + c)/2`c.

5 Comparisons

Comparisons for equality is done using the cmpeq instruction. For inequality
tests, there are more design options. Since the carry output from unsigned sub-
traction corresponds to not borrow, subc a, b sets the cc flag iff a ≥ b. Therefore,
the main unsigned compare instruction should be cmpugeq, setting the flag ex-
actly like subc, but not storing the result of the subtraction. For consistency,
the main signed comparison instruction is cmpsgeq. With signed not borrow
defined as above, cmpsgeq sets the cc flag in the same way as subs.

We also define a tst a, b instruction, setting the cc flag if a and b 6= 0. This
convention means that tst a, −2k is equivalent to cmpugeq a, 2k.

4

Redundant cmpugeq Equivalent to Encoding reused for
cmpugeq r, #-1 cmpeq r, #-1 cmpsgeq r, #0
cmpugeq r, #2 tst r, #¬1 cmpeq r, #0
cmpugeq r, #4 tst r, #¬3 cmpsgt r, # 8
cmpugeq r, #8 tst r, #¬7 cmpugt r, # 8

Table 4: Stolen immediate encodings for cmpugeq. These values are special only
when no prefix is active.

Code Meaning bits
000 32 100000
001 10 001010
010 12 001100
011 14 001110
100 16 010000
101 20 010100
110 24 011000
111 28 011100

Table 5: 3-bit encoding of immediate values for cmpugt and cmpsgt.

Immediate comparisons need some special handling. We want to do imme-
diate comparisons for equality, greater-or-equal and greater-than, with all 16
constants in Table 1, their negations, and zero. For signed and unsigned values.
But, e.g., x > 3 is the same as x ≥ 4, so we don’t need all variants. And some
comparisons can be done with the tst instruction, e.g., unsigned x ≥ 4 is equiv-
alent to x and¬3 6= 0. We use three regular instructions, cmpeq, cmpugeq and
cmpsgeq, using a sign bit, a 4-bit constant and any active prefix. With only a
small tweak: When no prefix is active, some encodings for cmpugeq are stolen
for other immediate comparisons. See Table 4.

The greater-than comparisons with small values, which aren’t equivalent to
some cmpgeq instruction, are then encoded as a special instruction using Table 5
to encode the desired operation.

6 Division

For integer division, we need a reciprocal instruction computing b(2128−1)/xc−
264 for a normalized x, i.e., 263 ≤ x < 264. Then with some extra book-keeping,
we can get single-word unsigned division using umulhi, add, xshift, rshift. Un-
clear what the reciprocal instruction should do with unnormalized inputs, maybe
we can have a two-operand instruction doing normalization and reciprocal at the
same time, storing an appropriate shiftcount in a second destination operand?

7 Floating point

The first eight registers can be used for floating point operations. We also need
some additional status register, not yet specified.

5

8 Exceptions and interrupts

We need a couple of different processor modes, identified by two bits in a system
status register.

User mode: For normal execution of user programs.

Supervisor mode: Privileged mode, primarily entered by exceptions from user
mode.

Supervisor exception mode: Entered by exception caused by supervisor mode.
Often errors.

Interrupt mode: Entered as a result of an external interrupt signal.

Each mode gets its own copy of the system status register, the condition
flag and prefix register (and any other status bits) and also its own copies of
registers 12–15 (including the pc, the link register, which can also be used as
scratch register, one register which can be used as a stack pointer, and one
additional register). The last three modes are all privileged. They differ by
having these separate registers, and in that exceptions can not be handled in
supervisor exception mode or interrupt mode, and that interrupts cannot be
handled in interrupt mode. If they occur nonetheless, they generate a reset
exception.

For all exceptions, the link register (in the mode being switched to) gets some
information about the source of the exception, with the low bits carrying the
exception type. Since, at least for the interrupt mode, there are several possible
previous modes, we need an additional two bits in the status register to identify
which mode an rte instruction should return to. For each of the three types of
exceptions, we have a separate exception vector register which is copied into the
pc when the exception or interrupt occurs.

The following exceptions are needed.

Reset: Reset trap. Enters supervisor mode, with interrupts and mmu forced to
disabled, and uses a fixed address rather than the exception vector register.
On power on reset, all of the link register is zero; otherwise higher bits
can indicate the reason for the reset.

System call trap: Invoked from user mode, target supervisor mode (maybe
possible also from supervisor mode to supervisor exception mode). Argu-
ments are passed in the regular registers, starting from register 0.

Unimplemented instruction: Caused by executing an unimplemented in-
struction.

Privileged instruction: Attempt at executing an privileged instruction in
user mode.

TLB miss instruction: Generated when accessing a virtual address not present
in the TLB cache. The virtual address (always 8-byte aligned) fits in the
link register, provided that we need no more than 8 exception types.

TLB privileged access: Generated when attempting to access a virtual ad-
dress which is present in the TLB, but fails the permission checks.

6

Code Page size
aaa0 4 KB
a001 16 KB
0011 64 KB
0111 1 MB
1011 16 MB
1111 256 MB

Table 6: Page size coding

Interrupt: Hardware interrupt. Doesn’t really need an exception type, since
interrupts have their own exception vector. The link register can be set
by the interrupt controller.

The system status register should also include a bit to disable interrupts, a
bit to enable te MMU (or maybe it’s easier to have it always enabled?) and an
address-space id used by the Translation Lookaside Buffers (TLBs).

Access to system registers needs only two, privileged, instructions, rsys, and
wsys. They use register r1 to name the system register. rsys copies the value
into r0, while wsys copies the value from r0.

(FIXME: What’s needed for basic debugging? An explicit bkpt
can use the same trap as system calls. For hardware watch points, we
would either need a new exception and put it somewhere in the TLB
lookup hardware. In principle maybe it could be done in software,
by deleting the page from the TLB, and emulate memory accesses by
code in supervisor mode. We could have a debug bit in the TLB which
generates an exception on read or write accesses. May also need some
trace bits for single instruction tracing.)

9 Memory management

Memory management is done mostly in software, with hardware only for the
TLB (Translation Lookaside Buffer). This is a fully associative cache, which
translates virtual addresses to physical addresses. Possible page sizes are 4 KB,
16 KB, 64 KB, 1MB, 16 MB, 256MB. Each entry in the TLB consists of two
parts, the tag part containing the info needed to see if an access matches the
entry, and the value part giving the physical address and other properties of the
mapping.

For the tag, bits 11–14 encodes the page size, with a variable length code of
at most 4 bits. Bits above the code are the start address of the page. See Table 6.
(FIXME: Review how the L4 microkernel represents mappings.)

The low 11 bits includes a validity bit, maybe a shared bit, and an address
space id of at least 8 bits. Some different ways of using the address space id are
possible, but the simplest is that only TLB entries with address space which is
either zero, or equal to the corresponding id in the system status register.

11 10 8 0

address/size valid ? asi

The value part encodes all information about the area being mapped. This
includes the physical start address of the page, access permission bits, caching

7

info (no cache, write-through cache, write-back cache), and io/strict order. Pos-
sibly also ARM-style sharing properties. There are plenty of bits; 1 petabyte of
physical memory is 238 pages of 4 KB, leaving 26 bits for other uses.

63 61 56 12 11 6 3 0

cconfig address lock u. access p. access

In this layout, the empty fields are reserved. The cconfig field controls caching:
00 means no caching, 10 means cache with write-through, and 11 means cache
with write-back. The special value 01 means no caching, and strict ordering of
accesses (i.e., no reorder, no prefetch), suitable for memory mapped i/o registers.

The lock bit tells the least-recently-used hardware that this entry should
never be a candidate for replacement. There are separate access bits for user
mode and privileged mode, with three bits, rwx, for each.

The size of the address field implies that physical memory space is restricted
to 256 bytes, which ought to be sufficient. . . .

9.1 Bypassing the MMU

We can also let virtual addresses with the high bit set imply a one-to-one map-
ping to physical addresses, independent of the MMU. Using such addresses is
allowed in privileged mode only. The low 56 bits give the physical address. Bits
61-62 are interpreted as cache control bits, reusing the layout of the TLB value
word. With this feature, it is unclear if we need any status bit to disable the
MMU; if we disable the MMU we need to either disable caching, or introduce
some other mechanism to decide which areas can be cached, which seems messy.

8

10 Op-code allocation

code instruction
Load and store. Offsets are coded as c according to Table 1. Total of 0x5000 op
codes (with some small holes). The instructions using an offset apply the prefix
register, if active.
000s n c d ld rd, [rn, #(−1)sx] Load with offset (Table 1)
001s n c d st rd, [rn, #(−1)sx] Store with offset
0100 i n d ld rd, [rn, ri] Indexed load, n < i
0100 i n d st rd, [rn, ri] Indexed store, n > i

Besides load and store with indexed addressing, there’s one additional instruc-
tions taking three registers, shiftl.
0101 b c d shiftl rd, rb, rc
Shift rd rc bits, shifting in bits from rb.
0101 1111 c d xshift rd, rc
For long shift, rd is unchanged if rc = 0, and set to zero if |rc| ≥ 64. Otherwise,
if rc > 0, rd is shifted left, shifting in bits from the high end of rb, and if rc < 0,
rd is shifted right, shifting in bits from the low end of rb. Note that b = c gives
a rotate. For b = 15, cc is shifted in, not the pc.

Shift instructions, with 6-bit count (c = 0 is special).
0110 00cc cccc d lshift rd, #c Left shift
0110 0000 0000 d clz rd Count leading zeros
0110 01cc cccc d rshift rd, #c Logical right shift
0110 0100 0000 d ctz rd Count trailing zeros
0110 10cc cccc d ashift rd, #c Arithmetic right shift
0110 1000 0000 d cls rd Count sign bits
0110 11cc cccc d rot rd, #c Rotate left
0110 1100 0000 d popc rd Population count

0111 iiii iiii iiii imm #i Prefix for constant/offset

Instructions with a (relatively) large offset to the pc. Offset is scaled by 2. All
the instructions apply the prefix register, if active.
1000 00so oooo oooo jmp pc + (−1)so Unconditional jump
1000 01so oooo oooo jsr pc + (−1)so Subroutine call
1000 10so oooo oooo bt pc + (−1)so Branch if true
1000 11so oooo oooo bf pc + (−1)so Branch if false
1001 00so oooo oooo bnz pc + (−1)so Branch if r8 6= 0
1001 01xx xxxx xxxx Unassigned

Floating point operations.
1001 100a aabb bddd fmac rd, ra, rb “Fused” d← d + ab
1001 1010 0sss sddd fldexp rd, rs Adds integer rs to exponent.
1001 1010 10ss sddd fadd rd, rs
1001 1010 11ss sddd fsub rd, rs
1001 1011 00ss sddd fmul rd, rs
1001 1011 01ss sddd fdiv rd, rs
1001 1011 10ss sddd fcmpeq rd, rs Sets flag
1001 1011 11ss sddd fcmpgeq rd, rs Sets flag

9

1001 1100 00ss sddd fcmpgt rd, rs Sets flag
Single register floating point operations.
1001 1101 0000 0ddd fs2d rd Convert single to double.
1001 1101 0001 1ddd fd2s rd Convert double to single.
1001 1101 0010 0ddd fui2d rd Convert unsigned to double.
1001 1101 0010 1ddd fd2ui rd Convert double to unsigned.
1001 1101 0011 0ddd fsi2d rd Convert signed to double.
1001 1101 0011 1ddd fsi2d rd Convert double to signed.
1001 1101 0100 0ddd fui2s rd Convert unsigned to single.
1001 1101 0100 1ddd fsi2s rd Convert signed to single.
(Converting single precision to integer can go via double).
1001 1101 0101 0ddd feqz rd Set flag on rd = 0.0
1001 1101 0101 1ddd fgeqz rd Set flag on rd ≥ 0.0
1001 1101 0110 0ddd fgtz rd Set flag on rd > 0.0
1001 1101 0110 1ddd fleqz rd Set flag on rd ≤ 0.0
1001 1101 0111 0ddd fltz rd Set flag on rd < 0.0

Instructions with 4-bit constant argument (see Table 1). Uses prefix register if
active. oo field specifies carry output.
1010 0oos cccc d add rd, #(−1)sx rd ← rd + (−1)sx
1010 1oos cccc d add rd, cc, #(x xor−s) rd ← rd + (x xor−s) + c
1011 000s cccc d mov rd, #(−1)sx rd ← (−1)sx
1011 001s cccc d and rd, #(x xor−s) rd ← rd and(x xor−s)
1011 010s cccc d or rd, #(x xor−s) rd ← rd or(x xor−s)
1011 011s cccc d xor rd, #(x xor−s) rd ← rd xorx xor−s
1011 100s cccc d tst rd, #(x xor−s) Set flag on rd and(x xor−s) 6= 0

1011 101s cccc d cmpeq rd, #(−1)sx Set flag on rd = (−1)sx
1011 110s cccc d cmpugeq rd, #(−1)sx Set flag on rd ≥ (−1)sx (unsigned)
except stolen cmpugeq encodings, see Table 4.
1011 111s cccc d cmpsgeq rd, #(−1)sx Set flag on rd ≥ (−1)sx (signed)
Immediate compares using the special encoding in Table 5. Doesn’t accept any
prefix.
1100 0000 sccc d cmpugt rd, #(−1)sx Set flag on rd > (−1)sx (unsigned)
1100 0001 sccc d cmpsgt rd, #(−1)sx Set flag on rd > (−1)sx (signed)
1100 001x xxxx xxxx Unassigned (mullo?)
1100 01xx xxxx xxxx Unassigned (mullo?)
1100 1xxx xxxx xxxx Unassigned

Two-operand instructions
1101 0ioo s d add rd, rs Add, carry in if i = 1, for oo, see Table 2
1101 1ioo s d sub rd, rs Subtract, carry handling as above
1110 0000 s d mov rd, rs
1110 0001 s d movt rd, rs Move if flag set
1110 0010 s d movf rd, rs Move if flag clear
1110 0011 s d and rd, rs
1110 0100 s d or rd, rs
1110 0101 s d xor rd, rs
1110 0110 s d mullo rd, rs rd ← rdrs mod 2`

1110 0111 s d umulhi rd, rs rd ← brdrs2−`c

10

1110 1000 s d shift rd, rs See Sec 3 for meaning of rs
(For rotate, use the shiftl instruction)
1110 1001 s d injt8 rd, rs Copy low rs byte to high rd byte
1110 1010 s d injt16 rd, rs
1110 1011 s d injt32 rd, rs
1110 1100 s d tst rd, rs Set flag on rd and rs 6= 0
1110 1101 s d cmpeq rd, rs Set flag on rd = rs
1110 1110 s d cmpugeq rd, rs Set flag on rd ≥ rs (unsigned)
1110 1111 s d cmpsgeq rd, rs Set flag on rd ≥ rs (signed)
1111 0000 s d ld rd, [rs] Plain load
1111 0001 s d st rd, [rs] Plain store
1111 001x xxxx xxxx
1111 01xx xxxx xxxx Unassigned 0x300

One-operand instructions.
1111 1000 00oo d add rd, cc, #0 rd ← rd + c
(FIXME: Used to be special sub cc, #8.)
1111 1000 01oo d sub rd, cc, #0 rd ← rd − 1 + c
1111 1000 10mm d xshift rd Single-bit right shift (Table 3).
1111 1001 0000 d neg rd
1111 1001 0001 d not rd d 6= 15
1111 1001 0001 1111 not cc
1111 1001 0010 d bswap rd Swap bytes
1111 1001 0011 d recpr rd Reciprocal
1111 1001 0100 d jsr rd Indirect subroutine call.
1111 1001 0101 d fneg rd Toggle sign bit
1111 1001 0110 d fabs rd Clear sign bit
1111 1001 0111 xxxx
1111 1001 1xxx xxxx
1111 101x xxxx xxxx Unassigned

1111 1100 xxxx xxxx System instructions
1111 1111 1111 1110 bkpt Breakpoint
1111 1111 1111 1111 halt Halt simulator

11 Remaining work

With the above op-code allocation, it looks liek we have plenty of opcode space
left , can that really be correct? We have 3 blocks of 0x600 or more free opcodes.
We could move instructions around a bit, putting the floating point ops earlier,
and try to get space for some more imm ops as well as regular two-operand ops.
Maybe we could even leave space for another branch instruction.

• System features: System call, interrupts, save and restore status flags and
prefix register, load locked, store conditional, memory barrier, pre-fetch,
MMU and TLB handling,. . . . Speaking of pre-fetch, there should be a
way to clear a cache line so we can write to a memory block without first
fetching the old contents.

11

• Missing immediate forms for multiplication instructions. Is this needed?
And do we need signed mulhi?

• Hooks for SIMD unit or general co-processor.

Some nice-to-have features that have been left out:

• It would be nice with extract instructions (i.e., right shift by 56, 48 or 32
bits) with separate destination register.

• Similarly, it would be nice with clz and ctz with a separate destination
register.

• A three-operand add is often useful to reduce the number of mov instruc-
tions. There’s no space, but one might consider replacing the indexed load
and store instructions. Or we could sacrifice a bit to get “alternate desti-
nation” for some instructions, storing the result into some fixed register,
possibly r0.

• The immediate prefix instruction could be reduced from 12 to 10 bits, if
we need additional instructions.

12

