
Making retransmission delays in
wireless links friendlier to TCP

Niels Möller, Karl Henrik Johansson and Håkan Hjalmarsson
{niels|kallej|hjalmars}@s3.kth.se

Abstract— Heterogeneous communication networks with
their variety of application demands, uncertain time-varying
traffic load, and mixture of wired and wireless links pose
several challenging problem in modeling and control. In this
paper we focus on the packet delay, which is a particularly
important variable for efficient end-to-end congestion control.
In particular, we study the delay effects of radio links which
use power control and link-layer retransmissions.

Link-layer retransmissions induce delays which do not
conform to the assumptions on which the transport protocol is
based. This causes undesired TCP control actions which reduce
throughput. A link layer solution based on adding carefully
selected delays to certain packets is proposed to counteract this
problem. All information needed for this is available locally
at the link.

I. INTRODUCTION

Congestion control is one of the key components that has
enabled the dramatic growth of the Internet. The original
idea [1] was to adjust the transmission rate based on the loss
probability. The first implementation of this mechanism,
denoted TCP Tahoe, was later refined into TCP Reno. This
algorithm (together with some of its siblings) is now the
dominating transport protocol on the Internet. The through-
put and delay experienced by individual users depends on
several factors, including the TCP protocol, link capacity,
and competition from other users. As illustrated in Figure 1,
there are also lower layers that may affect the achieved
delay and bandwidth, particularly if part of the end-to-end
connection is a wireless link.

Poor TCP performance over wireless links is a well
known problem. The traditional explanation for poor TCP

performance is that the wireless link drops packets due
to noise on the radio channel, and that TCP interprets
all packet losses as indications of network congestion.
This explanation is a little too simplistic when considering
wireless links that employ link-layer retransmissions. The
link-layer retransmission scheme transforms a lossy link,
with fairly constant delay, into a link with few losses but
random delays. The resulting delays, it turns out, are also
problematic for TCP.

Several approaches to improve wireless TCP behavior
have been suggested in the literature. Modifications of TCP

have been proposed [2], [3]. Other methods try to more
directly differentiate loss as being either due to conges-
tion or due to lossy wireless transmissions [4], [5], [6].

This work was supported by European Commission through the project
EURONGI and by Swedish Research Council.

Performance-enhancing proxies is an alternative in which
either split connection schemes or interception schemes
are used. The first approach introduces a virtual user at
the link which acts as receiver to the source and source
to the receiver. In the latter approach, acknowledgments
are monitored and dropped if they indicate packet loss
due to link-layer retransmissions. Finally, it is possible to
counteract the influence from the wireless link by letting the
receiver control the transmission via its advertised window.
See [7], [8] for further details on these schemes.

We believe that, as far as possible, the link-layer should
be engineered to be TCP-friendly, reducing the differences
between wired and wireless links. There will naturally be
some residual idiosyncrasies of wireless channels that can-
not be dealt with in this way; our approach should be viewed
as complementing both developments to make TCP more
robust to “strange” links, and cross-layer developments that
let the link and the end-node TCP:s exchange information
about link and flow properties.

This article is organized as follows. Section II describes
our models for the lower layers of the system. In sections III
we use the models to derive IP-level properties, in particular
the IP-packet delay distribution, and implications for TCP

performance. In Section IV we argue that we should use
the engineering freedom we have in the link layer to make
the radio link more friendly to TCP, and show that adding
carefully selected delays to certain packets can improve TCP

performance.

II. SYSTEM MODEL

When using TCP over a wireless link, there are several
interacting control systems stacked on top of each other,
illustrated in Figure 1. At the lowest layer, the transmission
power is controlled in order to keep the signal to interfer-
ence ratio (SIR) at a desired level. This is a fast inner loop
intended to reject disturbances in the form of “fading”, or
varying radio conditions. On top of this, we have an outer
power control loop that tries to keep the block error rate
(BLER) constant, by adjusting the target SIR of the inner
loop.

The target block error rate is a deployment trade-off
between channel quality and the number of required base
stations. For UMTS the reference block error rate is often
chosen to be about 10%, see [10], which is what we will
use.

PC

SIRref

+

Power

Trans. Recv.

SIR (1)
− Block

error (2)

ARQ
RRQ (3)

NetworkTCP TCP

ACK (4)

Fig. 1. End-to-end congestion control is affected by the delay and
the bandwidth of the wired part of the network, but also by feedback
mechanisms in lower layers of the wireless links.

On top of power control, we have local, link-layer,
retransmissions of damaged blocks. Finally, we have the
end-to-end congestion control of TCP.

By modeling the lower layers, we can investigate the
effects the link layer control have on TCP performance. We
refer to our previous paper [9] for further details on the
radio model.

A. Power control Markov chain

As there is no simple and universal relationship between
the SIR and the block error rate, the outer power control loop
uses feedback from the decoding process to adjust SIRref.
The outer loop uses a fix step size ∆. It decreases SIRref by
∆ for each successfully received block, and increases SIRref

by 9∆ each time a block is damaged.
This process can be modeled as a discrete Markov chain,

where state k corresponds to SIRref = k∆. Assuming that
the inner loop power control manages to keep the actual SIR

close to SIRref, and using an appropriate channel model,
we get a threshold shaped function f(r) which gives the
probability of block damage for any SIRref = r. There are
two transitions from state k of the Markov chain: To state
k + 9, with probability f(k∆), and to state k − 1 with
probability 1−f(k∆). The operating point of the outer loop
power control is close to the point where f(r) = 10%, i.e.,
the desired block error rate.

From f(r) and ∆, it is straight forward to compute the
stationary distribution of the Markov chain. Figure 2 shows
the stationary distribution for a BPSK channel (see [9] for
the parameters) and three different values for ∆.

B. Link-layer retransmission

Since a packet loss probability on the order of 10%
would be detrimental to TCP performance, the link detects
block damage (this is the same feedback signal that is used
for the outer loop power control), and damaged blocks
are scheduled for retransmission. We will consider one
simple retransmission scheme, the (1,1,1,1,1)-Negative Ac-
knowledgment scheme [11], which means that we have five

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
f(r)
0.2dB
0.06dB
0.02dB

Prob.

SIRref (dB)
Fig. 2. Stationary distribution for the power control. Each mark represents
one state of the power control, the corresponding value of SIRref, and its
stationary probability. The dotted curve is the threshold-shaped function
f(r), scaled to fit in the figure, which represents the block error probability
as a function of SIRref.

Delay

Scheduling

Delay

x(k) t(k)
Channel Sorting

y(k)

e(k)

Fig. 3. Retransmission model

“rounds”, and in each round we send a single retransmission
request. When the receiver detects that the radio block in
time slot k is damaged, it sends a retransmission request to
the sender. The block is scheduled for retransmission in slot
k+3 (where the delay 3 is called the RLP NAK guard time).
If also the retransmission results in a damaged block, a new
retransmission request is sent and the block is scheduled for
retransmission in slot k + 6. This goes on for a maximum
of five retransmissions.

C. Retransmission as feedback

To be able to analyze the impact of the scheduling mech-
anism on link properties such as the delay distribution, it is
of interest to model the retransmission scheme. Feedback
is an intrinsic property of the retransmission mechanism.
Below we propose a model for the relationship between
the input blocks, the block error process, and the in-order
output blocks, where this feedback is explicitly shown. We
believe that this model will be useful for further studies of
retransmission scheduling.

Let k denote time in units of time slots, and consider the

following input and output signals, also shown in Figure 3.

x(k) = # of input blocks up to time k (1)

e(k) = # of errors up to time k (2)

y(k) = # of in-order output blocks up to time k (3)

These are increasing functions, like the accumulated rate
functions used in network calculus. Also let

t(k) = Index of block transmitted at time k (4)

which is not an increasing function. Consider a simple one-
parameter family of retransmission schemes, where each
damaged block is retransmitted g slots later, and there is no
limit on the number of times a block may be resent. The
parameter g corresponds to the RLP NAK guard time.

To describe the process mathematically, we start with
the queue at the input to the scheduler. Let s(k) be the
number of time slots up to time k that are not used for
retransmissions, and let f(k) be the number of blocks
that have been transmitted (but not necessarily received
successfully) up to time k. Then

s(k) = k − e(k − g) (5)

f(k) = min
`≤k

(x(`) + s(k) − s(`)) (6)

where the minimum in the latter equation is obtained when
` is the start of the current busy period.

The scheduling can be described as

t(k) =

{
f(k) if e(k − g) = e(k − g − 1)

t(k − g) if e(k − g) > e(k − g − 1)
(7)

Finally, y(k) is defined by y(k) = n if all blocks up to n

have been received properly at time k, but block n + 1 has
not. In symbols,

y(k) = max{n : ∀` ≤ n,∃j ≤ k, t(j) = `, e(j) = e(j−1)}
(8)

So where in this model is the feedback? It is included
explicitly, in Equation 7. We believe that this model, to-
gether with a model for the stochastic process e(k), lets
us optimize the parametrized retransmission scheme. The
delay at time k is defined by

d(k) = min{τ ≥ 0 : y(k + τ) ≤ x(k)} (9)

If x and e are stationary processes, with average rates that
sum to less than 1, then also d(k) is a stationary process,
and its properties can, at least in principle, be calculated
from x, e and the retransmission model. If Q(d) is a quality
measure, we can formulate the optimization problem

g∗(e, x) = arg max
g

Q(d) (10)

which gives the optimal value for the retransmission delay.
Intuitively, we expect that g∗ will depend on the au-

tocorrelation of the e process; it seems reasonable to
use a retransmission delay such that loss of the original

IP input: 1 2d1 d2

Radio blocks: 1 1 1 2 2 2

IP output: 1 2

Fig. 4. IP packets divided into radio blocks

transmission, and loss of the retransmission, are negatively
correlated.

This one parameter retransmission model is quite limited.
Other schemes can be modeled analogously, as long the
relation between e and s is simple, and the scheme does
not need an additional queue for retransmitted packets. The
challenge is to find a powerful but simple parameterization
of an interesting class of schemes.

III. TCP/IP IMPLICATIONS

Consider the system at a randomly chosen start time, with
the state of the power control distributed according to the
stationary distribution. For any finite loss/success sequence
(for example, the first block damaged, the next six received
successfully, the eighth damaged), we can calculate the
probability by conditioning on the initial power control state
and following the corresponding transitions of the Markov
chain. We can then use these probabilities to investigate the
experience of IP packets traversing the link.

A. IP packet delay

As a link employing link-layer retransmission yields
a very small packet loss probability, the most important
characteristic of the link is the packet delay distribution.
If the distribution is sufficiently “friendly” to TCP, then
the layering of the system works nicely, which means that
upper layers like TCP need not be aware of any particular
properties of individual links in the network.

We first compute the packet delay distribution explicitly
from the models described above. Later, we will also
assume that the calculated delay probabilities apply inde-
pendently to all packets, which should be fairly close to
reality as long as the power control is working.

When transmitting variable size IP packets over the link,
each packet is first divided into fixed size radio blocks, see
Figure 4. Let n denote the number of radio blocks needed
for the packet size of interest. Typically, 1 ≤ n ≤ 10.

The delay experienced by an IP packet depends on which,
if any, of the corresponding radio blocks are damaged, and
on the number and scheduling of the block retransmissions.
When all the blocks are finally received correctly, the IP

packet can be reassembled and passed on.
From the probabilities for all possible success/loss se-

quences at the radio block level, we can extract explicit
probabilities for the possible IP packet delays. The resulting
delay distribution for our example channel (see Figure 5),
with a power control step size ∆ = 0.06dB, and n = 2, is
shown in Table I.

This table includes only the delays due to radio block
retransmissions, there is also a fix delay of 40 ms for the
original transmission of two radio blocks.

d 0 40 60 100 120 160 180
p 80.6 8.8 9.3 0.6 0.6 0.03 0.03

TABLE I

B. TCP performance degradation

In observations and performance evaluations of TCP over
wireless links [11], the properties of a wireless link can
shine through to the TCP layer in three different ways:

• Genuine packet loss. With bad enough radio condi-
tions, packet drops are inevitable. We will not consider
genuine packet loss here, as we assume that the radio
channel is good enough that the power control and
link-layer transmissions can get packets through.

• Packet reorder. For a link with highly variable delay,
packets can get reordered. Severe reordering can trig-
ger a spurious TCP fast retransmit.

• Spurious timeout. A packet that is not lost, only
severely delayed, can trigger a spurious TCP timeout.

If the bandwidth delay product is small compared to
the maximum TCP window size, spurious timeouts and
spurious fast retransmit need not lead to any performance
degradation, as a modest buffer before the radio link will
be enough to keep the link busy even when the sender
temporarily decreases its sending rate. On the other hand,
if the bandwidth delay product is larger than the maximum
TCP window size, throughput is decreased.

The difference between these two cases can be seen
for example in the performance evaluation [11]: In the
scenarios that have a large maximum window size compared
to the bandwidth-delay product, we get a throughput that
is the nominal radio link bandwidth times 1 − p (where
p is the average block loss probability), and there is no
significant difference between different link retransmission
schemes. Only when bandwidth or delay is increased, or the
maximum window size is decreased, do we see a drastic
changes in throughput when the BLER or retransmission-
scheme varies.

We therefore concentrate on the case of a large
bandwidth-delay product. Then both spurious timeout and
spurious fast retransmit leads to a degradation of TCP

performance, and we will consider them in turn.

C. Spurious fast retransmit

Spurious fast retransmit has been observed as an impor-
tant factor in poor TCP performance over wireless links.
The probability of spurious fast retransmit can be estimated
from the loss/success-sequence probabilities. It turns out
that unless the link is configured to do “in-order delivery”,
the probability is significant for n = 1 (0.25%–0.8%). It
decreases rapidly with increasing n.

Fortunately, this problem is easy to solve: Let the radio
link receiver sort packets so that they are always passed
on in order. Typically, this is an option in the configuration
of radio link equipment, and it should be enabled on links

PC

SIRref

+

Power

Trans.
384kbps

Recv.

SIR

− Block
error

ARQ
RRQ

Network

Delay = 0.2s

TCP

max cwin = 7500 bytes

TCP

ACK

MTU = 1500 bytes

Fig. 5. Numerical example

where TCP performance is important. (One may want to use
one channel with in-order delivery TCP-packets, and but not
for real time streams like VoIP).

D. Spurious timeout

A TCP timeout event occurs when a packet, or its
acknowledgment, is delayed too long. Let RTTk denote
the round-trip time experienced by packet k and its cor-
responding acknowledgment. The TCP algorithm estimates
the mean and deviation of the round-trip time. Let R̂TTk

and σ̂k denote the estimated round-trip time and deviation,
based on measurements up to RTTk. TCP then computes the
timeout value for the next packet as RTO = R̂TTk + 4σ̂k,
which means that the probability that packet k causes a
spurious timeout is given by

P(RTTk > R̂TTk−1 + 4σ̂k−1) (11)

An idealized model of TCP is to assume that the the
estimation is perfect, and that the timeout value is set to
RTO = E(RTT) + 4σ(RTT). From the delay distribution of
Table I, we get RTO ≈ 103 ms and the probability that
the delay is larger is ≈ 0.68%. This is the probability of
spurious timeout events. When varying the parameters n

and ∆, we typically get a probability of spurious timeout
on the order of 0.5%–1% [9].

E. Performance implications

As explained above, we will concentrate on the case of
a large bandwidth-delay product. We will also assume that
in-order delivery is enabled, so there is no spurious fast
retransmit, only spurious timeout. For a concrete example,
we will consider the scenario in Figure 5: Radio link band-
width 384 kbit/s, packet size m = 1500 bytes, maximum
TCP window size w = 7500 bytes (i.e. five packets), and
a constant round-trip delay time, excluding the radio link
itself, of 0.2 s.

The available radio bandwidth (excluding losses) is
42.2 Kbyte/s. Due to the limited window size, TCP can
not utilize the link fully. The ideal TCP throughput is one

maximum size window per RTT. For the untweaked link, the
mean total RTT is 200 + 40 + 10.6 = 250.6 ms, implying
an ideal throughput of 29.2 Kbyte/s.

For each spurious timeout, the sending TCP enters slow
start. The window size is reset to 1 packet, and the slowstart
threshold is set to 2 packets. For the next four round-trip
times, we will send 1, 2, 3, and 4 packets, 10 packets
less than if we had kept sending a maximum window of
5 packets every RTT. This leads to

Throughput =
w

E(RTT)(1 + 10PTO)
(12)

(a more general formula is derived in [9]). Hence, over the
example radio link, we get a throughput of 27.4 Kbyte/s.
See also the summary in Table II.

IV. IMPROVING THE LINK-LAYER?

It is not trivial to define precisely what properties a
link should have in order to be friendly to TCP. It seems
clear that for example links with normal or uniformly
distributed and independent delays are friendly enough. One
crude measure is to examine the tail of the distribution.
More precisely, if X is a stochastic variable representing
the identically and independently distributed packet delays,
define

PTO(X) = P(X > E(X) + 4σ(X)) (13)

The motivation for this measure is the calculation of the
timeout value in TCP. Timeout is intended to be the last
resort recovery mechanism, and for TCP to work properly,
spurious timeout must be a rare event.

Also note that PTO(X) is invariant under the addition of
constant delays.

For distributions which we know are friendly to TCP, PTO

is small. For a general distribution, assuming only finite
first and second moments, PTO is bounded by Chebyshev’s
inequality. Comparing these values,

X uniform =⇒ PTO(X) = 0 (14)

X normal =⇒ PTO(X) ≈ 6.3 · 10−4 (15)

X wireless =⇒ PTO(X) ∼ 100 · 10−4 (16)

X arbitrary =⇒ PTO(X) = 625 · 10−4 (17)

we see that the two friendly distributions yield a PTO at
least two orders of magnitude below the worst case given by
Chebyshev. The wireless delay yields a significantly higher
PTO, although still with some margin to the worst case.

If we want to improve the system, where should we
put the effort? The power control design have many con-
straints of its own, relating to radio efficiency and cost
of deployment. It seems difficult to design and motivate
changes to the power control for improving the delay
distribution properties. Improvements to the TCP algorithm
in the end-nodes are important, but also difficult both for
technical and practical reasons, such as limited information
about what goes on in the link (note that the link and
the TCP implementations are not only in separate layers,

they are also geographically separate), and the complex
standardization and deployment process.

However, we do have some engineering freedom in the
link itself. Even if we do not want to modify the power
control, there are other link-local mechanisms we can add
or optimize.

• Optimize the retransmission scheduling, taking advan-
tage of the block loss correlation that we get after
power control.

• Use error correction coding.
• Tweak the delay distribution by adding additional

delays to selected packets.
In the remainder of this section, we investigate the

simplest of these options, namely the third one.

A. Introducing additional delays

Assume that we have a discrete delay distribution for X ,
P(X = di) = pi, where di < di+1. It is typical, but not
required, that also pi ≥ pi+1. Let µ and σ2 denote the mean
and variance of X .

We consider the following class of tweaks to X . For each
packet that experiences a delay X = di, buffer the packet
so that it gets an additional delay xi. This defines a new
distribution X̃ , P(X̃ = di + xi) = pi (or if it happens
that di + xi = dj + xj for some i 6= j, the corresponding
probabilities are added up). For an example of what X and
X̃ can look like, see Figures 6 and 7.

The parameters xi are constrained only by xi ≥ 0.
What is the best choice for xi? We select a maximum

allowed value, ε, for PTO(X̃), and minimize E(X̃) under
the constraint that PTO(X̃) ≤ ε. This means that we want
to push down our measure of “TCP-unfriendliness”, while
at the same time not adding more delay than necessary.

To simplify the problem a little, we require that PTO(X̃)
corresponds to a tail of the original distribution X . Let k

be the smallest value such that
∑

i≥k+2
pi ≤ ε. Let c =

dk+1 + δ < dk+2, where δ ≥ 0 is a robustness margin. We
impose the additional constraints PTO(X̃) = c, xi + di ≤
dk+1 for i ≤ k, and xi = 0 for i > k. Then, for any xi

satisfying these new constraints, we will have PTO(X̃) =∑
i≥k+2

pi ≤ ε. We get the optimization problem

min E(X̃) (18)

PTO(X̃) = c (19)

x ≥ 0 (20)

xi ≤ dk+1 − di, for i ≤ k (21)

This is a quadratic optimization problem. To write it in
matrix form, let x denote the vector (x1, . . . , xk)T , and
similarly for p and d. Let S = 16diag p − 17ppT , bi =
2pi(16di + c− 17µ),mi = dk+1 − di and α = 16σ2 − (c−
µ)2, and we can rewrite the problem as

min pT x (22)

xT Sx + bT x + α = 0 (23)

0 ≤ x ≤ m (24)

P [%]

Delay [ms]

80.6

0

8.8

40

9.3

60
0.6
100

0.6
120

0.03
160

0.03
180

µ + 4σ

Fig. 6. Original delay distribution

P [%]

Delay [ms]

80.6

0

8.8

40

9.3

86
1.2
120

0.03
160

0.03
180

µ + 4σ

Fig. 7. Optimized delay distribution

Since the symmetric matrix S is typically indefinite, the
problem is not convex. But it can be solved in exponential
time O(k33k), which has not been a problem thanks to the
very limited size of k.

The typical solution is of the form x =
(0, . . . , 0, xj ,mj+1, . . . ,mk)T . When the optimum
has this form, it means that the cheapest way to to
increase PTO, in terms of mean delay, is to increase the xi

corresponding to the smallest pi. Necessary and sufficient
conditions for the optimum to be of this form has not yet
been determined.

Now consider the delays di and probabilities pi in Ta-
ble I, and assume that packets are independently delayed
according to the given probabilities. This distribution is also
shown in Figure 6. Before tweaking the delays, we have
E(X) ≈ 10.6 ms, and PTO(X) ≈ 0.68 %.

With ε = 0.1% and δ = 10 ms, the above optimization
procedure yields k = 4 and the optimal additional delay
x ≈ (0, 0, 26, 20)T ms. This modified distribution is shown
in Figure 7. The mean additional delay is only 2.54 ms,
which seems to be a small cost, if we compare it to the
transmission delay for the packet, which is 40 ms, or the
end-to-end delay which necessarily is even larger. We also
achieve PTO < ε, if fact, we actually get PTO ≈ 0.06%.

For the tweaked link, we have a slightly larger RTT

(which in itself would decrease the throughput slightly),
and a significantly smaller PTO. The resulting throughput
is 28.8 Kbyte/s, an improvement by 5% compared to
the unmodified link, and only 1.4% below the ideal TCP

throughput. These figures are summarized in Table II.

Kbyte/s
Available radio bandwidth 42.2
Ideal TCP throughput 29.2
With wireless link 27.4
Modified wireless link 28.8

TABLE II

The important point is that a simple but carefully selected
modification to the link-layer yields a modest but significant
performance improvement.

V. CONCLUSIONS

In this contribution we have studied the effect retransmis-
sion in radio links has on packet properties. In particular,
we have delineated the implications that it has on TCP.
An input/output model has been suggested where the rôle
of the scheduling mechanism is made explicit. The main
contribution has been to show that a slight artificial increase
of the delays of certain retransmitted packets may reduce
the risk of spurious timeout in TCP and hence increase
the throughput; in an example the increase was 5%. The
artificial delay distribution is optimized off-line and applied
on-line. The additional delay that is applied to a packet
depends only on the retransmission delay experienced by
that same packet, and this information is available locally
at the link.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” ACM Computer
Communication Review, vol. 18, pp. 314–329, 1988.

[2] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang,
“TCP Westwood: bandwidth estimation for enhanced transport over
wireless links,” in MobiCom, Rome, Italy, 2001.

[3] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: an enhanced re-
covery algorithm for TCP retransmission timeouts,” ACM SIGCOMM
Computer Communication Review, vol. 33, no. 2, 2003.

[4] S. Cen, P. Cosman, and G. Voelker, “End-to-end differentiation of
congestion and wireless losses,” IEEE/ACM Trans. on Networking,
vol. 11, no. 5, pp. 703–717, 2003.

[5] N. Samaraweera, “Non-congestion packet loss detection for
TCP error recovery using wireless links,” IEE Proceedings-
Communications, vol. 146, no. 4, pp. 222–230, 1999.

[6] C. Fu and S. Liew, “TCP veno: ’TCP enhancement for transmission
over wireless access networks,” IEEE Journal on Selected Areas in
Communications, vol. 21, no. 2, pp. 216–228, 2003.

[7] H. Elaarag, “Improving TCP performance over mobile networks,”
ACM Computing Surveys, vol. 34, no. 3, pp. 357–374, 2002.

[8] R. Mukthar, S. Hanly, and L. Andrew, “Efficient Internet traffic
delivery over wireless networks,” IEEE Communications Magazine,
2003.

[9] N. Möller and K. H. Johansson, “Influence of power control and link-
level retransmissions on wireless TCP,” in Quality of Future Internet
Services, ser. Lecture Notes in Computer Science. Springer-Verlag,
2003, vol. 2811.

[10] A. Dahlén and P. Ernström, “TCP over UMTS,” in Radiovetenskap
och Kommunikation 02, ser. RVK, 2002.

[11] F. Khan, S. Kumar, K. Medepalli, and S. Nanda, “TCP performance
over CDMA2000 RLP,” in Proc. IEEE 51st VTC’2000-Spring, 2000,
pp. 41–45.

