Robust HGCD with No Backup Steps

Niels Möller

Lysator academic computer society and KTH, Sweden

International Congress on Mathematical Software 2006

Comparison of gcd algorithms

Algorithm	Time (ms)	# lines	
mpn_gcd	1440	304	GMP-4.1.4 (Weber)
$\mathtt{mpn}_{\mathtt{rgcd}}$	87	1967	"Classical" Schönhage gcd
mpn_bgcd	93	1348	Rec. bin. (Stehlé/Zimmermann)
$\mathtt{mpn}_{-}\mathtt{sgcd}$	100	760	1987 alg. (Schönhage/Weilert)
mpn_ngcd	85	733	New algorithm for $GMP-5$

Questions

- Q Where does the complexity come from?
- A Accurate computation of the quotient sequence.
- Q How to avoid that?
- A Stop bothering about quotients.

Outline

Background

Algorithm comparison The half-gcd (HGCD) operation Subquadratic HGCD

Quotient based HGCD Jebelean's criterion

A robustness condition

Simple subquadratic ${\rm HGCD}$

Conclusions

What is HGCD?

Definition (Reduction)

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = M \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

- \blacktriangleright Positive integers a, b, $\alpha,$ and β
- Matrix *M*, non-negative integer elements

• det
$$M = 1$$

What is HGCD?

Definition (Reduction)

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = M \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

- Positive integers a, b, α , and β
- Matrix M, non-negative integer elements

• det M = 1

Definition (HGCD, "half gcd")

Input: *a*, *b*, of size *n* Output: *M*, size of α , β and *M* elements $\approx n/2$

What is HGCD?

Definition (Reduction)

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = M \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

- Positive integers a, b, α , and β
- Matrix M, non-negative integer elements

• det M = 1

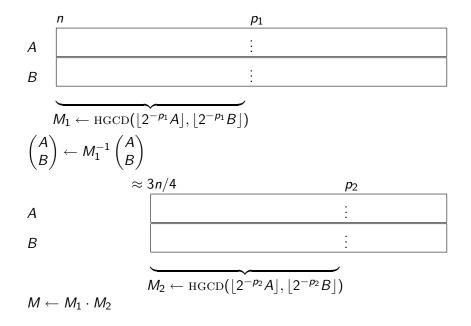
Definition (HGCD, "half gcd")

Input: *a*, *b*, of size *n* Output: *M*, size of α , β and *M* elements $\approx n/2$

Fact

For any reduction, $gcd(a, b) = gcd(\alpha, \beta)$

Main idea of subquadratic HGCD



HGCD algorithm

HGCD(A, B)1 $n \leftarrow \#(A, B)$ 2 Select $p_1 \approx n/2$ 3 $M_1 \leftarrow \text{HGCD}(|2^{-p_1}A|, |2^{-p_1}B|)$ 4 $(A; B) \leftarrow M_1^{-1}(A; B)$ 5 Perform a small number of divisions or backup steps. \triangleright A, B are now of size $\approx 3n/4$ 6 Select $p_2 \approx n/4$ 7 $M_2 \leftarrow \text{HGCD}(|2^{-p_2}A|, |2^{-p_2}B|)$ 8 $(A; B) \leftarrow M_2^{-1}(A; B)$ 9 Perform a small number of divisions or backup steps. \triangleright A, B are now of size $\approx n/2$ 10 $M \leftarrow M_1 \cdot M_2$ 11 Return M

HGCD algorithm

HGCD(A, B)1 $n \leftarrow \#(A, B)$ 2 Select $p_1 \approx n/2$ 3 $M_1 \leftarrow \text{HGCD}(|2^{-p_1}A|, |2^{-p_1}B|)$ 4 $(A; B) \leftarrow M_1^{-1}(A; B)$ 5 Perform a small number of divisions or backup steps. \triangleright A, B are now of size $\approx 3n/4$ 6 Select $p_2 \approx n/4$ 7 $M_2 \leftarrow \text{HGCD}(|2^{-p_2}A|, |2^{-p_2}B|)$ 8 $(A; B) \leftarrow M_2^{-1}(A; B)$ 9 Perform a small number of divisions or backup steps. \triangleright A, B are now of size $\approx n/2$ 10 $M \leftarrow M_1 \cdot M_2$ 11 Return M 1. Simplify Steps 5 and 9.

2. Eliminate multiplication in Step 8.

Definition (Quotient sequence)

For any positive integers a, b, quotient sequence q_j and remainder sequence r_j are defined by

$$r_0 = a \qquad r_1 = b$$

$$q_j = \lfloor r_{j-1}/r_j \rfloor \qquad r_{j+1} = r_{j-1} - q_j r_j$$

Fact

$$\begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = M \begin{pmatrix} \mathsf{r}_j \\ \mathsf{r}_{j+1} \end{pmatrix}$$

with

$$M = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_j & 1 \\ 1 & 0 \end{pmatrix}$$

Theorem (Jebelean's criterion)

Let a > b > 0, with remainders r_j and r_{j+1} ,

$$\begin{pmatrix} a \\ b \end{pmatrix} = \underbrace{\begin{pmatrix} u & u' \\ v & v' \end{pmatrix}}_{=M} \begin{pmatrix} r_j \\ r_{j+1} \end{pmatrix}$$

Let p > 0 be arbitrary, $0 \le A', B' < 2^p$, and define

$$\begin{pmatrix} A \\ B \end{pmatrix} = 2^{p} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} A' \\ B' \end{pmatrix}$$
$$\begin{pmatrix} R_{j} \\ R_{j+1} \end{pmatrix} = M^{-1} \begin{pmatrix} A \\ B \end{pmatrix} = 2^{p} \begin{pmatrix} r_{j} \\ r_{j+1} \end{pmatrix} + M^{-1} \begin{pmatrix} A' \\ B' \end{pmatrix}$$

For even j, the following two statements are equivalent:

Quotient based HGCD

A generalization of Lehmer's algorithm

Define HGCD(a, b) to return an M satisfying Jebelean's criterion.

Example (Recursive computation)

$$\begin{array}{l} (a;b) = (858\,824;528\,747) \\ M_1 = (13,8;8,5) \\ (c;d) = M_1^{-1}(a;b) = 16\,(4009;194) + (0;15) \\ M_2 = \mathrm{HGCD}(4009,194) = (21,20;1,1) \\ M_2^{-1}(4009;194) = (129;65) \\ M = M_1 \cdot M_2 = (281,268;173,165) \\ M^{-1}(a;b) = (1764;1355) \\ \end{array}$$

Backup step

Example (Fixing M)

$$(a; b) = (858\,824; 528\,747)$$

 $M = M_1 \cdot M_2 = (281, 268; 173, 165)$
 $M^{-1}(a; b) = (1764; 1355)$ Violates Jebelean

M corresponds to quotients 1, 1, 1, 1, 1, 1, 1, 20, 1. E.g., (A; B) = 8 (a; b) + (1; 7) has quotient sequence starting with 1, 1, 1, 1, 1, 1, 1, 20, 2.

Backup step

Example (Fixing M)

$$(a; b) = (858\,824; 528\,747)$$

 $M = M_1 \cdot M_2 = (281, 268; 173, 165)$
 $M^{-1}(a; b) = (1764; 1355)$ Violates Jebelean

M corresponds to quotients 1, 1, 1, 1, 1, 1, 1, 20, 1. E.g., (A; B) = 8(a; b) + (1; 7) has quotient sequence starting with 1, 1, 1, 1, 1, 1, 1, 20, 2.

Conclusion

- ► The quotients are correct for (*a*; *b*), but not robust enough.
- ▶ Must drop final quotient before returning HGCD(A, B).

A robustness condition

Definition (Robust reduction)

A reduction M of (a; b) is robust iff

$$M^{-1}\left\{ \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \right\} > 0$$

for all "small" (x; y). More precisely, for all $(x; y) \in S$, where

$$S = \{(x; y) \in \mathbb{R}^2, |x| < 2, |y| < 2, |x - y| < 2\}$$
 (1)

A robustness condition

Definition (Robust reduction)

A reduction M of (a; b) is robust iff

$$M^{-1}\left\{ \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \right\} > 0$$

for all "small" (x; y). More precisely, for all $(x; y) \in S$, where

$$S = \{(x; y) \in \mathbb{R}^2, |x| < 2, |y| < 2, |x - y| < 2\}$$
(1)

Theorem

The reduction

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \underbrace{\begin{pmatrix} \mathbf{u} & \mathbf{u}' \\ \mathbf{v} & \mathbf{v}' \end{pmatrix}}_{=M} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

is robust iff $\alpha \geq 2\max(u',v')$ and $\beta \geq 2\max(u,v)$

Sufficient conditions

Corollary

If $min(\alpha, \beta) > 2 max M$, then M is robust.

Lemma (Strong robustess)

Let n = #(a, b) denote the bitsize of the larger of a and b. If $\#\min(\alpha, \beta) > \lfloor n/2 \rfloor + 1$, then M is robust.

Theorem (Schönhage/Weilert reduction)

For arbitrary a, b > 0, let n = #(a, b) and $s = \lfloor n/2 \rfloor + 1$. There exists a unique strongly robust M such that $\#\min(\alpha, \beta) > s$ and $\#|\alpha - \beta| \le s$.

HGCD with strong robustness

HGCD(A, B) $n \leftarrow \#(A, B)$ $s \leftarrow |n/2| + 1$ $p_1 \leftarrow |n/2|$ $M_1 \leftarrow \text{HGCD}(|2^{-p_1}A|, |2^{-p_1}B|)$ $(C; D) \leftarrow M_1^{-1}(A; B) \triangleright \# |C - D| \approx 3n/4$ 6 One subtraction and one division step on (C; D). Update M_1 . $p_2 \leftarrow 2s - \#(C, D) + 1$ $M_2 \leftarrow \text{HGCD}(|2^{-p_2}C|, |2^{-p_2}D|)$ 9 return $M_1 \cdot M_2$

- Uses strong robustness
- ► Returns with #|α − β| ≤ s + 2k, where k is the recursion depth.
- To compute Schönhage/Weilert reduction, need at most four additional division steps before returning.

HGCD with plain robustness

HGCD(A, B)
1
$$n \leftarrow \#(A, B)$$

2 $s \leftarrow \lfloor n/2 \rfloor + 1$
3 $p_1 \leftarrow \lfloor n/2 \rfloor$
4 $M_1 \leftarrow \operatorname{HGCD}(\lfloor 2^{-p_1}A \rfloor, \lfloor 2^{-p_1}B \rfloor)$
5 $(C; D) \leftarrow M_1^{-1}(A; B) \rhd \# |C - D| \approx 3n/4$
6 One subtraction and one division step on $(C; D)$. Update M_1 .
7 $p_2 \leftarrow \#M_1 + 2$
8 $M_2 \leftarrow \operatorname{HGCD}(\lfloor 2^{-p_2}C \rfloor, \lfloor 2^{-p_2}D \rfloor)$
9 return $M_1 \cdot M_2$

$$M^{-1}\left\{ \begin{pmatrix} A \\ B \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \right\} = 2^{p_2} M_2^{-1} \left\{ \begin{pmatrix} c \\ d \end{pmatrix} + \underbrace{\begin{pmatrix} \delta c \\ \delta d \end{pmatrix} + 2^{-p_2} M_1^{-1} \begin{pmatrix} x \\ y \end{pmatrix} \right\}$$

disturbance $\in S$

Conclusions

Conclusions

- HGCD in terms of correct quotients \implies complexity.
- Reduction matrices are important, quotients are not.
- "Robust reduction" is a powerful notion in analysis and algorithm design.
- Can use either the robustness condition, or Schönhage/Weilert's condition on bitsizes.

Further work

Further analysis and experiments on the HGCD algorithm using plain robustness.