
Notes on the complexity of crt

Niels Möller

January 18, 2007

Abstract

These notes describe preliminary results in the search for the opti-
mal way to reconstruct a number from its remainders modulo some set
of smaller numbers, using the Chinese Remainder Theorem. The case of
interest is when we have a small number of small moduli, known in ad-
vance. The complexity is measured as the number of multiplications of
single words. Of the methods considered, it turns out that for up to 5
moduli, Garner’s method is the best. The case of 6 moduli is special,
in that one can save one multiplication by splitting the modulo in two
groups of for and 2 each. From seven moduli and up, the best method is
to compute the value as a linear combination of base numbers that are of
the same size as the result. All these methods are asymptotically O(n2),
where n is the number of moduli, but the methods described in here use
approximately 3.86(n − 1)1.57 multiplications for 1 ≤ n ≤ 10. When the
number of moduli is very large, it is expected that a divide and conquer
strategy, taking advantage of subquadratic multiplication such as Karat-
suba or Schönhage-Strassen; this is not analyzed in detail in the present
notes, since the focus is on fairly small numbers.

1 Introduction

The Chinese remainder theorem says that given n pairwise coprime moduli mi,
and n numbers xi, there exists a number x such that x = xi (mod mi) for all i.
The number x is also uniquely determined (mod M), where M = m1m2 · · ·mn.
These notes discuss the complexity of actually computing this x.

Each xi can be thought of as an element of Zmi
, and x as an element of ZM ,

and this is a nice algebraic relation which I don’t discuss further.
Instead, we assume that each mi fits in a single computer word, then xi is

represented as a computer word with a value in the range 0 ≤ xi < mi. The
solution x can be represented in n computer words.

We are looking for an algorithm that takes xi as input and outputs x. The
mi are treated as fixed constants: Precomputations involving only the mi are
free.

The primary interest is in computations with fairly small n. The computa-
tional cost is based on the number of basic multiplications needed, where a basic

multiplication takes two computer words as inputs, and produces two computer
words representing their (unsigned) product. The cost of additions, conditionals,
etc is neglected.

1



1.1 Division using multiplication

The algorithms will need reductions modulo m, and for efficiency, this should
be computed using basic multiplications. Montgomery multiplication is widely
used, but somewhat impractical in our application. Instead, we will use prein-
verses (Granlund and Montgomery [3]) which is simpler and almost as good.

For single word operands, ab mod m can be computed in three basic multi-
plications using a precomputed single-word inverse for m: the first for computing
ab, the second to compute the approximate quotient, and the third and final to
compute the remainder. See the appendix for more details.

We also need to perform this computation when the inputs are represented
as multiple (but few) words. Assume that a is k words, b is ℓ words, and m is n
words, with k + ℓ ≥ n, and we use school-book multiplication. Then ab takes kℓ
basic multiplications. For the division, the quotient is k + ℓ − n words and the
remainder is n words. An approximation q of each quotient word is computed
in one basic multiplication, using an inverse of the most significant word of m,
and then to subtract qm we need n more basic multiplications. So the division
takes (k + ℓ − n)(n + 1) basic multiplications, and the total for multiplication
ab and division is thus

kℓ + (k + ℓ − n)(n + 1)

In case k = ℓ = n, this reduces to 2n2 + n.

2 Some quadratic algorithms

2.1 Linear combination

The simplest way to compute x is to express it as a linear combination in ZM .
Define M ′

j =
∏

i6=j mi and

cj = M ′
j

(

M ′
j

−1
(mod mj)

)

(1)

Then the cj have the property that cj = δij (mod mi). It follows that

x =
∑

cixi (mod M)

This can be computed by first computing and summing all terms (n2 basic
multiplications), and then reducing the sum by M . The sum is at most

∑

ci(mi−
1). For some choices of mi, this maximum value may fit in n+1 words; in general
it is bounded by M

∑

mi which fits in n + 1 words and log2 n bits.
For the fairly general case that the maximum value fits in n + 2 words

(always true if the number of moduli, n, is a single word), the quotient is two
words, which implies that the final reduction can be done using 2(n + 1) basic
multiplications, for a total of

n2 + 2n + 2 (2)

multiplications.
Also keep in mind the special case that

∑

cj(mj − 1) fits in n + 1 words.
Then x can be computed in only

n2 + n + 1 (3)

2



multiplications. This is actually pretty good, so let’s call this the “good luck”
algorithm, and include this in the algorithm comparison at the end.

2.2 Cohen’s algorithm

Cohen (A course in computational algebraic number theory [1], Algorithm 1.3.11)
gives the following algorithm.

1. For j = 2, . . . , n, set

cj = (m1m2 · · ·mj−1)
−1 (mod mj)

2. For j = 2, . . . , n, set

yj = (xj − (x1 + m1(y2 + m2(y3 + · · · + mj−2yj−1) · · · )))cj mod mj

3. Output
x = x1 + m1(y2 + m2(y3 + ...mn−1yn) · · · )

Step 1 are precomputations.
Step 2 uses modular multiplications on single-word values. To compute

ab mod m takes three basic multiplications. yj needs j − 1 such operations,
so in total for this step we need 3n(n − 1)/2 multiplications.

Step 3 multiplies increasingly large numbers by single-word numbers. The
total number of basic multiplications in this step is n(n− 1)/2. The grand total
is thus 2n(n − 1) = 2n2 − 2n multiplications.

2.3 Iterative algorithm

Another variant is to add one moduli at a time. Let Mj be the sequence of partial
products, Mj = m1m2 · · ·mj , and compute the sequence of Xj , 0 ≤ Xj < Mj

such that Xj = xi (mod mi) for i = 1, 2, . . . , j. We naturally have X1 = x1. For
2 ≤ j < n, precompute

Cj = M−1

j−1 (mod mj) (4)

and compute

yj = (xj − Xj−1)Cj mod mj

Xj = Xj−1 + Mj−1yj

This algorithm is described in Crandall and Pomerance, Prime numbers—a
computational perspective [2], Algorithm 2.1.7, where it is attributed to Garner.
It needs

1

2
(n − 1)(3n + 2) (5)

basic multiplications.

2.4 Summary

We see that Garner’s algorithm is more efficient than Cohen’s, for all n (except
n = 2 where they are equivalent). For n ≥ 7, the linear combination method
is more efficient than Garner’s method (or if we have “good luck” with our
parameters, this method is more efficient already for n ≥ 5.

3



n Cohen Garner Linear Good luck
2 4 4 10 7
3 12 11 17 13
4 24 21 26 21
5 40 34 37 31

6 60 50 50 43

7 84 69 65 57

8 112 91 82 73

9 144 116 101 91

10 180 144 122 111

Table 1: Cost for the basic quadratic algorithms. Bold figures are marks the
best method among Cohen’s Garner’s and the linear combination method. The
slanted figures in the rightmost column marks the lines where the linear com-
bination is the most efficient, assumingt that the parameters satisfy the good
luck condition.

3 Divide-and-conquer

Another alternative is to use a divide-and-conquer scheme. First, consider the
example n = 4. Put M1 = m1m2, M2 = m2m3, and C2 = M−1

1 (mod M2).
Then x can be found by first computing Xi = x mod Mi for i = 1, 2, by

applying the method for n = 2 to the pairs (m1, m2) and (m3, m4). Next, use
the same method to (M1, M2), by setting Y2 = (X2 −X1)C2 mod M2 and then
x = X1 + M1Y2.

The values Xi, Mi, C2, and Y2 are all two-word numbers. To compute the
product (X2 − X1)C2 takes four basic multiplications, and the result is a four-
word number which has to be reduced (mod M2) to get Y2. This reduction can
be computed using six basic multiplications. This method can be summarized
as follows.

C2 = M−1

1 (mod M2) precomputation

X1 = crt2(x1, x2, m1, m2) 4 multiplications

X2 = crt2(x3, x4, m3, m4) 4 multiplications

Y2 = (X2 − X1)C mod M2 10 multiplications

x = X1 + M1Y2 4 multiplications

The grand total is thus 22 multiplications, two less than with Cohen’s
method, but one more than Garner’s method.

This subdivision can be generalized in two ways. For very large n = 2k, and
assuming subquadratic multiplication, divide-and-conquer results in the running
time ≤ 2kM(n), where M(n) is the time needed for multiplication of two n-word
numbers.

In the following, we continue to focus on fairly small n, and we assume
that multiplication uses the schoolbook-style method, multiplying two n-word
numbers using n2 basic operations. Let T (n) denote the operation count for
crtn,

Generalizing the method for n = 2 + 2 above, assume that n = n1 + n2.
It turns out that since the computation of Y2 = (X2 − X1)C2 mod M2 is more

4



complex than the output computation x = X1 + M1Y2, it’s desirable to have
n1 ≥ n2.

For the modular multiplication (X2−X1)C2 mod M2, we first reduce X1 mod
M2, which takes (n1 −n2)(n2 + 1) operations. Then the inputs and outputs are
of size n2, so the rest of the operation takes 2n2

2 + n2 operations. The final
multiplication M1Y2 takes n1n2 multiplications. So we get

C2 = M−1

1 (mod M2) precomputation

X1 = crtn1
(x1, . . . xn1

, m1, . . . mn1
) T (n1) multiplications

X2 = crtn2
(xn1+1, . . . , xn, mn1+1, mn) T (n2) multiplications

Y2 = (X2 − X1)C mod M2 n1 + n1n2 + n2
2 multiplications

x = X1 + M1Y2 n1n2 multiplications

In total,
T (n1) + T (n2) + n1 + n2(2n1 + n2)

multiplications. In case n1 = n2 = n/2, the expression reduces to 2T (n/2) +
n/2 + 3n2/4

Generalize this method a little bit further, assume that n = n1 + n2 + n3,
M1 = m1 · · ·mn1

, M2 = mn1+1 · · ·mn1+n2
, M3 = mn1+n2+1 · · ·mn and Xj = x

(mod Mj). We get

C2 = M−1
1 (mod M2) precomputation

C3 = (M1M2)
−1 (mod M3) precomputation

X1 = crtn1
(x1, . . . xn1

, m1, . . . mn1
) T (n1)

X2 = crtn2
(xn1+1, . . . , xn1+n2

, mn1+1, mn1+n2
) T (n2)

X3 = crtn3
(xn1+n2+1, . . . , xn, mn1+n2+1, mn) T (n3)

Y2 = (X2 − X1)C2 (mod M2) n1 + n1n2 + n2
2

X ′
2 = X1 + Y2M1 n1n2

Y3 = (X3 − X ′
2)C3 (mod M3) n1 + n2 + (n1 + n2)n3 + n2

3

x = X ′
2 + y3M2 (n1 + n2)n3

So the grand total is

T (n1) + T (n2) + T (n3) + 2n1 + n2 + 2(n1n2 + n1n2 + n2n3) + n2
2 + n2

3

In case n1 = n2 = n3 = n/3, this reduces to 3T (n/3) + n + (8/9)n2.
Can this divide-and-conquer method be more efficient the methods of the

previous section? To answer that, one can perform an exhastive search over
the ways to divide numbers of interest. It turns out, that n = 6 is the only
(small) number where divide and conquer is beneficial. We have the following
subdivisions:

• 6 = 5 + 1 gives T (5) + 16 = 50 (equivalent to Garner’s method).

• 6 = 4 + 2 gives T (4) + T (2) + 24 = 49.

5



CPU crt2 crt3 crt4 crt5

AMD Duron (32 bit) 31 119 236 387
AMD Opteron (64 bit) 32 98 195 313

Table 2: Actual running time, in cycles.

n Operations Strategy Good luck
2 4 Garner 7
3 11 Garner 13
4 21 Garner 21
5 34 Garner 31
6 49 4 + 2 43
7 65 Linear 57
8 82 Linear 73
9 101 Linear 91

10 122 Linear 111

Table 3: Optimal subdivisions of n, and the resulting number of multiplications
to compute the crtn. The values above were found by exhaustive search over
subdivisions of n into two or three pieces, and comparing to the direct quadratic
methods. The rightmost column gives the operation count for the “good luck”
algorithm, which is applicable only to some choices of mi.

• 6 = 3 + 3 gives 2T (3) + 30 = 52,

• 6 = 4 + 1 + 1 gives T (4) + 29 = 50

• 6 = 3 + 2 + 1 gives T (3) + T (2) + 35 = 50.

• 6 = 2 + 2 + 2 gives 3T (2) + 38 = 50.

Hence, with the division 6 = 4 + 2 we get T (6) = 49, one multiplication less
than Garner’s method.

In case we have good luck with the parameter choices, things are slightly
different. For example, if T (5) = 31, then the subdivisions 6 = 5 + 1 and
7 = 5 + 2 are the best, and they result in T (6) = 47 and T (7) = 64.

4 Implementation

Table 2 gives the running rime, in cycles, for the reconstruction.

5 Summary and conclusions

Table 5 gives the optimal subdivision for some more values of n.

5.1 Conclusions

• For n ≤ 5, Garner’s method is optimal.

• n = 6 = 4 + 2 is the only with an interesting optimal subdivision.

6



• For n ≥ 7, the linear combination in Zm (n2 + 2(n + 1) multiplications)
appears to be optimal.

• Traditional divide-and-conquer, splitting the input into roughly equal parts,
is not optimal. (If n is large enough so that subquadratic multiplication
is available, then splitting into roughly equal parts can be expected to be
more efficient).

• For n ≥ 5, the “good luck” algorithm is better than the “optimal” one.
Hence, one should check if one’s moduli satisfy the “good luck” condition,
or of some subset of size five or more moduli does. If so, this should be
taken into account, and due to the divide-and-conquer strategy, such good
luck may affect the optimal strategy also for larger n. For example, if n = 5
is a lucky number, then T (5), T (6), and T (7) are reduced by 3, 2, and 1
multiplications, respectively.

• Since T (1) = 0, it is natural to measure complexity in terms of n−1. When
doing so, the operation count for small n is appearantly subquadratic; e.g.,
T (n) ≈ 3.86(n − 1)1.57 is quite accurate for n ≤ 10. This is remarkable,
since we assume quadratic schoolbook-style multiplication, and there’s no
Karatsuba-like procedure in the algorithm.

• However, for all variants considered here, T (n) ≥ n2, which indicates that
subquadratic multiplication is necessary to achieve subquadratic perfor-
mance for large n.

References

[1] Henri Cohen. A course in computational algebraic number theory. Springer,
1996.

[2] Richard Crandall and Carl Pomerance. Prime numbers — a computational

perspective. Springer, 2001.

[3] Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers
using multiplication. In Proceedings of the SIGPLAN PLDI’94 Conference,
June 1994.

Appendix: Division by constants

It is well known that division by a constant can be performed using two mul-
tiplications and a few branches [3]. Assume that the word size is ℓ bits, and
put ω = 2ℓ. Consider the quotient q = ⌊n/d⌋, where d is constant in the range
ω/2 ≤ d < ω, and n = n0 + n1ω, with 0 ≤ n0 < ω, 0 ≤ n1 < d. Then q fits in a
single word.

First precompute an approximate inverse, d′ = ⌊(w2−1)/d⌋−ω (the quotient
⌊(w2 − 1)/d⌋ is precisely ℓ + 1 bits, so this definition implies that d′ fits in a
single word.

7



The simplest way of using the inverse d′ is to compute an approximative
quotient and remainder:

q′ = ⌊n1(ω + d′)/ω⌋ = ⌊n1d
′/ω⌋ + n1 (6)

r′ = n0 + n1ω − dq′ (7)

Then it can be shown that 0 ≤ r′ < n0 + 2d, which implies that r′ < 4d and
that r′ < 3ω. So the true quotient and remainder are found after at most three
additional subtractions.

Of the two multiplications, the computation of q′ uses only the most signif-
icant half of the product, but in practice, this is no cheaper to compute than
the full 2ℓ bit product. For the second multiplication, most (but not all!) of the
most significant half cancels in the subtraction. Hence it is sufficient to compute
the least significant ℓ + 2 bits of the product, but again, this is in practice no
cheaper than computing the full product.

However, it’s possible to do the computation using one full product, and
one product that uses only the least significant ℓ bits. Such a small product is
usually cheaper to compute, both on the x86 architecture (mull vs imul) and
on RISC architectures. This method works as follows.

p = n1d
′ + n0 + n1ω (8)

q0 = p mod ω (9)

q1 = 1 + ⌊p/ω⌋ (10)

r′ = (n0 − q1d) mod ω (11)

Then q0 − ω < n− q1d < q0, which is an interval smaller than ω; hence, the
value is uniquely determined by its value modulo ω, i.e., r′. To find the true
quotient, we must examine several different cases.

• If d ≤ r′ < q0, then q = q1 + 1.

• Else, if q0 ≤ r′ < (ω − d), then q = q1 − 2.

• Else, if r′ ≥ q0, then q = q1 − 1.

• Otherwise, q = q1.

When d is close to ω, the first two cases are unlikely.

8


