

AN10548
Getting started with LPC288x

Rev. 01 — 8 January 2007 Application note

Document information

Info Content

Keywords LPC2880, LPC2888, Flash, Interrupt handling, Timer, CGU

Abstract This application note provides code examples for the various peripherals
of the LPC288x. This application note also makes an attempt to draw a
comparison of the LPC288x with the other devices of the LPC2000 family

NXP Semiconductors AN10548
 Getting started with LPC288x

Revision history

Rev Date Description

01 20070108 Initial version

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 2 of 25

http://www.nxp.com

NXP Semiconductors AN10548
 Getting started with LPC288x

1. Introduction
The LPC288x (LPC2880/LPC2888) includes an ARM7TDMI CPU with an 8 kB cache.
The LPC2888 includes a 1 MB Flash memory system. It has an on-chip DC-to-DC
converter that can generate the required voltages from a single battery or from USB
power. Some other important peripherals are a high-speed USB 2.0 device interface, I2S
interface, SD/MMC card interface and 16-bit stereo A/D and D/A converters (with
amplification and gain control).

In many ways, the LPC2888/LPC2880 is different compared to other devices in the
LPC2000 family. The LPC288x differs in the clocking structure; interrupt handling and
flash programming (to list a few). So code written for an LPC2000 device may not
necessarily work for the LPC288x without modifications.

This application note attempts to cover the various aspects that need to be considered
while writing an application for the LPC288x or porting existing software from any
LPC2000 family device to the LPC288x.

The various topics covered in this application note are as follows:
1. Basic assembly startup code
2. Port pins
3. Clock Generation Unit (CGU)
4. Interrupt handling using Cache and Timer0
5. Flash programming

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 3 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

2. Basic startup code
The startup assembly code for the LPC288x is similar to the other LPC2000 devices
since it is also based on the ARM7TDMI-S architecture. One has to of course take into
consideration that the on-chip Flash and the on-chip SRAM start from address
0x1040 0000 and 0x40 0000, respectively, so the stack pointers and heap should be
arranged accordingly. In other LPC2000 devices, the Flash begins from 0x0 and the
SRAM starts from 0x4000 0000.

There are seventeen locations in the Clock Generation Unit (CGU) module which need to
be initialized to 0 to reduce the overall power consumption. In the header file, these
locations have been addressed as X1 to X17.

In a typical LPC2000 device startup file, one might also find code for initializing the PLL
and the Memory Accelerator module (MAM). This cannot be used for the LPC288x since
the clocking structure is more involved which includes seven input clocks and two
different PLLs. Also there is no MAM in the LPC288x.

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 4 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

3. Port pins
The LPC288x has 89 GPIO pins that are split into 8 ports (Port0 to Port7). Some major
differences in the port structure are as follows:
1. In other LPC2000 devices all the port pins were initialized to their GPIO configuration

on reset. In LPC288x, four port pins come up as GPIO and the rest are initialized to
their Functional IO settings. The four pins that are configured to GPIO belong to
Port2.

In LPC2000, to toggle port pins one has to set the direction of the pin (IODIRx) as output
and use IOSETx and IOCLRx respectively to drive the pin high and low.In LPC288x,
there are two-register bits m1 and m2, which need to be set to do the same operation.
The table below shows 2 register bits and their corresponding impact on port pins:

Table 1. M1/M0 settings
m1 m1 Pin state

0 0 GP in (not driven)

0 1 Functional I/O

1 0 GP out (drive LOW)

1 1 GP out (drive HIGH)

As shown above, m1 has to be set and if we toggle the m0 bit, then the corresponding
port pins will toggle.

3.1 Code example
Below is a code snippet showing how the 4 port pins of Port2 can be toggled in software.
1 /* Setting Port2 as “GP out (drive low)” */
2 MODE1S-2=0xF;
3 MODE0C-2=0x0;
4
5 /* To toggle the pins, just set and reset bit m2 */
6 while(1)
7 {
8 MODE0S-2=0xF;
9 MODE0C-2=0xF;
10 }

4. Clock Generation Unit (using UART)
The CGU is the most important block of the LPC288x and it controls the clocks for the
different modules of this device. The CGU is not present in any of the other LPC2000
devices.

4.1 Basic configuration
For a basic configuration of the CGU the following steps need to be carried out:
1. PLL registers: (optional)

a. Configure either the Main PLL or the high speed PLL if higher speeds are
expected for the application.

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 5 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

2. Selection stage registers:
a. Use the respective Frequency Select register to select one of the 7 input clocks.
b. The Switch Configuration and Switch Status registers would be typically used

while dynamic clock switching (shown below with an example).
3. Spreading stage registers: (optional)

a. Power control/Power status/ Enable Select and Software Reset registers would
not be typically used for a basic CGU configuration.

An application is provided below that shows how to configure the CGU for the UART
peripheral. The UART is initially set to work with the 12 MHz oscillator input and then the
clock source is dynamically and gracefully switched between the 32.768 KHz oscillator
input and the output of the main PLL (60 MHz). This application is built for the Nohau
evaluation board, details of which can be found by browsing to the “Support & tools”
section of:
http://www.nxp.com/pip/LPC2880FET180.html#support

The board has a UART port, which should be connected to the PC serial port using a
Null modem cable. The output is captured on Tera Term Pro v2.3 (similar to
HyperTerminal) and it is set to run at the serial baud rate of 600 baud.

4.2 Code example
1
2
3 /* Header file for LPC288X */
4 #include"LPC288x.h"
5
6 /* Used by UART */
7 #define TEMT (1<<6)
8 #define LINE_FEED 0xA
9 #define CARRIAGE_RET 0xD
10
11 void CGU(void);
12 void switch_clk(int);
13 void printP(char[],int);
14
15
16
17 /**
18 * Configuring the CGU
19 **
20 */
21 void CGU()
22 {
23 /* Enabling the main PLL. Output of PLL is 60MHz */
24 LPFIN=0x1; /* Select the clock source as the 12MHz crystal */
25 LPMSEL=4; /* Multiplication Factor */
26 LPPSEL=1; /* Division Factor */
27 LPPDN=0; /* Maintaining the reset condition- enabled */
28
29 while(!(LPLOCK & 1)){}
30

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 6 of 25

http://www.nxp.com/pip/LPC2880FET180.html#support

NXP Semiconductors AN10548
 Getting started with LPC288x

31 /* Selection stage- UART */
32 UARTSCR=0x1; /* Enables Side 1 of selection stage */
33 UARTFSR1=0x1; /* Select the clock source as the 12MHz crystal */
34
35 }
36
37 /**
38 * Switching clocks between 60MHz and 32.768KHz osc. input
39 * Parameter 's' has a defined value.
40 * s=1-> Main PLL
41 * s=2-> 32.768KHz
42 **
43 */
44 void switch_clk(int s)
45 {
46 int temp;
47 int new_clk;
48
49 /* If s=1 then configure the UART for Main PLL else for the 32.768KHz crystal*/
50 if(s==1)
51 {
52 /* Set the new clock as the main PLL source. This value is used
53 * later while setting the Frequency select register
54 */
55 new_clk=0x8;
56
57 // Configuring UART for Main PLL
58 UARTRES=0x0;
59 UARTRES=0x1;
60
61 U0_FCR = 0x7;
62 U0_LCR = 0x83;
63 U0_DLL = 0x6a; /* Divider set to 6250 */
64 U0_DLM = 0x18;
65 U0_LCR = 0x3;
66 }
67 else
68 {
69 /* Set the new clock as the 32.768KHz. This value is used
70 * later while setting the Frequency select register
71 */
72 new_clk=0x0;
73
74 // Configuring UART for 32.768KHz osc
75 UARTRES=0x0;
76 UARTRES=0x1;
77
78 U0_FCR = 0x7;
79 U0_FDR= 0xF2;
80 U0_LCR = 0x83;
81 U0_DLL = 0x3; /* Divider set to 3 */

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 7 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

82 U0_LCR = 0x3;
83 }
84
85 /* Read the Switch status register to check
86 * which side of the stage is enabled
87 */
88 temp=UARTSSR;
89
90 if(temp & 1)
91 {
92 /* Set the clock on Side 2 */
93 UARTFSR2=new_clk;
94 /* Write to the Switch Configuration register */
95 UARTSCR=(temp & 0x3)^ 0x3;
96 /* Wait till the switch is complete*/
97 while(!(temp & 0x2))
98 {
99 temp=UARTSSR;
100 }
101 }
102 else
103 {
104 /* Set the clock on Side 1 */
105 UARTFSR1=new_clk;
106 /* Write to the Switch Configuration register */
107 UARTSCR=(temp & 0x3)^ 0x3;
108 /* Wait till the switch is complete */
109 while(!(temp & 0x1))
110 {
111 temp=UARTSSR;
112 }
113
114 }
115 }
116
117 /**
118 * Function for printing characters on the Terminal program (PC).
119 * The function takes two parameters, a character array "a" and an integer "k"
120 * It prints the character array "a", "k"times
121 **
122 */
123 void printP(char a[],int k)
124 {
125 int i=0,j=0;
126
127 for(j=0;j<k;j++)
128 {
129 while(a[i])
130 {
131 U0_THR=a[i];
132 while(!(U0_LSR & TEMT)){}

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 8 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

133 i++;
134 }
135 U0_THR=CARRIAGE_RET;
136 U0_THR=LINE_FEED;
137 while(!(U0_LSR & TEMT)){}
138
139 i=0;
140 }
141
142
143 }
144
145 /**
146 * MAIN
147 **
148 */
149 int main(void)
150 {
151 /* Characters arrays */
152 char lpc[]="LPC288x";
153 char a[]="+++++++++++++++++++++++++++++++++++++";
154 char b[]="-------------------------------------";
155 char uart_12[]="UART Running from 12MHz Oscillator";
156 char uart_pll[]="UART Running from Main PLL";
157 char uart_32[]="UART Running from 32.768KHz";
158
159
160 /* Configuring the CGU */
161 CGU();
162
163 /* UART Configuration to derive 600baud from the 12MHz main oscillator */
164 U0_FCR = 0x7;
165 U0_LCR = 0x83;
166 U0_DLL = 0xE2; /* Divider set to 1250 */
167 U0_DLM = 0x4;
168 U0_LCR = 0x03;
169
170 /* Printing characters */
171 printP(a,1);
172 printP(uart_12,1);
173 printP(lpc,5);
174 printP(b,1);
175
176 /* Continous switching is done between 60MHz and
177 * 32.768Khz
178 */
179 while(1)
180 {
181 /* Switching to Main PLL and configuring the UART dividers for the same*/
182 switch_clk(1);
183 /* Printing characters */

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 9 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

184 printP(uart_pll,1);
185 printP(lpc,5);
186 printP(b,1);
187
188 /* Switching to 32.768KHz and configuring the UART dividers for the same */
189 switch_clk(2);
190 /* Printing characters */
191 printP(uart_32,1);
192 printP(lpc,5);
193 printP(b,1);
194 }
195
196 }

See Fig 1 for sample output.

Fig 1. Sample output

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 10 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

5. Interrupt handling (using the cache and Timer0)
Interrupt handling in the other LPC2000 devices was handled by the Vectored Interrupt
Controller (VIC) and it is different than the interrupt controller in the LPC288x. The main
difference between the two controllers is that there was a provision in the VIC to insert an
Interrupt Vector Table (IVT) within the VIC itself. The IVT in the LPC288x has to be
stored in memory.

5.1 Basic configuration
The interrupt controller in the LPC288x requires at least two registers to be configured,
which would be as follows:
1. Interrupt Request register for a particular interrupt source:

a. There is an Interrupt request register for each interrupt source and here, one can
mainly set the priority level of the interrupt source, assign the source as an
IRQ/FIQ interrupt and also enable the interrupt.

2. Vector register (INT_VECTOR0 for IRQ and INT_VECTOR1 for FIQ):
a. In the vector register, the base address of the IVT has to be programmed. This

register also has index bits, which get updated when an IRQ/FIQ interrupt is
triggered. The vector register for IRQ has the following structure as shown in Fig
2:

Fig 2. IRQ vector register

5.2 Multiple interrupt sources for a single peripheral
This interrupt controller can also accept multiple inputs from the same interrupt source,
which enables priority levels within a specific peripheral. For instance, the USB has four
inputs to the interrupt controller enabling four levels of interrupt priority within USB
interrupts. Fig 3 shows a snapshot of the user manual, which illustrates this feature:

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 11 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

Fig 3. Interrupt sources

5.3 Cache and Interrupt Vector Table (IVT) configuration
While programming interrupts for the LPC288x the following should be considered:
1. Cache configuration: There is no memory residing at 0x0. In other LPC2000 devices,

the on-chip flash always existed from 0x0. Since on an exception the ARM7 core
jumps to one of the locations between 0x0 to 0x1C, memory has to be remapped to
this location to handle the same. In the LPC288x memory can be remapped to 0x0
using the cache. Hence the cache has to be setup to handle exceptions.

2. Interrupt vector table (IVT): The interrupt controller cannot accept individual ISR
addresses for each interrupt source. Only the base address of the IVT can be
programmed, which would reside somewhere in memory. A typical IVT would have
the following structure:

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 12 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

Fig 4. Interrupt vector table

As shown in Fig 4, each interrupt source has 2 entries in the IVT. The first entry is the
address of the ISR and the second entry has the priority level of the interrupt source
that can interrupt this particular interrupt. If interrupt nesting were not desired then the
second entry in the IVT would have a value of “0xF”. For a complete understanding on
nested interrupt handling, please refer to the “Interrupt Controller Usage Notes”
section in the LPC288x User manual.

5.4 Simple interrupt handling
Lets consider IRQ interrupt handling in the LPC288x. As part of the initialization, the
following needs to be done:

a. The basic startup code with the interrupt vectors and the SP for IRQ has been set
in software.

b. Cache would be configured so that memory resides at 0x0.
c. Interrupt Request register has been set
d. INT_VECTOR0 register has been set with the base address of the IVT.
e. The IVT is configured in software.

When the interrupt fires, the following sequence of events can be expected:
1. The index bits in the INT_VECTOR0 register gets updated with the interrupt source

number and this also creates the ISR address of this interrupt source

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 13 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

2. The ARM7 core would execute the instruction that resides at 0x18, which would be a
jump to a top-level handler that would read the INT_VECTOR0 register and then
jump to the ISR.

3. In the ISR, the interrupt will be serviced and the corresponding interrupt will be
cleared in the peripheral.

The sequence of events that happen after the interrupt is triggered (not considering
nesting) is shown in Fig 5:

Fig 5. Interrupt handling sequence

5.5 Code example
An application is provided below which is built for the Nohau LPC2888 evaluation board.
The application configures Timer0 as an IRQ interrupt and interrupts the core every 10
seconds. An LED is provided on the board, which blinks slowly while the code is in the
main loop and blinks at a much faster rate while it is in the ISR.

The code is linked to run from the internal SRAM and the cache is used to remap
memory from the SRAM region to 0x0.

5.5.1 Startup assembly code
The exception vectors that would ultimately be mapped to 0x0 from SRAM are shown
below. These assembly instructions were compiled under the ARM ADS environment.

1 AREA IVT, CODE
2 CODE32
3 IMPORT reset
4 IMPORT IRQHandler
5

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 14 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

6 ENTRY
7 ; First instruction to be executed which would jump to a
8 ; section of assembly code with entry point as “reset”. Here
9 ; the SP is set for the IRQ mode and the Supervisor mode.
10 LDR PC, =reset
11 LDR PC, Undefined_Addr
12 LDR PC, SWI_Addr
13 LDR PC, Prefetch_Addr
14 LDR PC, Abort_Addr
15 NOP ; Reserved vector
16 ; This is the IRQ vector. On an IRQ interrupt, the ARM7 core
17 ; would execute the below instruction and jump to “IRQHandler”
18 ; which is in the C Code.
19 LDR PC,=IRQHandler
20 LDR PC, FIQ_Addr
21
22
23 Undefined_Addr DCD Undefined_Handler
24 SWI_Addr DCD SWI_Handler
25 Prefetch_Addr DCD Prefetch_Handler
26 Abort_Addr DCD Abort_Handler
27 FIQ_Addr DCD FIQ_Handler
28
29
30 ; ************************
31 ; Exception Handlers
32 ; ************************
33
34 ; The following dummy handlers do not do anything useful in this example.
35 ; They are set up here for completeness.
36
37 Undefined_Handler
38 B Undefined_Handler
39 SWI_Handler
40 B SWI_Handler
41 Prefetch_Handler
42 B Prefetch_Handler
43 Abort_Handler
44 B Abort_Handler
45 FIQ_Handler
46 B FIQ_Handler
47
48 END
49
50

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 15 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

5.5.2 C code
1 /* Header file and other macro definitions*/
2 #include"LPC288x.h"
3 #define MASK_INDEX 0xFFFFF800 /* Mask bits for Index bits in the INT_VECTOR0 register*/
4 #define TABLE_BASE 0x40D000 /* Base address of IVT */
5 #define TIMER_10SECS 0x7441E
6 #define SLOW 1 /* Used by the LED function */
7 #define FAST 2
8
9 /* Function Declarations */
10 void led_blink(int);
11 extern __irq void IRQHandler(void);
12 void IRQ_timer(void);
13 void install_handler(int,void (*)(),int);
14
15 /***
16 * Toggles the LED on Nohau board
17 **
18 */
19 void led_blink(int a)
20 {
21 int j,m;
22
23
24 /* Pin Toggling code for the Four GPIO pins */
25 MODE1S_2=0xF;
26 MODE0C_2=0x0;
27
28 if(a==1)
29 {
30 /* Slow toggle */
31 for(j=0;j<3;j++)
32 {
33
34 MODE0C_2=0xF;
35 for(m=0;m<100000;m++){}
36
37 MODE0S_2=0xF;
38 for(m=0;m<100000;m++){}
39 }
40 }
41
42 if(a==2)
43 {
44 /* Fast toggle */
45 for(j=0;j<50;j++)
46 {
47
48 MODE0C_2=0xF;
49 for(m=0;m<10000;m++){}

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 16 of 25

50

NXP Semiconductors AN10548
 Getting started with LPC288x

51 MODE0S_2=0xF;
52 for(m=0;m<10000;m++){}
53 }
54 }
55
56
57 }
58
59 /****************** Top Level ISR *************************
60 * This function will be called from 0x18 (IRQ vector).
61 * Here, the INT_VECTOR0 register would be read, which will
62 * have the ISR address of Timer0
63 ***
64 */
65 __irq void IRQHandler()
66 {
67 void (* fptr)();
68 unsigned int *temp;
69
70 /* Read the INT_VECTOR0 register and store the ISR address in "temp" variable */
71 temp=(unsigned int *)INT_VECTOR0;
72 /* fptr would now point to that ISR location */
73 fptr=(void (*)(void))(* temp);
74
75 /* Call IRQ_Timer() */
76 fptr();
77
78 }
79
80
81
82 /****************** Timer ISR******************************
83 * Handle the Timer interrupt
84 ***
85 */
86 void IRQ_timer()
87 {
88 /* Toggle port pin */
89 led_blink(FAST);
90
91 /* Clear the timer interrupt */
92 T0CLR=0x0;
93 }
94
95 /****************** ISR Table address ********************
96 * Function that would install the ISR address
97 * (pointed by function pointer "f")
98 * and the priorty number "b" in the IVT with
99 * base address 0x40D000.The interrupt source number "a"
100 * is used to vector to the correct offset from the
101 * base address of the IVT

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 17 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

102 ***
103 */
104 void install_handler(int ind,void (* f)(), int pr)
105 {
106 unsigned int * temp;
107
108 /* Use the Interrupt source number to index to the ISR address entry from base address*/
109 temp=(unsigned int *)(TABLE_BASE |(ind<<3));
110
111 /* Load the ISR address and the priorty number in the IVT*/
112 *temp=(unsigned int)f;
113 temp++;
114 *temp=pr;
115 }
116
117
118 /***
119 * MAIN
120 ***
121 */
122 int main()
123 {
124 /* Function pointer which is used to install the ISR
125 * address and the priorty number into the IVT */
126 void (*func_ptr)();
127
128 /* Initalizing Cache Controller */
129 CACHE_SETTINGS=0x1; /* Reset the cache */
130 CACHE_SETTINGS=0x0; /* De-assert reset to the cache controller */
131 while((CACHE_RST_STAT) & 0x1){} /* Wait for reset to complete */
132 CACHE_PAGE_CTRL=0x1; /* Enable virtual page 0 */
133 ADDRESS_PAGE_0=(0x400000 >>21); /* Prepare virtual address */
134 CACHE_SETTINGS=0x16; /* Enable caching */
135
136 /* Configure Interrupt Controller */
137 INT_REQ5=((1<<27)|(1<<26)|(1<<16)|(1<<28)|0x1);
138 /* The priorty of the interrupt has to be set along with the WE_PRIO bit */
139 func_ptr=IRQ_timer; /* func_ptr now points to the function
140 IRQ_timer */
141 install_handler(5,*func_ptr,15);
142 INT_VECTOR0=TABLE_BASE & MASK_INDEX;
143
144 /* Configure Timer0 */
145 T0LOAD=TIMER_10SECS; /* Timer would be interrupting every 10seconds */
146 T0CTRL=0xC8;
147 /* Timer Counter is set at CGU/256 and the load option is selected */
148
149 /* Blink LED slowly */
150 while(1)
151 {
152 led_blink(SLOW);

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 18 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

153 }
154
155 }

6. Flash programming
The LPC2888 has a 1 MB on-chip Flash system, which can be programmed either via
the USB interface or via the user application itself. Both these interfaces are different
considering the other LPC2000 devices. LPC2000 devices can be programmed via the
UART or via the bootloader IAP interface.

A User Manual describing Flash programming via USB is included in the “LPC2888 Flash
Programming Utility” zip package (which is available for download). The bootloader on
the LPC2888 does not provide an interface for the Flash programming. Instead the Flash
memory controller registers are directly provided in the LPC288x User Manual. Flash
programming in the LPC2888 is achieved by programming small units within a sector
called “page” (which is of size 512 bytes). The concept of a page is not present in other
LPC2000 devices.

6.1 Flash programming flowchart
Fig 6 shows a flowchart outlining the flash programming steps in the LPC2888:

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 19 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

Fig 6. Flash programming steps

The details on how to use the flash memory controller registers are explained in the
LPC288x User Manual.

6.2 Signature for valid user code
In LPC2000 devices, in an attempt to execute user code, the on-chip bootloader disables
the overlaying of the interrupt vectors from the boot block (on reset), then checksums the
interrupt vectors in Sector 0 of the flash. If the checksum matches the 2’s complement of
the interrupt vectors (this computation would exclude the word located 0x14) which
resides at 0x14 then the execution control is transferred to user code by loading the
program counter with 0x0.

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 20 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

In LPC2888, if port pins P2.2 and P2.3 are left unconnected then the device enters Mode
0, which would be an attempt to execute user code from the internal flash. The
bootloader would then check for a signature, which would reside at 0x104F F800. This
signature or marker would be 0xAA55 AA55. If this signature is not found at the specified
location then the mode is switched to mode2, which is the USB download mode.

6.3 C code
Below, C code is provided which shows how a single sector (Sector 0) can be
programmed. The same code example can be expanded to program the entire chip. The
program is linked to run from the internal SRAM.

1 /**
2 * Bit definitions of status register
3 ***/
4 #define FS_DONE 0x00000001
5 #define FS_PROGGNT 0x00000002
6 #define FS_RDY 0x00000004
7 #define FS_ERR 0x00000020
8
9
10 /***
11 * Bit definitions of control register
12 ***/
13 #define FS_CS 0x00000001
14 #define FS_WRE 0x00000002
15 #define FS_WEB 0x00000004
16 #define FS_RD_LATCH 0x00000020
17 #define FS_WPB 0x00000080
18 #define FS_SET_DATA 0x00000400
19 #define FS_RSSL 0x00000800
20 #define FS_PROG_REQ 0x00001000
21 #define FS_CLR_BUF 0x00004000
22 #define FS_LOAD_REQ 0x00008000
23
24 /**
25 * Other
26 ***/
27 #define FLASH_MEMORY_BASE 0x10400000
28 #define FLASH_PAGE_SIZE_BYTES 512
29 #define FLASH_IMAGE_BASE 0x10400000
30 #define RAM_BUFFER_BASE 0x404000
31
32 #define FLASH_PROGRAM_CYCLES 72
33 #define FLASH_ERASE_CYCLES 9375
34 #define BUS_DECIMATOR 60
35 #define WAIT_STATES 0x8003
36
37 #define EN_T 0x00008000
38
39 /* Header file for LPC210X */

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 21 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

40 #include"LPC288x.h"
41
42
43 /*-------------------- MAIN --------------------- */
44 void C_entry()
45 {
46 volatile unsigned char * FlashMemoryPointer;
47 volatile unsigned int * LatchPointer;
48 volatile unsigned int * Ramptr;
49 unsigned int * Patch;
50 unsigned int sec_size=0;
51 int counter;
52
53
54 /****** Flash Clock setup ******/
55 /* The Flash module needs a 66KHz clock so the value set in the F_CLK_TIME register is 60
56 */
57 F_CTRL = (FS_WEB | FS_CS);
58 while (F_CLK_TIME != BUS_DECIMATOR)
59 {
60 F_CLK_TIME = BUS_DECIMATOR;
61 }
62
63
64 /****** Unprotecting Sector 0 ******/
65 FlashMemoryPointer = (unsigned char *) FLASH_IMAGE_BASE;
66 /* Writing to an address within the sector*/
67 Patch = (unsigned int *) FlashMemoryPointer;
68 *Patch = 0;
69 /* Trigger value for Unprotect*/
70 F_CTRL = (FS_LOAD_REQ | FS_WPB | FS_WEB | FS_WRE | FS_CS);
71
72
73 /****** Erasing Sector 0 ******/
74 /* Wait for Flash to be ready */
75 while ((F_STAT & FS_RDY) != FS_RDY) { }
76 /* Program Timer for erase */
77 F_PROG_TIME= (FLASH_ERASE_CYCLES | EN_T);
78 /* Trigger value for Erase */
79 F_CTRL = (FS_PROG_REQ | FS_WPB | FS_CS);
80 /* Wait for erase to complete */
81 while ((F_STAT & FS_DONE) != FS_DONE) { }
82
83 /****** Preparing Page buffer in SRAM ******/
84 /* Setting ptr to base of RAM buffer */
85 Ramptr= (unsigned int *) RAM_BUFFER_BASE;
86 /* Loading 512 bytes */
87 for (counter=0; counter<(FLASH_PAGE_SIZE_BYTES>>2); counter++)
88 {
89 *Ramptr = 0xCCCCBBBB; Ramptr++;
90 }

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 22 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

91 /* Setting pointer for latches */
92 LatchPointer = (unsigned int *) FLASH_IMAGE_BASE;
93
94 /****** Sector 0 ********/
95 while(sec_size<=0xFFFF)
96 {
97 /* Wait for Flash to be ready */
98 while ((F_STAT & FS_RDY) != FS_RDY) { }
99
100 /* Setting pointer for RAM buffer */
101 Ramptr= (unsigned int *) RAM_BUFFER_BASE;
102 /****** Presetting Data latches ******/
103 /* Setting and Clearing FS_SET_DATA */
104 F_CTRL = (FS_WRE | FS_WEB | FS_CS | FS_SET_DATA); F_CTRL = (FS_WRE | FS_WEB | FS_CS);
105
106 /* Loading latches*/
107
108 for (counter=0; counter<(FLASH_PAGE_SIZE_BYTES>>2); counter++)
109 {
110 *LatchPointer = *Ramptr; LatchPointer++;
111 sec_size=sec_size+4;
112 Ramptr++;
113 }
114
115 /****** Programming Page ********/
116 /* Program Timer for programming*/
117 F_PROG_TIME = (FLASH_PROGRAM_CYCLES | EN_T);
118 /* Trigger value for programming*/
119 F_CTRL = (FS_PROG_REQ | FS_WPB | FS_WRE | FS_CS);
120 /* Wait for programming to complete */
121 while ((F_STAT & FS_DONE) != FS_DONE) { }
122 /* Disable Timer*/
123 F_PROG_TIME = 0; }
124
125 /* Do-nothing loop */
126 while(1){}
127
128 }

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 23 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

7. Legal information

7.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations
or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of
such information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is for the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

7.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

 AN10548_1 © NXP B.V. 2007. All rights reserved.

Application note Rev. 01 — 8 January 2007 24 of 25

NXP Semiconductors AN10548
 Getting started with LPC288x

8. Contents

1. Introduction ...3
2. Basic startup code ..4
3. Port pins...5
3.1 Code example ...5
4. Clock Generation Unit (using UART).................5
4.1 Basic configuration ..5
4.2 Code example ...6
5. Interrupt handling (using the cache and Timer0)

..11
5.1 Basic configuration ..11
5.2 Multiple interrupt sources for a single peripheral .11
5.3 Cache and Interrupt Vector Table (IVT)

configuration...12
5.4 Simple interrupt handling.....................................13
5.5 Code example ...14
5.5.1 Startup assembly code..14
5.5.2 C code...16
6. Flash programming...19
6.1 Flash programming flowchart19
6.2 Signature for valid user code...............................20
6.3 C code...21
7. Legal information ..24
7.1 Definitions..24
7.2 Disclaimers..24
7.3 Trademarks ...24
8. Contents...25

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

 Document identifier: AN10548_1

 © NXP B.V. 2007. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, email to: salesaddresses@nxp.com

Date of release: 8 January 2007

http://www.nxp.com

	Introduction
	Basic startup code
	Port pins
	Code example

	Clock Generation Unit (using UART)
	Basic configuration
	Code example

	Interrupt handling (using the cache and Timer0)
	Basic configuration
	Multiple interrupt sources for a single peripheral
	Cache and Interrupt Vector Table (IVT) configuration
	Simple interrupt handling
	Code example

	Flash programming
	Flash programming flowchart
	Signature for valid user code
	C code

	Contents

