
Robust HGCD with No Backup Steps

Niels Möller

Lysator academic computer society and KTH, Sweden

International Congress on Mathematical Software 2006

Comparison of gcd algorithms

Algorithm Time (ms) # lines

mpn gcd 1440 304 gmp-4.1.4 (Weber)
mpn rgcd 87 1967 “Classical” Schönhage gcd
mpn bgcd 93 1348 Rec. bin. (Stehlé/Zimmermann)
mpn sgcd 100 760 1987 alg. (Schönhage/Weilert)
mpn ngcd 85 733 New algorithm for gmp-5

Questions

Q Where does the complexity come from?

A Accurate computation of the quotient sequence.

Q How to avoid that?

A Stop bothering about quotients.

Outline

Background
Algorithm comparison
The half-gcd (hgcd) operation
Subquadratic hgcd

Quotient based HGCD
Jebelean’s criterion

A robustness condition

Simple subquadratic hgcd

Conclusions

What is hgcd?

Definition (Reduction)

(
a
b

)
= M

(
α
β

)
I Positive integers a, b, α, and β

I Matrix M, non-negative integer elements

I det M = 1

Definition (hgcd, “half gcd”)

Input: a, b, of size n

Output: M, size of α, β and M elements ≈ n/2

Fact

For any reduction, gcd(a, b) = gcd(α, β)

What is hgcd?

Definition (Reduction)

(
a
b

)
= M

(
α
β

)
I Positive integers a, b, α, and β

I Matrix M, non-negative integer elements

I det M = 1

Definition (hgcd, “half gcd”)

Input: a, b, of size n

Output: M, size of α, β and M elements ≈ n/2

Fact

For any reduction, gcd(a, b) = gcd(α, β)

What is hgcd?

Definition (Reduction)

(
a
b

)
= M

(
α
β

)
I Positive integers a, b, α, and β

I Matrix M, non-negative integer elements

I det M = 1

Definition (hgcd, “half gcd”)

Input: a, b, of size n

Output: M, size of α, β and M elements ≈ n/2

Fact

For any reduction, gcd(a, b) = gcd(α, β)

Main idea of subquadratic hgcd

n p1

A
...

B
...︸ ︷︷ ︸

M1 ← hgcd(b2−p1Ac, b2−p1Bc)(
A
B

)
← M−1

1

(
A
B

)
≈ 3n/4 p2

A
...

B
...︸ ︷︷ ︸

M2 ← hgcd(b2−p2Ac, b2−p2Bc)
M ← M1 ·M2

hgcd algorithm

hgcd(A,B)

1 n← #(A,B)
2 Select p1 ≈ n/2
3 M1 ← hgcd(b2−p1Ac, b2−p1Bc)
4 (A;B)← M−1

1 (A;B)
5 Perform a small number of divisions or backup steps.

� A, B are now of size ≈ 3n/4
6 Select p2 ≈ n/4
7 M2 ← hgcd(b2−p2Ac, b2−p2Bc)
8 (A;B)← M−1

2 (A;B)
9 Perform a small number of divisions or backup steps.

� A, B are now of size ≈ n/2
10 M ← M1 ·M2

11 Return M

1. Simplify Steps 5 and 9.
2. Eliminate multiplication in Step 8.

hgcd algorithm

hgcd(A,B)

1 n← #(A,B)
2 Select p1 ≈ n/2
3 M1 ← hgcd(b2−p1Ac, b2−p1Bc)
4 (A;B)← M−1

1 (A;B)
5 Perform a small number of divisions or backup steps.

� A, B are now of size ≈ 3n/4
6 Select p2 ≈ n/4
7 M2 ← hgcd(b2−p2Ac, b2−p2Bc)
8 (A;B)← M−1

2 (A;B)
9 Perform a small number of divisions or backup steps.

� A, B are now of size ≈ n/2
10 M ← M1 ·M2

11 Return M

1. Simplify Steps 5 and 9.
2. Eliminate multiplication in Step 8.

Definition (Quotient sequence)

For any positive integers a, b, quotient sequence qj and remainder
sequence rj are defined by

r0 = a r1 = b

qj = brj−1/rjc rj+1 = rj−1 − qj rj

Fact (
a
b

)
= M

(
rj

rj+1

)
with

M =

(
q1 1
1 0

) (
q2 1
1 0

)
· · ·

(
qj 1
1 0

)

Theorem (Jebelean’s criterion)

Let a > b > 0, with remainders rj and rj+1,(
a
b

)
=

(
u u′

v v ′

)
︸ ︷︷ ︸

=M

(
rj

rj+1

)

Let p > 0 be arbitrary, 0 ≤ A′,B ′ < 2p, and define(
A
B

)
= 2p

(
a
b

)
+

(
A′

B ′

)
(

Rj

Rj+1

)
= M−1

(
A
B

)
= 2p

(
rj

rj+1

)
+ M−1

(
A′

B ′

)
For even j, the following two statements are equivalent:

(i) rj+1 ≥ v and rj − rj+1 ≥ u + u′

(ii) For any p and any A′,B ′, the jth remainders of A and B are
Rj and Rj+1.

Quotient based hgcd

A generalization of Lehmer’s algorithm

Define hgcd(a, b) to return an M satisfying Jebelean’s criterion.

Example (Recursive computation)

(a; b) = (858 824; 528 747)

M1 = (13, 8; 8, 5) No difficulties

(c ; d) = M−1
1 (a; b) = 16 (4009; 194) + (0; 15)

M2 = hgcd(4009, 194) = (21, 20; 1, 1)

M−1
2 (4009; 194) = (129; 65) Satisfies Jebelean

M = M1 ·M2 = (281, 268; 173, 165)

M−1(a; b) = (1764; 1355) Violates Jebelean

Backup step

Example (Fixing M)

(a; b) = (858 824; 528 747)

M = M1 ·M2 = (281, 268; 173, 165)

M−1(a; b) = (1764; 1355) Violates Jebelean

M corresponds to quotients 1, 1, 1, 1, 1, 1, 1, 20, 1.
E.g., (A;B) = 8 (a; b) + (1; 7) has quotient sequence starting with
1, 1, 1, 1, 1, 1, 1, 20, 2.

Conclusion

I The quotients are correct for (a; b), but not robust enough.

I Must drop final quotient before returning hgcd(A,B).

Backup step

Example (Fixing M)

(a; b) = (858 824; 528 747)

M = M1 ·M2 = (281, 268; 173, 165)

M−1(a; b) = (1764; 1355) Violates Jebelean

M corresponds to quotients 1, 1, 1, 1, 1, 1, 1, 20, 1.
E.g., (A;B) = 8 (a; b) + (1; 7) has quotient sequence starting with
1, 1, 1, 1, 1, 1, 1, 20, 2.

Conclusion

I The quotients are correct for (a; b), but not robust enough.

I Must drop final quotient before returning hgcd(A,B).

A robustness condition

Definition (Robust reduction)

A reduction M of (a; b) is robust iff

M−1

{(
a
b

)
+

(
x
y

)}
> 0

for all “small” (x ; y). More precisely, for all (x ; y) ∈ S , where

S = {(x ; y) ∈ R2, |x | < 2, |y | < 2, |x − y | < 2} (1)

Theorem

The reduction (
a
b

)
=

(
u u′

v v ′

)
︸ ︷︷ ︸

=M

(
α
β

)

is robust iff α ≥ 2 max(u′, v ′) and β ≥ 2 max(u, v)

A robustness condition

Definition (Robust reduction)

A reduction M of (a; b) is robust iff

M−1

{(
a
b

)
+

(
x
y

)}
> 0

for all “small” (x ; y). More precisely, for all (x ; y) ∈ S , where

S = {(x ; y) ∈ R2, |x | < 2, |y | < 2, |x − y | < 2} (1)

Theorem

The reduction (
a
b

)
=

(
u u′

v v ′

)
︸ ︷︷ ︸

=M

(
α
β

)

is robust iff α ≥ 2 max(u′, v ′) and β ≥ 2 max(u, v)

Sufficient conditions

Corollary

If min(α, β) > 2 max M, then M is robust.

Lemma (Strong robustess)

Let n = #(a, b) denote the bitsize of the larger of a and b. If
min(α, β) > bn/2c+ 1, then M is robust.

Theorem (Schönhage/Weilert reduction)

For arbitrary a, b > 0, let n = #(a, b) and s = bn/2c+ 1. There
exists a unique strongly robust M such that # min(α, β) > s and
#|α− β| ≤ s.

hgcd with strong robustness

hgcd(A,B)

1 n← #(A,B)
2 s ← bn/2c+ 1
3 p1 ← bn/2c
4 M1 ← hgcd(b2−p1Ac, b2−p1Bc)
5 (C ;D)← M−1

1 (A;B) � #|C − D| ≈ 3n/4
6 One subtraction and one division step on (C ;D). Update M1.
7 p2 ← 2s −#(C ,D) + 1
8 M2 ← hgcd(b2−p2Cc, b2−p2Dc)
9 return M1 ·M2

I Uses strong robustness

I Returns with #|α− β| ≤ s + 2k, where k is the recursion
depth.

I To compute Schönhage/Weilert reduction, need at most four
additional division steps before returning.

hgcd with plain robustness

hgcd(A,B)

1 n← #(A,B)
2 s ← bn/2c+ 1
3 p1 ← bn/2c
4 M1 ← hgcd(b2−p1Ac, b2−p1Bc)
5 (C ;D)← M−1

1 (A;B) � #|C − D| ≈ 3n/4
6 One subtraction and one division step on (C ;D). Update M1.
7 p2 ← #M1 + 2
8 M2 ← hgcd(b2−p2Cc, b2−p2Dc)
9 return M1 ·M2

M−1

{(
A
B

)
+

(
x
y

)}
= 2p2M−1

2

{ (
c
d

)
+

(
δc
δd

)
+ 2−p2M−1

1

(
x
y

)
︸ ︷︷ ︸

disturbance ∈S

}

Conclusions

Conclusions

I hgcd in terms of correct quotients =⇒ complexity.

I Reduction matrices are important, quotients are not.

I “Robust reduction” is a powerful notion in analysis and
algorithm design.

I Can use either the robustness condition, or
Schönhage/Weilert’s condition on bitsizes.

Further work

Further analysis and experiments on the hgcd algorithm using
plain robustness.

	Background
	Algorithm comparison
	The half-gcd (hgcd) operation
	Subquadratic hgcd

	Quotient based HGCD
	Jebelean's criterion

	A robustness condition
	Simple subquadratic hgcd
	Conclusions

