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ON SCHÖNHAGE’S ALGORITHM
AND SUBQUADRATIC INTEGER GCD COMPUTATION

NIELS MÖLLER

Abstract. We describe a new subquadratic left-to-right gcd algorithm, in-
spired by Schönhage’s algorithm for reduction of binary quadratic forms, and
compare it to the first subquadratic gcd algorithm discovered by Knuth and
Schönhage, and to the binary recursive gcd algorithm of Stehlé and Zimmer-
mann. The new gcd algorithm runs slightly faster than earlier algorithms, and
it is much simpler to implement. The key idea is to use a stop condition for
hgcd that is based not on the size of the remainders, but on the size of the
next difference. This subtle change is sufficient to eliminate the back-up steps
that are necessary in all previous subquadratic left-to-right gcd algorithms.
The subquadratic gcd algorithms all have the same asymptotic running time,
O(n(log n)2 log log n).

1. Introduction

In this paper, we describe four subquadratic gcd algorithms: Schönhage’s al-
gorithm from 1971, Stehlé’s and Zimmermann’s binary recursive gcd, a hitherto
unpublished gcd algorithm discovered by Schönhage in 1987, and a novel gcd al-
gorithm that uses similar ideas in a hgcd framework. The algorithms are compared
with respect to running time and implementation complexity. The new algorithm
is slightly faster than all the earlier algorithms, and much simpler to implement.

The paper is organized as follows: First we review the development of integer
gcd algorithms in recent years. Section 2 describes the general structure and flavor
of the subquadratic gcd algorithms, the idea of using a half-gcd function, and
the resulting asymptotic running time. In Section 3, we briefly describe one variant
of Schönhage’s 1971 algorithm, and in Section 4, we describe the binary recursive
gcd algorithm. The objective of these two sections is to provide sufficient details
so that the new algorithm can be compared to earlier algorithms; we define the cor-
responding half-gcd functions, but we don’t provide correctness proofs or detailed
analysis.

Section 5 describes a gcd algorithm modeled on Schönhage’s algorithm for re-
duction of binary quadratic forms [8], and in Section 6, this algorithm is reorga-
nized into half-gcd form, resulting in a novel gcd algorithm. Section 7 describes
the implementation of the different gcd algorithms, their running times, and code
complexity.
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1.1. History. Euclid’s algorithm for computation of the greatest common divisor
is one of the oldest algorithms known. For inputs of size n, this algorithm runs in
time O(n2). Since the total size of the remainders is O(n2), no algorithm which
computes all the remainders can run asymptotically faster than this.

Lehmer’s algorithm from 1938 cuts the running time of Euclid’s algorithm by
a constant factor [4]. Lehmer’s algorithm computes the initial part of the quotient
sequence using single or double precision arithmetic on the most significant words
of the input, and applies several quotients at once to the multi-precision numbers.
Precise conditions for how many correct quotients can be computed in this way
were given by Tudor Jebelean in 1995 [2].

Euclid’s and Lehmer’s algorithms essentially work from the most significant end
of the input numbers, and compute a sequence of quotients. A different method,
binary gcd, was discovered by Stein in 1961 [11]. This algorithm starts from the
least significant end. It divides out powers of two, and repeatedly uses subtraction
to cancel the least significant bits. In 1994, Jonathan Sorenson described a k-ary
reduction which gains speed over the basic binary algorithm by doing more work
on just the least significant words [9] (cf., Lehmer’s algorithm which does more of
the work on the most significant one or two words), and this method was improved
further in Kenneth Weber’s accelerated gcd algorithm from 1995 [13].

Up to the twentieth century, gcd algorithms with quadratic running time have
been dominating in practice, and it has been the slowest of the algorithms for basic
arithmetic. E.g., subquadratic multiplication using the Karatsuba method has been
known since the 1960s, and multiplication based on fft was discovered by several
people (Strassen, Schönhage and Pollard) in the early 1970s, and these methods
are also in wide use.

The first subquadratic algorithm for gcd computation was described by Donald
Knuth in 1970 [3], and it was improved by Schönhage in the next year [7]. These
algorithms are essentially algorithms for computing the continued fraction repre-
sentation of a rational (or even real) number. One crucial observation is that even
if the total length of the remainders produced by Euclid’s algorithm is quadratic,
the total length of the quotients is only O(n). Schönhage’s algorithm uses divide-
and-conquer to recursively compute the quotient sequence. A clear description of
the algorithm details, for both the integer and polynomial case, can be found in
a paper by Klaus Thull and Chee K. Yap [12]. A similar algorithm is described
tersely in [6].

Schönhage’s 1971 algorithm is straightforward to apply to polynomial gcd, but,
to quote [12]: “The integer hgcd algorithm turns out to be rather intricate”. Both
analysis and actual implementation are quite difficult and error prone. For the same
reasons, the algorithm is seldom spelled out in detail in textbooks, and when it is,
it has been plagued by errors.

In 1987, Schönhage worked out a related algorithm that does not suffer from the
same intricacies, but the algorithm was not published at that time. For the next
decade, the new algorithm was known to Schönhage and a few students and corre-
spondents, but not generally known to other researchers or to authors of bignum
packages [5, 14].

In a paper from 1991, on the reduction of binary quadratic forms [8], Schönhage
applies the same ideas to a different problem. This algorithm can be translated, step
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by step, into a gcd algorithm that probably is equivalent to Schönhage’s unpub-
lished 1987 algorithm. Another application of the same ideas to a different algebraic
context, is Weilert’s algorithm for gcd computations on Gaussian integers [15]. In
this paper, however, we will consider only the classic case of integer gcd.

Since the recursive left-to-right algorithm from 1971 seemed so difficult in prac-
tice, Stehlé and Zimmermann investigated if one could use a similar divide-and-
conquer technique in a right-to-left fashion. In 2004 they published a binary recur-
sive gcd algorithm [10], which is significantly simpler. It is related to the binary
gcd algorithm in roughly the same way that Schönhage’s algorithm is related to
Euclid’s algorithm.

As far as the author is aware, there’s still no published reference for Schönhage’s
algorithm from 1987. Section 5 in this paper intends to fill that gap.

1.2. Notation. Sizes of numbers will be important, so we introduce the notation
#x for the bit size of x. Define #x = �log2(1 + |x|)�; then for x �= 0, #x = s
means that 2s−1 ≤ |x| < 2s. When # is applied to a vector or matrix, it denotes
the maximum bit size of the elements. Occasionally, we also need the minimum bit
size, for which we use the notation #(x, y) = min(#x, #y).

For the binary algorithm, we use the notation v(x) for the number of zeros at
the least significant end of x. More precisely, v(0) = ∞, and v(x) = k if 2k divides
x and 2−kx is odd.

When comparing matrices, we use the partial order given by elementwise com-
parison. In particular, M ≥ 0 means that the elements of M are non-negative. I
denotes the identity matrix. For compactness, column vectors are sometimes written
as (x1; x2) and 2 × 2-matrices as (a11, a12; a21, a22). All matrices have only integer
elements.

2. General structure of subquadratic gcd algorithms

In general, subquadratic gcd uses a divide-and-conquer strategy, based on the
observation that we can do a significant fraction of the work by examining only
half of the input. The differences between algorithms is in the precise definition of
which fraction of the work is done, and which half of the input is used.

We use a function hgcd(a, b) which takes two n-bit numbers as input, and
returns two smaller numbers α, β, of size roughly n/2, and a transformation matrix
M whose elements also are roughly of size n/2. The idea is that the smaller numbers
α, β should have the same gcd as a, b, and that the transformation M should be
relevant not only for a, b, but for some larger numbers that a, b were extracted
from.

The hgcd function is computed recursively, using an algorithm of the form shown
in Figure 1. The function split(A, p) splits A into one piece a consisting of p bits,
and a remaining piece A′. The function adjust(α, β, M, A′, B′) applies M to the
parts A′ and B′ that were not involved in the previous hgcd call, and combines
with the values α and β that were returned from that call.

With a fast implementation of hgcd, a fast gcd algorithm can be written as in
Figure 2. Each round through the loop reduces the size of A and B by a factor 3/4,
and gcd-base should be some good quadratic gcd-algorithm, which is used once
the numbers are small enough. We will focus on the hgcd algorithm, since gcd is
comparatively trivial.
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hgcd(A, B)
1 n ← #(A, B)
2 (a, A′) ← split(A, n/2), (b, B′) ← split(B, n/2)
3 (α, β, M) ← hgcd(a, b)
4 (A, B) = adjust(α, β, M, A′, B′)

� A, B are now of size ≈ 3n/4
5 (a, A′) ← split(A, n/2), (b, B′) ← split(B, n/2)
6 (α, β, M ′) ← hgcd(a, b)
7 (A, B) = adjust(α, β, M ′, A′, B′)

� A, B are now of size ≈ n/2
8 M ← M ′ · M
9 Return A, B, M

Figure 1. General structure of subquadratic hgcd.

gcd(A, B)
1 while #(A, B) > gcd-threshold

2 do
3 n ← #(A, B)
4 (a, A′) ← split(A, n/2), (b, B′) ← split(B, n/2)
5 (α, β, M) ← hgcd(a, b)
6 (A, B) ← adjust(α, β, M, A′, B′)
7 return gcd-base(A, B)

Figure 2. Subquadratic gcd based on hgcd.

2.1. Asymptotic running time. Let T (n) denote the maximum running time of
hgcd, with inputs of size n, and let µ(n) denote the maximum time for multiplying
or dividing two n-bit numbers. The split function takes O(n) time. The matrix
multiplication at line 8 of hgcd corresponds to a small number of scalar multiplica-
tions. We haven’t yet specified what adjust does, but let’s assume that it performs
a bounded number of multiplications and divisions of n-bit numbers. Then it follows
that T (n) ≤ 2T (n/2) + cµ(n) for some constant c, and this inequality implies

T (n) ≤ cµ(n) log2 n.

When fft methods are used for multiplication, and Newton’s method is used for
division1, µ(n) = O(n log n log log n), and then we get the asymptotic running time
T (n) = O(n (logn)2 log log n).

The additional loop in the gcd algorithm contributes only a constant factor.
One round through the loop takes time T (n/2) + c′µ(n), and reduces the size by a
factor 3/4. Then the total time of gcd is bounded by

2T (n) + 4c′µ(n).

Hence, gcd needs asymptotically twice as much time as hgcd with inputs of the
same size.

1In practice, division of large numbers will not contribute much to the running time, since, for
random inputs, large quotients are very unlikely.
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3. Classical Schönhage gcd

Given two numbers a and b, a > b, define the quotient sequence qi and the
remainders ri as

r0 = a, r1 = b,

qi = 	ri−1/ri
, ri+1 = ri−1 − qiri.

Also define two co-sequences ui and vi, such that ri = uia + vib:

u0 = 1, v0 = 0,

u1 = 0, v1 = 1,

ui+1 = ui−1 − qiui, vi+1 = vi−1 − qivi.

The co-factors are bounded by |uk| ≤ b/rk−1, |vk| ≤ a/rk−1.
Classical Schönhage gcd uses a hgcd-q function that computes the first half

of the quotient sequence. The hgcd-q function is used with inputs a and b that
are the most significant parts of some larger numbers A and B, and we want to
ensure that the quotients computed for a and b are correct also for A and B. This
is similar to Lehmer’s algorithm, but we use most significant parts a and b that are
larger than just one or two words.

The following criterion guarantees that quotients computed from just the most
significant parts of two numbers are in fact valid for the full numbers.

Lemma 1 (Jebelean’s criterion). Let a > b > 0, and let ri, qi be the quotient
and remainder sequences as defined above. Assume that the following relations are
satisfied for 0 ≤ i ≤ k:

ri+1 ≥ max(−ui+1,−vi+1),

ri − ri+1 ≥ max(ui+1 − ui, vi+1 − vi).

Then for any p > 0 and any A′ and B′, with 0 ≤ A′, B′ < 2p, the sequence q1, . . . , qk

is the initial quotient sequence for the numbers A = a2p + A′, B = a2p + B′.

We refer to [2] for the proof. There is also a simplified version of the criterion,
using only the size of the remainders.

Lemma 2 (Jebelean’s simplified criterion). Let a > b > 0, and let ri, qi be the
remainder sequence. Let n = #a and m = �n/2�. If k is such that #rk+2 > m,
then Jebelean’s criterion is satisfied for 0 ≤ i ≤ k.

Note that #rk > m + 1 is necessary but not sufficient.
We can now define precisely what the hgcd-q function is expected to return. The

inputs are the two numbers a and b, with a ≥ b > 0 and n = #a. Let m = �n/2�.
If #b ≤ m or #(a mod b) ≤ m, the function fails. Otherwise, it computes the
quotient sequence until it encounters the first remainder rk+3 that fits in m bits. It
then returns rk, rk+1 and a matrix M made up from the corresponding co-factors.
The matrix elements are bounded by #M ≤ 	n/2
 − 1.

It is possible to save a little work by returning also rk+2 and rk+3, and use
Jebelean’s full criterion to check if the corresponding quotients are correct, but for
simplicity we omit the details of this variation.

The algorithm in Figure 3 computes hgcd-q recursively. The source of most of
the complexity of the algorithm is that we do not have precise control over the size
of the remainders after the second recursive call. At line 24 we have #r0 > m, but r1



6 NIELS MÖLLER

hgcd-q(A, B)
1 n ← #A, m ← �n/2�
2 if #B ≤ m
3 then return failure

4 n1 ← n − m
5 if #B > m + �n1/2� + 1
6 then
7 Split: A = 2ma + A′, B = 2mb + B′

8 (α, β, M) ← hgcd-q(a, b)
9 (r0; r1) ← 2m(α; β) + M(A′; B′)

10 else � Or if the hgcd-q call failed
11 (r0, r1) ← (A, B), M ← I
12 while #r0 > m + �n1/2� + 1 and #r1 > m
13 do
14 q ← 	r0/r1

15 (r0, r1) ← (r1, r0 − qr1)
16 Update M accordingly.
17 p ← 2m − #r0, n2 ← #r0 − p
18 if #r1 > p + �n2/2� + 1
19 then
20 Split: r0 = 2pa + A′, r1 = 2pb + B′

21 (α, β, M ′) ← hgcd-q(a, b)
22 (r0; r1) ← 2p(α; β) + M ′(A′; B′)
23 M ← M ′ · M
24 if #r1 < m
25 then
26 if v0 = 0
27 then return failure

28 Pop last quotient q; update M
29 (r0, r1, r2) ← (r1 + qr0, r0, r1)
30 else
31 q ← 	r0/r1
, r2 ← r0 − qr1

32 if #r2 < m
33 then
34 if v0 = 0
35 then return failure

36 Pop last quotient q; update M
37 return r1 + qr0, r0, M
38 q ← 	r1/r2
, r3 ← r1 − qr2

39 while #r3 > m
40 do
41 Update M
42 q ← 	r2/r3

43 (r0, r1, r2, r3) ← (r1, r2, r3, r2 − qr3)
44 return r0, r1, M

Figure 3. Classical Schönhage gcd
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binary-gcd(a, b)
1 j ← 0
2 (x, y) ← (a, b)
3 while y �= 0
4 do
5 k ← v(y) − j
6 q ← bdiv(2−jx, 2−jy)
7 (x, y) ← (y, x + q2−ky)
8 j ← j + k
9

10 return 2−jx

Figure 4. Binary gcd

can be smaller. We may have to undo one or two of the divisions performed by the
second hgcd-q call, in order to return two remainders that satisfy the specification;
see Section 6.3 for an example where this happens.

How do we find the previous quotient at line 28 and 36? One way is to maintain
a quotient stack, storing the complete quotient sequence leading up to the current
remainders. The bookkeeping cost for such a stack is O(n) in both space and time.
However, the previous quotient can also be recovered directly from M . For further
details and analysis of this algorithm, we refer to [12].

4. Binary recursive gcd

Binary gcd works from the least significant end. Instead of the division used
in Euclid’s algorithm, we use binary division, denoted bdiv(a, b) and defined as
follows. Let a, b be two integers, a odd and b even and non-zero. Let k = v(b), so
that b′ = 2−kb is odd. The quotient q = −a(b′)−1 (mod 2k+1) satisfies

r = a + qb′ = 0 (mod 2k+1)

and q is uniquely determined modulo 2k+1. Since a is odd, q is odd too, and can
be chosen in the interval |q| < 2k. Then 2−k|q| < 1, so that

(1) |r| = |a + q2−kb| ≤ |a| + 2−k|q||b| < |a| + |b|.
It is also clear that q depends only on the k + 1 least significant bits of a and b′, or
on the 2k + 1 least significant bits of a and b.

To apply this to gcd computation, first note that gcd(b, r) = 2k gcd(a, b). Con-
sider the algorithm in Figure 4. Why does this algorithm terminate? After n rounds
through the loop, j ≥ n, so that 2n divides x and y. This implies that as long as
y �= 0, we must have |y| ≥ 2n. From this and equation (1), we get

2n ≤ |y| ≤ Fn+2 max(|a|, |b|)
where Fn is the nth Fibonacci number. These inequalities can hold for only finitely
many n, hence the algorithm must terminate with y = 0 after a finite number of
steps. The use of quotients in the symmetric interval −2k < q < 2k is essential; if
one tries to use positive quotients 0 < q < 2k+1, the algorithm no longer terminates.

The binary recursive algorithm by Stehlé and Zimmermann uses a function
hgcd-b defined as follows. The inputs are a bit size � and two numbers 0 ≤ a, b < 2�,
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with a odd and b even. Let k = 	(� − 1)/2
, and consider the remainder sequence
ri formed by repeated use of bdiv. For some i, we have v(ri) < k ≤ v(ri+1). Then
hgcd-b returns j = v(ri), α = 2−jri, β = 2−jri+1, and a matrix M such that(

α
β

)
= 2−2jM

(
a
b

)
.

We have j < k and j + v(β) ≥ k, and the size of the output is bounded by

#M ≤
⌊

11(j + 1)
8

⌋
≤

⌊
11k

8

⌋
,

#(α, β) ≤
{

� −
⌊

5j−12
8

⌋
, j > 2,

�, j = 1, 2.

These bounds are related to powers of the matrix (0, 2; 2, 1), with eigenvalues (1±√
17)/2, with log2[(1 +

√
17)/2] < 11/8. The hgcd-b function doesn’t quite reduce

the input numbers a and b to numbers α and β of half the size, but the reduction
is sufficient for gcd to terminate in subquadratic time.

The choice of k implies 2k+1 ≤ �, which guarantees that the quotients computed
by hgcd-b are valid for any numbers for which a and b are the � least significant
bits. We can now describe Stehlé’s and Zimmermann’s binary recursive algorithm.

hgcd-b(A, B, �)
1 k ← 	(� − 1)/2

2 if v(B) ≥ k
3 then return 0, A, B, I
4 �1 = k + 1
5 Split: A = 2�1A′ + a, B = 2�1B′ + b
6 (j1, α, β, M) ← hgcd-b(a, b, �1)
7 (A; B) ← (α, β) + 2�1−2j1M(A′; B′)
8 v1 ← v(B)
9 if j1 + v1 ≥ k

10 then return j1, A, B, M
11 q ← bdiv(A, B)
12 (A, B) ← 2−v1(B, A + 2−v1qB)
13 M ← (0, 2v1 ; 2v1 , q) · M
14 if j1 + v1 + v(B) ≥ k
15 then return j1, A, B, M
16 �2 ← 2(k − j1 − v1) + 1
17 Split: A = 2�2A′ + a, B = 2�2B′ + b
18 (j2, α, β, M ′) ← hgcd-b(a, b, �2)
19 (A; B) ← (α, β) + 2�2−2j2M ′(A′; B′)
20 M ← M ′ · M
21 return j1 + v1 + j2, A, B, M

For analysis and further details, see [10].

5. Schönhage’s 1987 algorithm

Let a and b be two positive integers. Euclid’s algorithm repeatedly replaces the
larger number by the remainder when dividing the larger number by the smaller.
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We can decompose these steps further: Repeatedly replace the larger number by
the difference between the numbers.

The Euclidean step corresponds to multiplying the vector (a, b)T by one of the
matrices (

1 −q
0 1

)
or

(
1 0
−q 1

)
depending on which of a and b is largest. The decomposition of the division step as
q subtraction steps corresponds to the qth power (1,−q; 0, 1) = (1,−1; 0, 1)q.

Note that these matrices all have determinant 1, hence they have inverses with
all-integer elements. The correctness proof for Euclid’s algorithm can be generalized
to the following important observation:

Lemma 3. If a, b, α, and β are integers, M is a 2 × 2 matrix, detM = 1, and

(2)
(

a
b

)
= M

(
α
β

)
,

then gcd(a, b) = gcd(α, β).

Proof. Equation (2) directly implies that gcd(α, β) divides both a and b, and hence
also gcd(a, b). By multiplying with M−1 we get the other direction; gcd(a, b) divides
gcd(α, β). �

We also need a bound for the matrix elements.

Lemma 4. If a, b, α, β > 0, #(a, b) ≤ n, #(α, β) > s, and equation (2) holds
with some M ≥ 0, then #M ≤ n − s. In fact, if M = (u, u′; v, v′), we also have
#(u + u′, v + v′) ≤ n − s.

Proof. From the first row of equation (2) we get

2n > a = uα + u′β ≥ u2s + u′2s = 2s(u + u′)

and the result follows by dividing both sides by 2s. The same argument applies to
the second row. �

During the algorithm, we need a division operation sdiv(a, b, s) that never returns
a too small “remainder”. Input is a bit size s and two positive integers a and b with
#(a, b) > s. Then sdiv produces the largest q such that qb < a and #(a−qb) > s. It
can be implemented using standard division as follows: First compute q′ = 	a/b
. If
#(a−q′b) > s, set q = q′, otherwise, set q = q′−1. Finally, return q and r = a−qb.

After these preliminaries, we describe a generalized gcd function.

5.1. The sgcd function.

Lemma 5. Given a bit size s ≥ 0 and two positive integers a and b with #(a, b) > s,
there exists integers α, β, and a matrix M such that

(3)

M ≥ 0, α, β > 0,(
a
b

)
= M

(
α
β

)
, #(α, β) > s,

detM = 1, #(α − β) ≤ s.

Existence follows from the following algorithm, using repeated division:
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sgcd-slow(a, b, s)
1 M ← I
2 while #(a − b) > s
3 do
4 if a > b
5 then
6 (q, a) ← sdiv(a, b, s)
7 M ← M · (1, q; 0, 1)
8 else
9 (q, b) ← sdiv(b, a, s)

10 M ← M · (1, 0; q, 1)
11 return a, b, M

This is essentially Euclid’s algorithm, but with a different stop condition. In fact, α,
β, and M are determined uniquely by a, b, s, and the conditions of equation (3); this
is not needed for the algorithm to work, but it is nevertheless proved in Appendix A.

By Lemma 3, gcd(a, b) = gcd(α, β), and by Lemma 4, #M ≤ #(a, b) − s. The
sgcd function is a generalization of extended gcd, since for s = 0, sgcd terminates
with α = β = gcd(a, b) and a matrix M = (u, u′; v, v′) such that gcd(a, b) =
v′a − u′b = −va + ub.

5.2. Subquadratic sgcd. The sgcd algorithm in Figure 5 is a step-by-step trans-
lation of Schönhage’s algorithm for reduction of quadratic forms [8].

The correctness argument in [8] carries over directly, and will not be repeated
here, except for explaining Step 8 which is the most subtle one.

Consider the case p > 0. Before the adjustment, we have #(α, β) > s′, #(α−β) ≤
s′. We also have p + s′ = s + 1 and a bound for the matrix elements, #M ≤
(n + s − p) − s′ = n − 1. Let M = (u, u′; v, v′), then the new adjusted values for α
and β are given by

2p

(
α
β

)
+

(
v′ −u′

−v u

) (
A′

B′

)
.

Consider the first row. For the first term, we have #(2pα) > p+ s′ = s + 1. For the
second term, we have #(v′A′ − u′B′) ≤ n − 1 + p = s. Then

2pα + (v′A′ − u′B′) ≥ 2s+1 − 2s = 2s.

A similar inequality holds for β.
We also need an upper bound for #(α − β) after adjustment. Let d denote the

difference α − β before the adjustment step, then #d ≤ s′. After the adjustment,
we get

|α − β| ≤ 2pd +
∣∣(v + v′)a0 − (u + u′)b0

∣∣
< 2p+s′

+ 2n−1+p = 2s+1 + 2s < 2s+2.

To summarize, after Step 8, we have #(α, β) ≥ s, #(α − β) ≤ s + 2.
The analysis for the running time in [8] also applies directly to sgcd. Let T (n)

denote the maximal running time for inputs with s ≤ 3n and #(a, b) ≤ n+s. Then
the argument in [8] shows that T (n) ≤ cµ(n) log n.

When using sgcd to compute plain gcd, without co-factors, one disadvantage
of the sgcd algorithm as described above is that it computes the matrix M even
though it is not needed. One important optimization is to note that if the caller
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sgcd(a, b, s)
1 if #(a, b) ≤ s + 2

then (α, β) ← (a, b), M = I; goto Step 9
2 n ← #(a, b) − s � Number of bits to reduce

if s ≤ n
then

p ← 0, s′ ← s, α ← a, β ← b
else

s′ ← n, p ← s − n + 1
Split: a = 2pα + A′, b = 2pβ + B′

3 h ← s′ + 	n/2

if #(α, β) ≤ h

then M ← I; goto Step 5
4 (α, β, M) ← sgcd(α, β, h)
5 while #(α, β) > h

do
if #(α − β) ≤ s′

then goto Step 8.
One sdiv step on (α, β); update M

6 (α, β, M ′) ← sgcd(α, β, s′)
7 M ← M · M ′

8 if p > 0
then (α; β) ← 2p(α; β) + M−1(A′; B′)

9 while #(α − β) > s
do

One sdiv step on (α, β); update M
10 return α, β, M

Figure 5. The sgcd algorithm

doesn’t need M , and p = 0, then it is not necessary to compute the product M ·M ′ in
Step 7, or the two factors. Avoiding these unnecessary computations is essential for
making the algorithm competitive, since it eliminates the final and largest matrix
multiplication.

6. A new half-gcd function

In this section, we reorganize Schönhage’s 1987 algorithm to put it into half-gcd
form. There are two main changes: The responsibility for the adjustment, Step 8,
is moved to the caller of the function, and the s parameter is not passed freely, but
is determined by input size. This makes the algorithm more streamlined and easier
to compare to the other half-gcd algorithms, and the elimination of s also makes
the analysis of the running time more straightforward.

6.1. The hgcd-d function. In short:

hgcd-d(a, b) = sgcd(a, b, 	#(a, b)/2
 + 1).

The inputs are two integers a, b > 0. Put n = #(a, b) and s = 	n/2
+1, and assume
#(a, b) > s. Then hgcd-d returns two numbers α, β > 0, with #(α, β) > s, but
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#(α − β) ≤ s, and a matrix M ≥ 0 such that(
a
b

)
= M

(
α
β

)
detM = 1.

The bound in Lemma 4 implies that #M ≤ n − s < n/2. This choice of s is just
sufficient to make it useful to apply hgcd-d to the most significant part of two
larger numbers. The following lemma plays the role of the adjustment Step 8 in
Section 5.2.

Lemma 6. Let A and B be two given numbers of size N = #(A, B), assume
0 < p < N . Split A and B into the least significant p bits A′ and B′ and the
n = N − p most significant bits a and b, so that A = 2pa + A′ and B = 2pb + B′.
Also assume that #(a, b) > 	n/2
 + 1, so that hgcd-d(a, b) is well defined. Let
(c, d, M) = hgcd-d(a, b), and form

(4)
(

C
D

)
= M−1

(
A
B

)
= 2p

(
c
d

)
+ M−1

(
A′

B′

)
.

Then #(C, D) > p + 	n/2
 and #(C − D) ≤ p + 	n/2
 + 2.

Proof. From the definition of hgcd-d, we have #M ≤ n − s, #(c, d) > s, and
#(c − d) ≤ s, where s = 	n/2
 + 1. Note that s > n/2 > n − s. Let M−1 =
(v′,−u′;−v, u). In equation (4) we have

C = 2pc + v′A′ − u′B′

> 2p2s − 2n−s2p ≥ 2p2s−1 = 2p+�n/2�.

Then #C > p + 	n/2
 as claimed, and the same holds for D. Next,

|C − D| = |2p(c − d) + (v + v′)A′ − (u + u′)B′)|
< 2p2s + 2n−s2p ≤ 2p+s+1 = 2p+�n/2�+2. �

6.2. Subquadratic hgcd-d. The recursive algorithm in Figure 6 computes hgcd-

d in subquadratic time. The following lemma explains the most essential details:

Lemma 7. In the two recursive calls in Step 6 and 17 of the hgcd-d algorithm,
we have

#(a, b) ≤ �N/2�.
The loops at Step 9 and Step 20 are executed at most 4 times each.

Proof. Consider the two recursive calls in turn. For the first call in Step 6, it is
clear that n1 = �N/2�. We have

p1 + 	n1/2
 = 	N/2
 + 	(N + 1)/4
 = 	3N/4

and #(a, b) = #(A, B)− p1 > 	n1/2
 + 2, so that hgcd-d(a, b) is well defined. By
Lemma 6, the new A and B after the call satisfy #(A − B) ≤ 	3N/4
 + 2, and
after at most two sdiv steps, #(A, B) ≤ 	3N/4
 + 2. Then at most two additional
steps are needed to reduce the size one more bit (two Euclid steps using standard
division reduces the size by at least one bit. The remainders produced by sdiv differ
from the Euclid remainders only when one of the Euclid remainders is of size S or
smaller, and in this case, the hgcd-d algorithm terminates with no further steps
of any kind).
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hgcd-d(A, B)
1 N ← #(A, B), S ← 	N/2
 + 1.
2 if #(A, B) > 	3N/4
 + 2
3 then
4 p1 ← 	N/2
, n1 ← N − p1 = �N/2�
5 Split: A = 2p1a + A′, B = 2p1b + B′

6 (α, β, M) ← hgcd-d(a, b)
7 (A; B) ← 2p1(α; β) + M−1(A′; B′).
8 else M ← I
9 while #(A, B) > 	3N/4
 + 1 and #(A − B) > S

10 do
11 One sdiv step on (A, B); update M
12 if #(A, B) > S + 2
13 then
14 N2 ← #(A, B)
15 p2 ← 2S − N2 + 1, n2 ← N2 − p2

16 Split: A = 2p2a + A′, B = 2p2b + B′

17 (α, β, M ′) ← hgcd-d(a, b)
18 (A; B) ← 2p2(α; β) + M ′−1(A′; B′)
19 M ← M · M ′.
20 while #(A − B) > S
21 do
22 One sdiv step on (A, B); update M
23 return A, B, M

Figure 6. The hgcd-d algorithm.

For the second recursive call, Step 17, first note that n2 = 2(N2 − S) − 1. The
bound N2 ≤ 	3N/4
 + 1 implies n2 = 2(N2 − S) − 1 ≤ 2(	3N/4
 − 	N/2
) − 1 ≤
�N/2� − 1.

Next, 	n2/2
 = N2−S−1, and since #(a, b) > S+2−p2 = N2−S+1 = 	n2/2
+2,
hgcd-d(a, b) is well defined. We also get

p2 + 	n2/2
 = (2S − N2 + 1) + (N2 − S − 1) = S.

Then Lemma 6 implies that after the call, the new A and B satisfy #(A − B) ≤
S + 2. It then takes at most four sdiv steps until the algorithm terminates with
#(A − B) ≤ S. �

Lemma 8. The above algorithm runs in time T (n) = cµ(n) log n, where µ(n)
is the time for one multiplication or division of n-bit numbers. With fft-based
multiplication, T (n) = O(n(log n)2 log log n).

Proof. Let T (n) denote the maximum running time of the hgcd-d algorithm, with
input a and b of size n. Then T (n) ≤ 2T (�n/2�) + cµ(n), which implies T (n) ≤
cµ(n) log n. �

All the considered subquadratic gcd algorithms have the same asymptotic run-
ning time, but they may differ by constant factors.
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6.3. The need for backup steps. The difference between hgcd-q and hgcd-d,
i.e. between Schönhage’s 1971 algorithm and the new algorithm, is quite subtle.
The difference is in the definition of a correct reduction, and in the correctness and
stop conditions that follow from that.

The correctness of hgcd-q depends on the quotient sequence being correct. In
fact, the hgcd-q algorithm is expected to produce a quotient sequence that is the
prefix of the continued fraction expansion for any x in the interval A/(B + 1) <
x < (A + 1)/B. It seems that to achieve this, the backup steps are essential.

Let’s consider an example where hgcd-q without backup logic returns an incor-
rect result: A = 858824 and B = 528747. Then n = 20, m = 10, gcd(A, B) = 1 and
the quotient sequence is (1, 1, 1, 1, 1, 1, 20, 1, 1, 3, 3, 5, 8, 3). The hgcd-q algorithm
reduces these numbers as follows:

Input Output
858824, 528747
First rec. call 128, 66

838, 516 (2,−3;−3, 5)
Loop 64144, 3119

131407, 67263 (5,−8;−8, 13)
Second rec. call 129, 65

4009, 194 (1,−20;−1, 21)
Without backup 1764, 1355

(165,−268;−173, 281)

The final remainders, r0 = 1764 and r1 = 1355, violate both versions of Jebe-
lean’s criterion, since r0 − r1 = 409 < 2m, but v2 − v1 = 549. For any p ≥ 3, let
A′ = 1 and B′ = 2p − 1; then the numbers 2pA + A′ and 2pB + B′ have a quo-
tient sequence that starts with (1, 1, 1, 1, 1, 1, 20, 2), for example, (8A+1, 8B +7) =
(6870593, 4229983) have the quotient sequence (1, 1, 1, 1, 1, 1, 20, 2, 53, 4, 2, 12, 29).
This shows that the backup steps in the hgcd-q algorithm are essential for cor-
rectness; the final quotient must be discarded.

The stop and correctness conditions for hgcd-q are related to Jebelean’s crite-
rion. We can only be sure that a quotient qk is correct if the remainder after the
next division step, rk+2 = rk − qk+1rk+1, is large. And the stop condition checks if
the remainder after yet another division, rk+3 = rk+1 − qk+2rk+2, is small.

The new algorithm, hgcd-d, uses a relaxed notion of a correct reduction. It does
not pay attention to the quotient sequence, instead its correctness is based on the
more general Lemma 3. This relaxation makes it possible to use simpler correct-
ness and stop conditions: A co-factor matrix is correct if the two corresponding
remainders rk and rk+1 are large, and the stop condition checks if |rk − rk+1| is
small.

7. Evaluation

The gcd algorithms were implemented in the mpn layer in gmp [1], and compared
with respect to running time and implementation complexity. We compare the
following algorithms:
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Table 1. Threshold values used for the various algorithms, tuned
for an amd Duron.

Algorithm Thresholds
hgcd gcd

mpn rgcd 191 951
mpn bgcd 133 1015
mpn sgcd 95 1193
mpn ngcd 159 866

mpn gcd: Kenneth Weber’s accelerated gcd algorithm, shipped in gmp-4.1.4,
falling back to Lehmer’s algorithm for small inputs.2

mpn rgcd: Schönhage’s 1971 algorithm, as described in Section 3.
mpn bgcd: Stehlé’s and Zimmermann’s recursive binary gcd algorithm, as

described in Section 4.
mpn sgcd: Schönhage’s 1987 algorithm, as described in Section 5. The imple-

mentation avoids computing unneeded matrices.
mpn ngcd: gcd based on the hgcd-d algorithm, as described in Section 6.

As far as possible, the implementation avoids splitting numbers at arbitrary bit
boundaries, and instead works with word boundaries.

7.1. Threshold values. All the subquadratic algorithms use quadratic base cases
in two ways, in the half-gcd and full-gcd functions. The use of gcd-threshold has
already been described in Section 2. For the hgcd-style functions, when the input
size is below hgcd-threshold, the functions stop chopping numbers in half, and
instead repeatedly chop off two words at a time, using a hgcd function specialized
for input size of two words, and producing a transformation matrix with single word
elements. For the left-to-right algorithms, this is analogous to Lehmer’s algorithm.
The input size and the thresholds are expressed in number of words, where a word
is 32 bits on the architecture used for the evaluation.

The optimal threshold values depend on the architecture. Table 1 gives the
thresholds used on an amd Duron processor. These values are tuned to get close to
optimal.

7.2. Performance. Figure 7 shows the running time for inputs ranging from 10
words (320 bits) to 110000 words (3400000 bits), evaluated on an 1.4 GHz amd

Duron (a fairly low-end PC). On this logarithmic scale, all the subquadratic algo-
rithms are very close, and they start to pay off for sizes around 1000 words and
larger; at 10000 words, the subquadratic algorithms are about twice as fast as We-
ber’s accelerated gcd algorithm, and for 100000 words they are about 30 times
faster.

The running time for the different subquadratic algorithms differs by constant
factors, which can be seen if we focus on input sizes of a few thousand words. The
running times on the same processor are shown in Figure 8, using a linear scale for
both input size and running time.

2
gmp-4.1.4 uses the binary algorithm for small inputs, but it turns out that Lehmer’s algorithm

is faster for numbers up to a few dozen words, so that is what is used in this evaluation.
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Figure 7. Running for large inputs on amd Duron. Both sizes
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scale. The mpn gcd function is much slower than the subquadratic
algorithms, which all look very similar.
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mpn bgcd. The new algorithm, mpn ngcd, is fastest, but with a very
small margin to mpn rgcd.
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Table 2. Number of non-comment lines of code, and cyclomatic
complexity, for the subquadratic gcd algorithms.

Algorithm # lines Cyclomatic
complexity

mpn rgcd 1967 292
mpn bgcd 1348 206
mpn sgcd 760 144
mpn ngcd 733 133

We see the quadratic behavior of the mpn gcd function, as expected. The binary
algorithm is 5–10% slower than Schönhage’s 1971 algorithm. It is often hard to
explain performance differences between algorithms that have the same asymptotic
running time and differ only by a constant factor. The binary algorithm is simpler
in structure, but works with slightly larger numbers. Where an application of the
hgcd-q function in Schönhage’s algorithm reduces n-bit numbers to a size close
to n/2 bits, an application of the hgcd-b function in the binary algorithm can
produce numbers of size close to 11n/16. Other factors that need investigation are
the average number of quotients and the average number of quotients that can be
represented by a single word matrix M .

Also seen in Figure 8, implementing Schönhage’s 1987 algorithm as described in
Section 5 results in a subquadratic algorithm that is slower than both the binary re-
cursive algorithm and Schönhage’s 1971 algorithm. However, when reorganized into
half-gcd form, performance is significantly improved, and the algorithm mpn ngcd
is slightly faster than mpn rgcd.

7.3. Complexity. Of the compared algorithms, Schönhage’s 1971 algorithm seems
to be the most complex. Comparisons using popular code complexity measures, such
as number of lines and McCabe’s cyclomatic complexity, support this impression.
See Table 2 for a detailed comparison. In our implementation, Schönhage’s 1971
algorithm, mpn rgcd, is more than twice as large as the new mpn ngcd algorithm.

When reading the line counts, one should keep in mind that the implementation
environment is quite low-level. The code uses library functions for basic arithmetic
on large non-negative numbers, but both signs and storage sizes have to be kept
track of explicitly.

In this comparison, the binary recursive algorithm, mpn bgcd, turns out to be
more complex than mpn ngcd. This is a little surprising, since the algorithm as
described in Section 4 is so straightforward. Some factors that contribute to the
measured implementation complexity of the binary recursive algorithm are:

• The bdiv function is not part of the standard arithmetic library.
• It is essential to the binary recursive algorithm to use signed quotients and

matrix elements.
• Bit shift logic in the adjustment step, depending on the j returned by the

recursive hgcd-b calls.

8. Conclusions

We describe a new subquadratic gcd algorithm building on Schönhage’s work
in the late 1980s. This is shown to have the same asymptotic complexity as both
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Schönhage’s algorithm from 1971, and the binary recursive algorithm by Stehlé and
Zimmermann. The new algorithm is slightly faster and much simpler to implement.
Hopefully, this can open the door for wider use of subquadratic gcd in practice.

Appendix A. Uniqueness of M

To prove that α, β, and M , the output of sgcd(a, b, s), is uniquely determined
by a, b, and s, we first show that the matrix M has a particular factorization.

Lemma 9. If M ≥ 0 and det M = 1, then M can be factorized as a product where
each factor is either (1, 1; 0, 1) or (1, 0; 1, 1).

Proof. We use induction over the sum of matrix elements. Let M = (u, u′; v, v′)
and n = u + u′ + v + v′. If n = 2, then the identity matrix is the only one that has
unit determinant and non-negative elements, and it has a trivial factorization.

Make the induction assumption that all matrices with element sum smaller than
n have a factorization of the required form.

For n > 2, we have a few different cases, depending on the relative order of the
matrix elements u, u′, v, and v′. If one row is elementwise larger than the other,
e.g., u ≥ v and u′ ≥ v′, then

M =
(

1 1
0 1

) (
u − v u′ − v′

v v′

)

where the matrix on the right is non-negative, has unit determinant, and a reduced
element sum n − u′ − v′ < n (note that detM = 1 implies that u and v′ are non-
zero). Hence, by induction, it has a factorization of the required form. Similarly, if
u ≤ v and u′ ≤ v′, we can take out the factor (1, 0; 1, 1).

If neither row is larger than the other, two cases remain: If u > v and u′ < v′,
then 1 = uv′ − u′v ≥ v′(u − v) ≥ 1, which implies that v′ = u − v = 1, and leads
to M = I, contradicting n > 2. On the other hand, if u < v and u′ > v′, then
1 = uv′ − u′v ≤ v(v′ − u′) ≤ 0, a contradiction. �

We can now prove that α, β, and M are uniquely determined by a, b, s, and the
conditions of equation (3). This result follows from the next lemma, specialized to
k = 2s.

Lemma 10. If k > 0 and a, b ≥ k are given, then α, β, and M are uniquely
determined by the requirements (a; b) = M(α; β), M ≥ 0, detM = 1, α ≥ k,
β ≥ k, and |α − β| < k.

Proof. From the previous lemma, we know that either M = I, M = (1, 1; 0, 1)M ′,
or M = (1, 0; 1, 1)M ′, where M ′ ≥ 0 and detM ′ = 1. When M �= I, let (a′; b′) =
M ′(α; β), then a′, b′ ≥ k and either (a′, b′) = (a − b, b) or (a′, b′) = (a, b − a).

We use induction on n = max(a, b).
If |a − b| < k, in particular if a = b, then we must have M = I, since otherwise,

either a′ or b′ equals |a − b| < k, which contradicts a′, b′ ≥ k.
If |a − b| ≥ k, then we must have M �= I. If a > b, then we must have (a′; b′) =

(a − b; b), so that max(a′, b′) < a = n. By induction, α, β, and M ′ are uniquely
determined by a′, b′, and k, and then M = (1, 1; 0, 1)M ′. The case a < b is similar.

�
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