Robust HGCD with No Backup Steps

Niels Möller

Lysator academic computer society and KTH, Sweden
International Congress on Mathematical Software 2006

Comparison of gcd algorithms

Algorithm	Time (ms)	\# lines	
mpn_gcd	1440	304	GMP-4.1.4 (Weber)
mpn_rgcd	87	1967	"Classical" Schönhage gcd
mpn_bgcd	93	1348	Rec. bin. (Stehlé/Zimmermann)
mpn_sgcd	100	760	1987 alg. (Schönhage/Weilert)
mpn_ngcd	85	733	New algorithm for GMP-5

Questions

Q Where does the complexity come from?
A Accurate computation of the quotient sequence.

Q How to avoid that?
A Stop bothering about quotients.

Outline

Background
Algorithm comparison
The half-gcd (HGCD) operation
Subquadratic HGCD

Quotient based HGCD
Jebelean's criterion

A robustness condition

Simple subquadratic HGCD

Conclusions

What is HGCD?

Definition (Reduction)

$$
\binom{a}{b}=M\binom{\alpha}{\beta}
$$

- Positive integers a, b, α, and β
- Matrix M, non-negative integer elements
- $\operatorname{det} M=1$

What is HGCD?

Definition (Reduction)

$$
\binom{a}{b}=M\binom{\alpha}{\beta}
$$

- Positive integers a, b, α, and β
- Matrix M, non-negative integer elements
- $\operatorname{det} M=1$

Definition (HGCD, "half gcd")

Input: a, b, of size n
Output: M, size of α, β and M elements $\approx n / 2$

What is HGCD?

Definition (Reduction)

$$
\binom{a}{b}=M\binom{\alpha}{\beta}
$$

- Positive integers a, b, α, and β
- Matrix M, non-negative integer elements
- $\operatorname{det} M=1$

Definition (HGCD, "half gcd")

Input: a, b, of size n
Output: M, size of α, β and M elements $\approx n / 2$

Fact

For any reduction, $\operatorname{gcd}(a, b)=\operatorname{gcd}(\alpha, \beta)$

Main idea of subquadratic HGCD

$M \leftarrow M_{1} \cdot M_{2}$

HGCD algorithm

$\operatorname{HGCD}(A, B)$
$1 \quad n \leftarrow \#(A, B)$
2 Select $p_{1} \approx n / 2$
$3 \quad M_{1} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{1}} A\right\rfloor,\left\lfloor 2^{-p_{1}} B\right\rfloor\right)$
$4 \quad(A ; B) \leftarrow M_{1}^{-1}(A ; B)$
5 Perform a small number of divisions or backup steps.
$\triangleright A, B$ are now of size $\approx 3 n / 4$
6 Select $p_{2} \approx n / 4$
$7 \quad M_{2} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{2}} A\right\rfloor,\left\lfloor 2^{-p_{2}} B\right\rfloor\right)$
$8 \quad(A ; B) \leftarrow M_{2}^{-1}(A ; B)$
9 Perform a small number of divisions or backup steps.
$\triangleright A, B$ are now of size $\approx n / 2$
$10 \quad M \leftarrow M_{1} \cdot M_{2}$
11 Return M

HGCD algorithm

```
\(\operatorname{HgCD}(A, B)\)
    \(1 \quad n \leftarrow \#(A, B)\)
    2 Select \(p_{1} \approx n / 2\)
    \(3 \quad M_{1} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{1}} A\right\rfloor,\left\lfloor 2^{-p_{1}} B\right\rfloor\right)\)
    \(4 \quad(A ; B) \leftarrow M_{1}^{-1}(A ; B)\)
    5 Perform a small number of divisions or backup steps.
            \(\triangleright A, B\) are now of size \(\approx 3 n / 4\)
    6 Select \(p_{2} \approx n / 4\)
    \(7 \quad M_{2} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{2}} A\right\rfloor,\left\lfloor 2^{-p_{2}} B\right\rfloor\right)\)
    \(8 \quad(A ; B) \leftarrow M_{2}^{-1}(A ; B)\)
    9 Perform a small number of divisions or backup steps.
        \(\triangleright A, B\) are now of size \(\approx n / 2\)
\(10 \quad M \leftarrow M_{1} \cdot M_{2}\)
11 Return \(M\)
    1. Simplify Steps 5 and 9.
    2. Eliminate multiplication in Step 8.
```


Definition (Quotient sequence)

For any positive integers a, b, quotient sequence q_{j} and remainder sequence r_{j} are defined by

$$
\begin{aligned}
r_{0} & =a & r_{1} & =b \\
q_{j} & =\left\lfloor r_{j-1} / r_{j}\right\rfloor & r_{j+1} & =r_{j-1}-q_{j} r_{j}
\end{aligned}
$$

Fact

$$
\binom{a}{b}=M\binom{r_{j}}{r_{j+1}}
$$

with

$$
M=\left(\begin{array}{cc}
q_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
q_{2} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
q_{j} & 1 \\
1 & 0
\end{array}\right)
$$

Theorem (Jebelean's criterion)

Let $a>b>0$, with remainders r_{j} and r_{j+1},

$$
\binom{a}{b}=\underbrace{\left(\begin{array}{ll}
u & u^{\prime} \\
v & v^{\prime}
\end{array}\right)}_{=M}\binom{r_{j}}{r_{j+1}}
$$

Let $p>0$ be arbitrary, $0 \leq A^{\prime}, B^{\prime}<2^{p}$, and define

$$
\begin{aligned}
\binom{A}{B} & =2^{p}\binom{a}{b}+\binom{A^{\prime}}{B^{\prime}} \\
\binom{R_{j}}{R_{j+1}} & =M^{-1}\binom{A}{B}=2^{p}\binom{r_{j}}{r_{j+1}}+M^{-1}\binom{A^{\prime}}{B^{\prime}}
\end{aligned}
$$

For even j, the following two statements are equivalent:
(i) $r_{j+1} \geq v$ and $r_{j}-r_{j+1} \geq u+u^{\prime}$
(ii) For any p and any A^{\prime}, B^{\prime}, the j th remainders of A and B are R_{j} and R_{j+1}.

Quotient based HGCD

A generalization of Lehmer's algorithm

Define $\operatorname{HGCD}(a, b)$ to return an M satisfying Jebelean's criterion.

Example (Recursive computation)

$$
\begin{aligned}
(a ; b) & =(858824 ; 528747) \\
M_{1} & =(13,8 ; 8,5) \quad \text { No difficulties } \\
(c ; d) & =M_{1}^{-1}(a ; b)=16(4009 ; 194)+(0 ; 15) \\
M_{2} & =\operatorname{HGCD}(4009,194)=(21,20 ; 1,1) \\
M_{2}^{-1}(4009 ; 194) & =(129 ; 65) \quad \text { Satisfies Jebelean } \\
M & =M_{1} \cdot M_{2}=(281,268 ; 173,165) \\
M^{-1}(a ; b) & =(1764 ; 1355) \quad \text { Violates Jebelean }
\end{aligned}
$$

Backup step

Example (Fixing M)

$$
\begin{aligned}
(a ; b) & =(858824 ; 528747) \\
M & =M_{1} \cdot M_{2}=(281,268 ; 173,165) \\
M^{-1}(a ; b) & =(1764 ; 1355) \quad \text { Violates Jebelean }
\end{aligned}
$$

M corresponds to quotients $1,1,1,1,1,1,1,20,1$.
E.g., $(A ; B)=8(a ; b)+(1 ; 7)$ has quotient sequence starting with
$1,1,1,1,1,1,1,20,2$.

Backup step

Example (Fixing M)

$$
\begin{aligned}
(a ; b) & =(858824 ; 528747) \\
M & =M_{1} \cdot M_{2}=(281,268 ; 173,165) \\
M^{-1}(a ; b) & =(1764 ; 1355) \quad \text { Violates Jebelean }
\end{aligned}
$$

M corresponds to quotients $1,1,1,1,1,1,1,20,1$.
E.g., $(A ; B)=8(a ; b)+(1 ; 7)$ has quotient sequence starting with $1,1,1,1,1,1,1,20,2$.

Conclusion

- The quotients are correct for $(a ; b)$, but not robust enough.
- Must drop final quotient before returning $\operatorname{HGCD}(A, B)$.

A robustness condition

Definition (Robust reduction)

A reduction M of $(a ; b)$ is robust iff

$$
M^{-1}\left\{\binom{a}{b}+\binom{x}{y}\right\}>0
$$

for all "small" $(x ; y)$. More precisely, for all $(x ; y) \in S$, where

$$
\begin{equation*}
S=\left\{(x ; y) \in \mathbb{R}^{2},|x|<2,|y|<2,|x-y|<2\right\} \tag{1}
\end{equation*}
$$

A robustness condition

Definition (Robust reduction)

A reduction M of $(a ; b)$ is robust iff

$$
M^{-1}\left\{\binom{a}{b}+\binom{x}{y}\right\}>0
$$

for all "small" $(x ; y)$. More precisely, for all $(x ; y) \in S$, where

$$
\begin{equation*}
S=\left\{(x ; y) \in \mathbb{R}^{2},|x|<2,|y|<2,|x-y|<2\right\} \tag{1}
\end{equation*}
$$

Theorem

The reduction

$$
\binom{a}{b}=\underbrace{\left(\begin{array}{ll}
u & u^{\prime} \\
v & v^{\prime}
\end{array}\right)}_{=M}\binom{\alpha}{\beta}
$$

is robust iff $\alpha \geq 2 \max \left(u^{\prime}, v^{\prime}\right)$ and $\beta \geq 2 \max (u, v)$

Sufficient conditions

Corollary

If $\min (\alpha, \beta)>2 \max M$, then M is robust.
Lemma (Strong robustess)
Let $n=\#(a, b)$ denote the bitsize of the larger of a and b. If $\# \min (\alpha, \beta)>\lfloor n / 2\rfloor+1$, then M is robust.

Theorem (Schönhage/Weilert reduction)

For arbitrary $a, b>0$, let $n=\#(a, b)$ and $s=\lfloor n / 2\rfloor+1$. There exists a unique strongly robust M such that $\# \min (\alpha, \beta)>s$ and $\#|\alpha-\beta| \leq s$.

HGCD with strong robustness

```
\(\operatorname{HgCD}(A, B)\)
\(1 \quad n \leftarrow \#(A, B)\)
\(2 \quad s \leftarrow\lfloor n / 2\rfloor+1\)
\(3 \quad p_{1} \leftarrow\lfloor n / 2\rfloor\)
\(4 \quad M_{1} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{1}} A\right\rfloor,\left\lfloor 2^{-p_{1}} B\right\rfloor\right)\)
\(5 \quad(C ; D) \leftarrow M_{1}^{-1}(A ; B) \triangleright \#|C-D| \approx 3 n / 4\)
6 One subtraction and one division step on ( \(C ; D\) ). Update \(M_{1}\).
\(7 \quad p_{2} \leftarrow 2 s-\#(C, D)+1\)
\(8 \quad M_{2} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{2}} C\right\rfloor,\left\lfloor 2^{-p_{2}} D\right\rfloor\right)\)
9 return \(M_{1} \cdot M_{2}\)
- Uses strong robustness
- Returns with \(\#|\alpha-\beta| \leq s+2 k\), where \(k\) is the recursion depth.
- To compute Schönhage/Weilert reduction, need at most four additional division steps before returning.
```


HGCD with plain robustness

$\operatorname{HGCD}(A, B)$
$1 \quad n \leftarrow \#(A, B)$
$2 \quad s \leftarrow\lfloor n / 2\rfloor+1$
$3 \quad p_{1} \leftarrow\lfloor n / 2\rfloor$
$4 \quad M_{1} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{1}} A\right\rfloor,\left\lfloor 2^{-p_{1}} B\right\rfloor\right)$
$5 \quad(C ; D) \leftarrow M_{1}^{-1}(A ; B) \triangleright \#|C-D| \approx 3 n / 4$
6 One subtraction and one division step on ($C ; D$). Update M_{1}.
$7 \quad p_{2} \leftarrow \# M_{1}+2$
$8 \quad M_{2} \leftarrow \operatorname{HGCD}\left(\left\lfloor 2^{-p_{2}} C\right\rfloor,\left\lfloor 2^{-p_{2}} D\right\rfloor\right)$
9 return $M_{1} \cdot M_{2}$

$$
M^{-1}\left\{\binom{A}{B}+\binom{x}{y}\right\}=2^{p_{2}} M_{2}^{-1}\{\binom{c}{d}+\underbrace{\binom{\delta c}{\delta d}+2^{-p_{2}} M_{1}^{-1}\binom{x}{y}}_{\text {disturbance } \in S}\}
$$

Conclusions

Conclusions

- HGCD in terms of correct quotients \Longrightarrow complexity.
- Reduction matrices are important, quotients are not.
- "Robust reduction" is a powerful notion in analysis and algorithm design.
- Can use either the robustness condition, or Schönhage/Weilert's condition on bitsizes.

Further work

Further analysis and experiments on the HGCD algorithm using plain robustness.

