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Introduction 
 
This book is intended as a hands-on guide for anyone planning to use the NXP LPC2300 and LPC2400 family 
of microcontrollers in a new design.  It is laid out both as a reference book and as a tutorial. It is assumed that 
you have some experience in programming microcontrollers for embedded systems, and are familiar with the C 
language. The bulk of technical information is spread over the first four chapters, which should be read in order 
if you are completely new to the LPC2300/2400 and the ARM7 CPU.  Please note that in this book the LPC2300 
will be used as a basis, with any LPC2400 differences highlighted separately. 
 
The first chapter gives an introduction to the major features of the ARM7 CPU. Reading this chapter will give 
you enough understanding to be able to program any ARM7 device. If you want to develop your knowledge 
further, there are a number of excellent books that describe this architecture.  Some of these are listed in the 
bibliography. Chapter 2 is a description of how to write C programs to run on an ARM7 processor and, as such, 
describes specific extensions to the ISO C standard that are necessary for embedded programming. In this 
book a commercial compiler is used in the main text, however the GCC tools have also been ported to ARM.  
 
Having read the first two chapters, you should understand the processor and its development tools.  Chapter 3 
then introduces the LPC2300 system peripherals. This chapter describes the system architecture of the 
LPC2300 family, and how to set the chip up for its best performance. In Chapter 4 we look at the on-chip user 
peripherals and how to configure them for our application code.  Chapter 5 describes the complex peripherals 
like USB and Ethernet.  Chapters 6 and 7 are concerned with using popular real time operating systems from 
Keil and FreeRTOS. 
 
Throughout these chapters various exercises are listed. Each of these exercises is described in detail in the 
accompanying Worksheets PDF files and CD.  The Tutorial contains a worksheet for each exercise, which steps 
you through an important aspect of the LPC2300. All of the exercises can be done with the evaluation compiler 
and simulator, which come on the CD provided with this book. A low-cost starter kit is also available, which 
allows you to download the example code on to some real hardware and “prove” that it does in fact work. It is 
hoped that by reading the book and doing the exercises you will quickly become familiar with the LPC2300 and 
LPC2400.  
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1 Chapter 1: The ARM7 CPU Core 
 

1.1 Outline 
 
The CPU at the heart of the LPC2300 family is an ARM7. You do not need to be an expert in ARM7 
programming to use the LPC2300, as many of the complexities are taken care of by the C compiler. However, 
you do need to have a basic understanding of the CPU’s unique features and how it works, in order to produce 
a reliable design. 
 
In this chapter we will look at the key features of the ARM7 core along with its programmers’ model, and we will 
also discuss the instruction set used to program it. This is intended to give you a good feel for the CPU used in 
the LPC2300 family. For a more detailed discussion of the ARM processors, please refer to the books listed in 
the bibliography. 
 
The key philosophy behind the ARM design is simplicity. The ARM7 is a RISC computer with a small instruction 
set and consequently a small gate count. This makes it ideal for embedded systems. It has high performance, 
low power consumption and it takes a small amount of the available silicon die area.   
 

1.2 The Pipeline 
 
At the heart of the ARM7 CPU is the instruction pipeline. The pipeline is used to process instructions taken from 
the program store. On the ARM 7 a three-stage pipeline is used.  
    

 

The A
has ind
and Exec

RM7 three-stage pipeline
ependent Fetch, Decode

ute stages. 

A three-stage pipeline is the simplest form of pipeline and does not suffer from hazards such as read-before-
write, which can occur in pipelines with more stages. The pipeline has hardware-independent stages that 
execute one instruction while decoding a second and fetching a third. The pipeline speeds up the throughput of 
CPU instructions so effectively that most ARM instructions can be executed in a single cycle. The pipeline works 
most efficiently on linear code. As soon as a branch is encountered, the pipeline is flushed and must be refilled 
before full execution speed can be resumed. As we shall see, the ARM instruction set has some interesting 
features which help smooth out small jumps in your code in order to get the best flow of code through the 
pipeline.  As the pipeline is part of the CPU, the programmer does not have any exposure to it. However, it is 
important to remember that the PC is running eight bytes ahead of the current instruction being executed, so 
care must be taken when calculating offsets used in PC relative addressing.  
 
For example, the instruction: 
 
0x4000 LDR PC,[PC,#4] 
 
will load the contents of the address PC+4 into the PC. As the PC is running eight bytes ahead, the contents of 
address 0x400C will be loaded into the PC and not 0x4004 as you might expect on first inspection. 
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1.3 Registers 
 
The ARM7 is a load-and-store architecture, so in order to perform any data processing instructions the data has 
first to be moved from the memory store into a central set of registers, then the data processing instruction has 
to be executed, and then the data is stored back into memory. 
 

 
The central set of registers is a bank of 16 user registers: R0 – R15. Each of these registers is 32 bits wide and 
R0 – R12 are User registers in that they do not have any other specific function. The registers R13 – R15 do 
have special functions in the CPU. R13 is used as the Stack Pointer (SP). R14 is called the Link Register (LR). 
When a call is made to a function, the return address is automatically stored in the Link Register and is 
immediately available on return from the function. This allows quick entry and return into a ‘leaf’ function (a 
function that is not going to call further functions). If the function is part of a branch (i.e. it is going to call other 
functions) then the Link Register must be preserved on the Stack (R13). Finally R15 is the Program Counter 
(PC). Interestingly, many instructions can be performed on R13 - R15 as if they were standard User registers. 

The ARM7 CPU is a load-and-
store architecture. All data
processing instructions may
only be carried out on a central
register file. 

The central register file has 16 word wide registers plus
an additional CPU register called the Current Program
Status Register. R0 – R12 are User registers. R13 – R15
have special functions. 
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1.4 Current Program Status Register 
 
In addition to the register bank there is an additional 32 bit wide register called the ‘Current Program Status 
Register’ (CPSR). The CPSR contains a number of flags which report and control the operation of the ARM7 
CPU. 

The Current Program Status Register contains condition code flags which indicate the result of
data processing operations and User flags which set the operating mode and enable interrupts.
The T bit is for reference only. 

 
 
 
The top four bits of the CPSR contain the condition codes which are set by the CPU. The condition codes report 
the result status of a data processing operation. From the condition codes you can tell if a data processing 
instruction generated a Negative, Zero, Carry or Overflow result. The lowest eight bits in the CPSR contain flags 
which may be set or cleared by the application code. Bits 7 and 8 are the I and F bits. These bits are used to 
enable and disable the two interrupt sources which are external to the ARM7 CPU. All of the LPC2300 
peripherals are connected to these two interrupt lines, as we shall see later. You should be careful when 
programming these two bits because in order to disable either interrupt source, the bit must be set to ‘1’ not ‘0’ 
as you might expect. Bit 5 is the THUMB bit.  
 
The ARM7 CPU is capable of executing two instruction sets: the ARM instruction set which is 32 bits wide, and 
the THUMB instruction set which is 16 bits wide. Consequently the T bit reports which instruction set is being 
executed. Your code should not try to set or clear this bit to switch between instruction sets. We will see the 
correct entry mechanism a bit later. The last five bits are the mode bits. The ARM7 has seven different 
operating modes. Your application code will normally run in the User Mode with access to the register bank R0 
– R15 and the CPSR as already discussed. However, in response to an exception such as an interrupt, memory 
error or software interrupt instruction, the processor will change modes. When this happens the registers R0 – 
R12 and R15 remain the same, but R13 (LR) and R14 (SP) are replaced by a new pair of registers unique to 
that mode. This means that each mode has its own Stack and Link Register. In addition the Fast Interrupt Mode 
(FIQ) has duplicate registers for R7 – R12. This means that you can make a fast entry into an FIQ interrupt 
without the need to preserve registers onto the Stack. 
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Each of the modes except User Mode has an additional register called the “Saved Program Status Register”. If 
your application is running in User Mode when an exception occurs, the mode will change and the current 
contents of the CPSR will be saved into the SPSR. The exception code will run and, on return from the 
exception, the context of the CPSR will be restored from the SPSR, allowing the application code to resume 
execution. The operating modes are listed below.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1.5 Exception Modes 
 
When an exception occurs, the CPU will change modes and the PC will be forced to an exception vector. The 
vector table starts from address zero with the reset vector, and then has an exception vector every four bytes.  

The ARM7 CPU has six operating modes
which are used to process exceptions. The
shaded registers are banked memory that
is “switched in” when the operating mode
changes. The SPSR register is used to
save a copy of the CPSR when the switch
occurs. 

Each operating mode has an
associated interrupt vector. When
the processor changes mode the
PC will jump to the associated
vector. 

NB: there is a missing vector at
0x00000014. 
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NB: There is a gap in the vector table because there is a missing vector at 0x00000014. This location was used 
on an earlier ARM architecture and has been preserved on ARM7 to ensure software compatibility between 
different ARM architectures. However in the LPC2300 family these four bytes are used for a very special 
purpose as we shall see later.  
 
If multiple exceptions occur there is a fixed priority, as shown below. 

 
 
 
 

Each of the exception sources has a fixed priority. The
on-chip peripherals are served by FIQ and IRQ
interrupts. Each peripheral’s priority may be assigned
within these groups. 

 
 
 
 
 
 
 
 

When an exception occurs, for example an IRQ exception, the following actions are taken. Firstly the address of 
the next instruction to be executed (PC + 4) is saved into the Link Register. Then the CPSR is copied into the 
SPSR of the Exception Mode that is about to be entered (i.e. “SPSR_irq”). The PC is then filled with the address 
of the Exception Mode Interrupt Vector. In the case of the IRQ Mode this is 0x00000018. At the same time the 
mode is changed to IRQ Mode, which causes R13 and R14 to be replaced by the IRQ R13 and R14 registers. 
On entry to the IRQ Mode, the I bit in the CPSR is set, causing the IRQ interrupt line to be disabled. If you need 
to have nested IRQ interrupts, your code must manually re-enable the IRQ interrupt and push the Link Register 
onto the Stack in order to preserve the original return address. From the Exception Interrupt Vector your code 
will jump to the exception ISR. The first thing your code must do is to preserve any of the registers R0 - R12 that 
the ISR will use by pushing them onto the IRQ Stack. Once this is done you can begin processing the 
exception.  
 

When an exce
modes a
vector. 

ption occurs the CPU will change
nd jump to the associated interrupt

 
Once your code has finished processing the exception it must return to the User Mode and continue where it left 
off. However, the ARM instruction set does not contain a “return” or “return from interrupt” instruction, so 
manipulating the PC must be done by regular instructions. The situation is further complicated by there being a 
number of different return cases. First of all, consider the SWI instruction. In this case the SWI instruction is 
executed, the address of the next instruction to be executed is stored in the Link Register and the exception is 
processed. In order to return from the exception, all that is necessary is to move the contents of the Link 
Register into the PC and processing can continue. However, in order to make the CPU switch modes back to 
User Mode, a modified version of the move instruction is used and this is called MOVS (more about this later). 
Hence, for a software interrupt the return instruction is: 
 
MOVS  R15,R14     ; Move Link register into the PC and switch modes. 
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However, in the case of the FIQ and IRQ instructions, when an exception occurs the current instruction being 
executed is discarded and the exception is entered. When the code returns from the exception the Link Register 
contains the address of the discarded instruction plus four. In order to resume processing at the correct point we 
need to roll back the value in the Link Register by four. In this case we use the subtract instruction to deduct 
four from the Link Register and store the results in the PC. As with the move instruction, there is a form of the 
subtract instruction which will also restore the Operating Mode. For an IRQ, FIQ or Prefetch Abort, the return 
instruction is: 
 
SUBS R15, R14,#4 
 
In the case of a data abort instruction, the exception will occur one instruction after execution of the instruction 
which caused the exception. In this case we will ideally enter the data abort ISR, sort out the problem with the 
memory and return to reprocess the instruction that caused the exception. We have to roll back the PC by two 
instructions, i.e. the discarded instruction and the instruction that caused the exception. In other words, subtract 
eight from the Link Register and store the result in the PC. For a data abort exception the return instruction is: 
 
SUBS R15, R14,#8 
 
Once the return instruction has been executed, the modified contents of the Link Register are moved into the 
PC, the User Mode is restored and the SPSR is restored to the CPSR. Also, in the case of the FIQ or IRQ 
exceptions, the relevant interrupt is enabled. This exits the Privileged Mode and returns to the User code ready 
to continue processing. 
 

At the 
returns to
restored b

end of the exception the CPU
 User Mode and the context is
y moving the SPSR to the CPSR.
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1.6 The ARM7 Instruction Set 
 
Now that we have an idea of the ARM7 architecture, programmer’s model and operating modes, we need to 
take a look at its instruction set, or rather, sets. Since all our programming examples are written in C there is no 
need to be an expert ARM7 assembly programmer. However an understanding of the underlying machine code 
is very important in developing efficient programs. Before we start our overview of the ARM7 instructions it is 
important to set out a few technicalities. The ARM7 CPU has two instruction sets: the ARM instruction set which 
has 32-bit wide instructions, and the THUMB instruction set which has 16-bit wide instructions. In the following 
section the use of the word ARM means the 32-bit instruction set, and ARM7 refers to the CPU. 
 
The ARM7 is designed to operate as a big-endian or little-endian processor. That is, the MSB is located at the 
high order bit or the low order bit. You may be pleased to hear that the LPC2300 family fixes the endianism of 
the processor as little-endian (i.e. MSB at highest bit address), which does make it a lot easier to work with. 
However, the ARM7 compiler you are working with will be able to compile code as little-endian or big-endian. 
You must be sure you have it set correctly or the compiled code will be back to front. 
 

 
 
One of the most interesting features of the ARM instruction set is that every instruction may be conditionally 
executed. In a more traditional microcontroller, the only conditional instructions are conditional branches and 
maybe a few others like bit test and set. However, in the ARM instruction set the top four bits of the operand are 
compared to the condition codes in the CPSR. If they do not match, then the instruction is not executed and 
passes through the pipeline as a NOP (no operation).  
 

 

The ARM7 CPU is designed to support code
compiler in big-endian or little-endian format. The
Philips silicon is fixed as little-endian. 

Every ARM (32-bit) instruction is conditionally executed. The top
four bits are ANDed with the CPSR condition codes. If they do
not match, the instruction is executed as a NOP. 
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So it is possible to perform a data processing instruction, which affects the condition codes in the CPSR. Then 
depending on this result, the following instructions may or may not be carried out. The basic assembler 
instructions such as MOV or ADD can be prefixed with sixteen conditional mnemonics, which define the 
condition code states to be tested for. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So for example: 
 
 
 

Each ARM (32-bit) instruction can
be prefixed by one of 16 condition
codes. Hence each instruction has
16 different variants. 

The instruction: 
 
EQMOV R1, #0x00800000 
 
will only move 0x00800000 into the R1 if the last result of the last data processing instruction was equal and 
consequently set the Z flag in the CPSR. The aim of this conditional execution of instructions is to keep a 
smooth flow of instructions through the pipeline. Every time there is a branch or jump the pipeline is flushed and 
must be refilled, and this causes a dip in overall performance. In practice there is a break-even point between 
effectively forcing NOP instructions through the pipeline and a traditional conditional branch and refill of the 
pipeline. This break-even point is three instructions, so a small branch such as: 
 
if( x<100) 
{ 
 x++; 
} 
 
would be most efficient when coded using conditional execution of ARM instructions. 
 
The main instruction groups of the ARM instruction set fall into six different categories: Branching, Data 
Processing, Data Transfer, Block Transfer, Multiply and Software Interrupt.  
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1.6.1 Branching 
 
The basic branch instruction (as its name implies) allows a jump forwards or backwards of up to 32 MB. A 
modified version of the branch instruction, the branch link, allows the same jump but stores the current PC 
address plus four bytes in the Link Register. 

 
 
So the branch link instruction is used as a call to a function, storing the return address in the Link Register and 
the branch instruction can be used to branch on the contents of the Link Register to make the return at the end 
of the function. By using the condition codes we can perform conditional branching and conditional calling of 
functions. The branch instructions have two other variants called “branch exchange” and “branch link 
exchange”. These two instructions perform the same branch operation but also swap instruction operation from 
ARM to THUMB and vice versa. 

The branch instruction has several forms. The
basic branch instruction will jump you to a
destination address. The branch link instruction
jumps to the destination and stores a return
address in R14. 

The branch exchange and branch link exchange
instructions perform the same jumps as branch and
branch link but also swap instruction sets from ARM to
THUMB and vice versa. 

Should be small ‘x’? 

 

 
 
 
This is the only method you should use to swap instruction sets, as directly manipulating the “T” bit in the CPSR 
can lead to unpredictable results. 
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1.6.2 Data Processing Instructions 
 
The general form for all data processing instructions is shown below. Each instruction has a Result Register and 
two operands. The first operand must be a register, but the second can be a register or an immediate value.  
 

The general structure of the
data processing instructions
allows for conditional execution,
a logical shift of up to 32 bits
and the data operation all in the
one cycle. 

In addition, the ARM7 core contains a barrel shifter which allows the second operand to be shifted by a full 32 
bits within the instruction cycle. The “S” bit is used to control the condition codes.  If it is set, the condition codes 
are modified depending on the result of the instruction. If it is clear, no update is made. If, however, the PC 
(R15) is specified as the Result Register and the S flag is set, this will cause the SPSR of the current mode to 
be copied to the CPSR. This is used at the end of an exception to restore the PC and switch back to the original 
mode. Do not try this when you are in the User Mode as there is no SPSR and the result would be 
unpredictable. 
 
Mnemonic  Meaning 
AND   Logical Bitwise AND 
EOR   Logical Bitwise Exclusive OR 
SUB   Subtract 
RSB   Reverse Subtract 
ADD   Add 
ADC   Add with Carry 
SBC   Subtract with Carry  
RSC   Reverse Subtract with Carry 
TST   Test 
TEQ   Test Equivalence 
CMP   Compare 
CMN   Compare Negated 
ORR   Logical Bitwise OR 
MOV   Move 
BIC   Bit Clear 
MVN   Move Negated 
 
 
These features give us a rich set of data processing instructions which can be used to build very efficiently-
coded programs, or to give a compiler designer nightmares! An example of a typical ARM instruction is shown 
below: 
 
if(Z ==1)R1 = R2+(R3x4) 
 
This can be compiled to:  
 
EQADDS R1,R2,R3,LSL #2 
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1.6.2.1 Copying Registers 
 
The next group of instructions is the data transfer instructions. The ARM7 CPU has load-and-store register 
instructions that can move signed and unsigned Word, Half Word and Byte quantities to and from a selected 
register. 
 
Mnemonic  Meaning 
LDR   Load Word 
LDRH   Load Half Word 
LDRSH   Load Signed Half Word 
LDRB   Load Byte 
LRDSB   Load Signed Byte 
 
STR   Store Word 
STRH   Store Half Word 
STRSH   Store Signed Half Word 
STRB   Store Byte 
STRSB   Store Signed Half Word 
 
 
Since the register set is fully orthogonal it is possible to load a 32-bit value into the PC, forcing a program jump 
anywhere within the processor address space. If the target address is beyond the range of a branch instruction, 
a stored constant can be loaded into the PC. 
 

1.6.2.2 Copying Multiple Registers 
 
In addition to load-and-storing single register values, the ARM has instructions to load-and-store multiple 
registers. So with a single instruction, the whole register bank or a selected subset can be copied to memory 
and restored with a second instruction. 

The load-and-store multiple instructions
allow you to save or restore the entire
register file or any subset of registers in  a
single instruction. 
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1.7 Swap Instruction 
 
The ARM instruction set also provides support for real time semaphores with a swap instruction. The swap 
instruction exchanges a word between registers and memory as one atomic instruction. This prevents crucial 
data exchanges from being interrupted by an exception. 
This instruction is not reachable from the C language and is supported by intrinsic functions within the compiler 
library. 

 

1.8 Modifying the Status Registers 
 
As noted in the ARM7 architecture section, the CPSR and the SPSR are CPU registers, but are not part of the 
main register bank. Only two ARM instructions can operate on these registers directly. The MSR and MRS 
instructions support moving the contents of the CPSR or SPSR to and from a selected register. For example, in 
order to disable the IRQ interrupts the contents of the CPSR must be moved to a register, the “I” bit must be set 
by ANDing the contents with 0x00000080 to disable the interrupt, and then the CPSR must be reprogrammed 
with the new value.  

The swap instruction allows you to exchange the
contents of two registers. This takes two cycles
but is treated as a single atomic instruction so the
exchange cannot be corrupted by an interrupt. 

The CPSR and SPSR are not memory-mapped or
part of the Central Register file.  The only
instructions which operate on them are the MSR and
MRS instructions. These instructions are disabled
when the CPU is in User mode. 

 
 

 
The MSR and MRS instructions will work in all processor modes except the User mode. So it is only possible to 
change the operating mode of the process, or to enable or disable interrupts, from a privileged mode. Once you 
have entered the User mode you cannot leave it, except through an exception, reset, FIQ, IRQ or SWI 
instruction. 
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1.9 Software Interrupt 
 
The Software Interrupt instruction generates an exception on execution, forces the processor into Supervisor 
Mode and jumps the PC to 0x00000008.  As with all other ARM instructions, the SWI instruction contains the 
condition execution codes in the top four bits followed by the op code. The remainder of the instruction is empty. 
However it is possible to encode a number into these unused bits. On entering the Software Interrupt, the 
Software Interrupt code can examine these bits and decide which code to run. So it is possible to use the SWI 
instruction to make calls into the protected mode, in order to run privileged code or make operating system calls. 
 

he Assembler instruction:  

WI #3 

e the value 3 into the unused bits of the SWI instruction. In the SWI ISR routine we can examine the 

witch( *(R14-4) & 0x00FFFFFF)    // roll back the address stored in link reg        

            

your compiler, you may need to implement this yourself, or it may be done for you in the compiler 

 
 

The Software Interrupt instruction forces the CPU into Supervisor Mode and jumps the PC to the
SWI vector. Bits 0 - 23 are unused and user defined numbers can be encoded into this space. 

 
 
 
 
T
 
S
 

ill encodw
SWI instruction with the following pseudo code: 
 
s
                                  // by 4 bytes  

op 8 bits and switch              {                    // Mask off the t
/ / on result     

 case ( SWI-1) 
  …… 
 

epending on D
implementation. 
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1.10  MAC Unit 
 
In addition to the barrel shifter, the ARM7 has a built-in Multiply Accumulate Unit (MAC). The MAC supports 
integer and long integer multiplication. The integer multiplication instructions support multiplication of two 32-bit 
registers and place the result in a third 32-bit register (modulo32). A Multiply-Accumulate instruction will take the 
same product and add it to a running total. Long integer multiplication allows two 32-bit quantities to be 
multiplied together and the 64-bit result is placed in two registers. A long Multiply-Accumulate instruction is also 
available. 
 
Mnemonic  Meaning    Resolution 
MUL   Multiply     32-bit result 
MULA   Multiply Accumulate   32-bit result 
UMULL   Unsigned Multiply   64-bit result  
UMLAL   Unsigned Multiply Accumulate 64-bit result 
SMULL   Signed Multiply    64-bit result 
SMLAL   Signed Multiply Accumulate 64-bit result 
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1.11  THUMB Instruction Set 
 
Although the ARM7 is a 32-bit processor, it has a second 16-bit instruction set called THUMB. The THUMB 
instruction set is really a compressed form of the ARM instruction set.  
 

 
This allows instructions to be stored in a 16-bit format, expanded into ARM instructions and then executed. 
Although the THUMB instructions will result in lower code performance compared to ARM instructions, they will 
achieve a much higher code density. So, in order to build a reasonably-sized application that will fit on a small 
single-chip microcontroller, it is vital to compile your code as a mixture of ARM and THUMB functions. This 
process is called interworking and is easily supported on all ARM compilers. By compiling code in the THUMB 
instruction set you can get a space saving of 30%, while the same code compiled as ARM code will run 40% 
faster. 
 
The THUMB instruction set is much more like a traditional microcontroller instruction set. Unlike the ARM 
instructions, THUMB instructions are not conditionally executed (except for conditional branches). The data 
processing instructions have a two-address format, where the destination register is one of the source registers: 
 
ARM Instruction    THUMB Instruction 
ADD R0, R0,R1   ADD R0,R1   R0 = R0+R1  
 
The THUMB instruction set does not have full access to all registers in the register file. All data processing 
instructions have access to R0 - R7 (these are called the “low registers”).  
 
Access to R8 - R12 (the “high registers”) on the other hand is restricted to a few instructions: 
 
MOV, ADD, CMP 

The THUMB instruction set is
essential for archiving the
necessary code density to
make small single-chip ARM7
micros usable. 

In the THUMB programmer’s model all
instructions have access to R0 - R7. Only a
few instructions may access R8 - R12. 
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The THUMB instruction set does not contain MSR and MRS instructions, so you can only indirectly affect the 

B: When you come out of RESET, or enter an exception mode, you will automatically change to ARM Mode. 

he THUMB instruction set has the more traditional PUSH and POP instructions for stack manipulation. They 

 

inally, the THUMB instruction set contains a SWI instruction which works in the same way as in the ARM 

After Reset the ARM7 will execute ARM (32-bit)
instructions.  The instruction set can be
exchanged at any time using BX or BLX. If an
exception occurs the execution is automatically
forced to ARM (32- bit) 

CPSR and SPSR. If you need to modify any user bits in the CPSR you must change to ARM Mode. You can 
change modes by using the BX and BLX instructions.  
 
N
 

 
 
T
implement a fully descending stack, hardwired to R13. 
 

The THUMB instruction set has dedicated
PUSH and POP instructions which implement
a descending stack using R13 as a stack
pointer. 

 
 
F
instruction set, but it only contains 8 unused bits, to give a maximum of 255 SWI calls. 
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1.12  Summary 
 
By the end of this chapter you should have a basic understanding of the ARM7 CPU. Please see the 
bibliography for a list of books that address the ARM7 in more detail. Also, a copy of the ARM7 user manual is 
included on the CD accompanying this book. 
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2 Chapter 2: Software Development 
 

2.1 Outline 
After Chapter 1 you should have a clear idea of the ARM7 programmer’s model. In this chapter we will look at 
how you can develop C code to run on the LPC2300. While there are a large number of commercial compiler 
tools, as well as the open source GCC compiler, in this book the tutorial examples are based on the Keil 
Microcontroller development kit (MDK-ARM). The MDK-ARM is a comprehensive development environment for 
ARM-based microcontrollers. It includes an IDE called uVision, the ARM Real View compiler, a real time 
operating system, software simulator with peripheral simulation and a JTAG hardware debugger. An add-on run 
time library (RTL-ARM) provides a set of middleware components including a TCP/IP stack, embedded file 
system, USB and CAN drivers. Increasingly the MDK-ARM is being supported by third party software products 
as we will see later. 
 
HiTOP works with many different compilers.  In the case of the ARM architecture, the Keil Real View and GNU 
compilers are very popular and are used in the following sections. Although we are concentrating on the 
LPC2300 family in this book, the Hitex and Keil ARM tools can be used for any other ARM7-based 
microcontroller.  
 

2.1.1 Downloading And Installing The Keil Tools 
All of the tutorial exercises in this book are designed to work with the Keil Microcontroller development kit for 
ARM (MDK-ARM). If you purchased this book in printed form the evaluation version of Keil MDK-ARM can be 
installed from the CD which comes with the book. The MDK-ARM can also be downloaded from 
www.keil.com/arm. Even if you have the CD it is worth downloading the development kit to ensure that you have 
the latest version. The software will be installed to the following directory structure. 
 
 
 
 
 
 The MDK-ARM installs both the Real View and

legacy CARM compiler. All the current
examples and support files for the Real View
compiler are under the RV30 directory.  

 
 
 
 
 
 
 
 
 
Because the legacy CARM compiler is also included with the evaluation MDK-ARM, you need to understand the 
structure of the installation to locate the current examples and libraries. In the C:\keil\ARM directory the demo 
project in the example and boards directories are for the original CARM compiler and should be ignored. The 
Real View compiler examples are in the RV30 in both the boards and examples directories. Although these 
examples are not used in this book you should be aware of them as they provide additional material, and Keil 
regularly provide new examples with each release of the toolset. Once installed you can start using the MDK-
ARM by starting the uVision IDE. 
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2.1.2 uVision IDE 
 
The MDK-ARM consists of the uVision IDE which can be used to host the ARM Real View compiler, the Open 
Source GCC compiler or the legacy CARM compiler. The toolset also includes the binary version of the RTL-
RTOS. This is a real time pre-emptive multitasking operating system designed for use with small footprint ARM-
based microcontrollers. uVision also includes two debug tools. Once the code has been compiled and linked it 
can be loaded into the uVision simulator. This debugger simulates the ARM7 core and peripherals of the 
supported micro. Using the simulator is a very good way of becoming familiar with the LPC2300 devices. Since 
the simulator gives cycle accurate simulation of the peripherals as well as the CPU, it can be a very useful tool 
for verifying that the chip has been correctly initialised and that the correct values for things such as timer 
prescaler values have been correctly calculated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Keil MDK-ARM is a comprehensive development toolkit specifically designed to support
rapid development of small ARM-based microcontrollers. It integrates IDE, compiler tool chain
debug tools and RTOS with extensive middleware support. 

 
 
 
 
However, the simulator can only take you so far, and sooner or later you will need to take some inputs from the 
real world. This can be done to a certain extent with the simulator scripting language, but eventually you will 
need to run your code on the real target. The simulator front end can be connected to your hardware by the Keil 
ULINK interface. The ULINK interface connects to the PC via USB, and connects to the development hardware 
by the LPC2300 JTAG interface. The JTAG interface is a separate peripheral on the ARM7 which supports 
debug commands from a host. By using the JTAG you can use the uVision simulator to have basic run control 
of the LPC2300 device. The JTAG allows you to download code onto the target, single step and run code at full 
speed, set breakpoints and view memory locations. 
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2.1.3 HiTOP IDE 
HiTOP supports several different debug tools. You can test generic ARM7 code with the instruction set 
simulator, and for standard debugger functions in the real hardware, the Tantino system can be used. Unlike the 
Keil ULINK, the Tantino supports ARM9 and ARM11 in addition to ARM7. If you are working with large images, 
it also has a shorter download time when programming FLASH, and there are some more sophisticated 
debugging functions such as being able to set and clear breakpoints “on-the-fly”.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The HiTOP IDE is an IDE which includes Editor, Project Manager, Make Utility and a
sophisticated debugger. HiTOP is designed to work with most common ARM compilers
including the GCC Compiler and the Real View Compiler. 

 
 
 
 
 
 
The Tantino is connected via USB to the HiTOP IDE and to the LPC2300 microcontroller through a JTAG 
connector. Download, FLASH programming and the basic run control of the LPC2300 device can be performed. 
In addition to the JTAG connector, the LPC2300 devices have a second debug port called the “Embedded 
Trace Module” (ETM). With this ETM connection, an external Trace tool can record the execution of the 
microcontroller, and the trace recording can be displayed in the HiTOP IDE as high-level language lines, 
executed instructions or executed cycles. The ETM also allows tracing a data flow within the application. READs 
and WRITEs to RAM and SFRs can be recorded in the trace buffer for later analysis. A basic JTAG cannot 
access the ETM information, so a more complex system called Tanto is used. The features of this system are 
discussed in the Exercises section, but one big advantage is that the Tantino and the Tanto both use the same 
HiTOP IDE. A CASE tool called StartEasy is supplied with the Hitex tools that allows you to define an LPC2300 
project and generate a project skeleton containing the startup code and initialisation functions for the peripherals 
you are going to use. Even if you are not using the Hitex tools, you can download the full version of StartEasy 
from the Hitex website. 
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The Tantino is a JTAG debugger with numerous
advanced features including conditional breakpoints for
debugging of ARM instructions, multiple breakpoints in
FLASH memory, “on-the-fly” updates of watch windows
and an exception assistant for trapping run time errors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.4 The Tutorials 
Throughout the remainder of this book there are a number of tutorial exercises that demonstrate a feature of the 
software tools or the LPC2300/2400 microcontrollers. The Tutorial section in Chapter 8 talks you through 
example programs illustrating the major features of the LPC2300/2400.  There are two sets of examples on the 
CD, one for the Real View Compiler  using the Keil MDK-ARM toolchain  and one for the GNU  compiler using 
the Hitex HiTOP toolchain. Chapter 8 contains introductory tutorial to both development environments. All of the 
remaining exercises are held in separate directories which contain the project and a worksheet in a PDF format 
that talks you through the exercise so that you can quickly understand the point being made.   
 
The best way to use this book is to read each section then jump to the tutorial and do the exercise. This way, by 
the time you have worked through the book you will have a firm grasp of the ARM7, its tools and the LPC2300 
/2400 microcontrollers. 

 
 
 
 

Exercise 1:  Configuring a New Project 
The first exercise covers installing the uVision (Keil tutorial) or installing HiTOP    (Hitex
tutorial) and setting up a first project.  
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2.2 Interworking ARM/THUMB Code 
In our example project we have a number of source files. In practice the .c files are your source code, but the 
file “startup.s” is an assembler module provided by Keil. As its name implies, the startup code is located to run 
from the reset vector. It provides the exception vector table as well as initialising the stack pointer for the 
different operating modes. It also initialises some of the on-chip system peripherals and the on-chip RAM before 
it jumps to the main function in your C code. The startup code will vary depending on which ARM7 device you 
are using and which compiler you are using, so for your own project it is important to make sure you are using 
the correct file. The startup code for the Real View compiler may be found in c:\keil\ARM\RV30\startup\NXP, 
and for the GNU use the files in c:\keil\GNU\startup. 
 
First of all the startup code provides the exception vector table, as shown below. The vector table is located at 
0x00000000 and provides a jump to Interrupt Service Routines (ISR) on each vector. To ensure that the full 
address range of the processor is available, the LDR (Load Register) instruction is used.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The AREA command is used by the linker to place the vector table at the correct start address. For single chip 
use this is always 0x00000000, however if you are using the external bus and want to boot from external 
memory, the vector table must be located at 0x80000000. This is explained in Chapter 3. The vector table uses 
a Load Register instruction to load a 32-bit constant into the program counter from a constants table that is held 
immediately below the vector table. Consequently the vector table requires the first 64 bytes of memory. It is 
possible to use a branch instruction in place of the LDR instruction. However, the branch instruction only has an 
address range of +- MB. The LDR format can jump the program counter anywhere in the 4 GB address range of 
the ARM7. You should also note that the unused vector at 0x00000014 is padded with a NOP. In the NXP 
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LPC2300 these four bytes are used for a special purpose which is discussed in Chapter 3. Finally, the IRQ 
vector has a different form of interrupt handling which is also discussed in Chapter 3. 
 
Since each operating mode has a unique R13, there are effectively six stacks in the ARM7. After reset the 
startup code must initialise in turn before your application code can start. The strategy used by the compiler is to 
locate user variables from the start of the on-chip RAM and grow upwards. Any heap space is then allocated 
and then the stack space is allocated. 
 

 
 
      
 
 
 
 
 
 

 
By default the Real View compiler allocates local variables to CPU registers where possible. The
remaining application data is allocated from the start of the on-chip RAM, followed by any heap data.
Lastly the stack pointers are initialised above the heap. Each stack is assigned a user-allocated
number of bytes. 

 
 
 
 
 
The startup code enters each different mode of the ARM7 and loads each R13 with the starting address of the 
stack:        

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Like the vector table, you are responsible for configuring the stack. This can be done by editing the startup code 
directly; however Keil provide a graphical editor that allows you to configure the stack spaces more easily. 
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In addition, the graphical editor allows you to configure some of the LPC2300 system peripherals. We will see 
these in more detail later, but remember that they can be configured directly in the startup code. 
 
 
 
 
 
 

© 
Exercise 2:  Startup Code 
The second exercise in the Keil or Hitex tutorial takes you through allocating space for each
processor stack, and examines the vector table. 
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2.2.1 Defining The Project Memory Map 
When you create a project in the Keil uVision IDE, the “project make” and “linker” files are automatically defined 
for the device you are using. In the case of a single-chip device, the FLASH and RAM areas are defined as the 
default code and data areas.  
 
 
 
 
 
 
 
 
 
 
 
 
You can use the same target dialog to define additional areas of code and data storage if you are using the 
external bus to access additional FLASH and RAM. Later on in this chapter, we will look at locating specific 
functions and data into these segments. 
 

2.2.2 Defining The Memory Map With The GCC Compiler 
Once you have written your source code and compiled it to object files, these files must be linked together to 
make the final absolute file. In this section, I would like to give an overview of the GCC linker files that must be 
used to build an executable image for the LPC2300/LPC2400. The linker is invoked with the following switches: 
 
ld ld_opt -o <project_name>.elf 
 
where ld_opt is: 
 
-T.\objects\<linker_file>.ld --cref -t -static -lgcc -lc -lm -nostartfiles - 
Map=<project_name>.map 
 
The linker script file is saved to your project directory and is given the extension .ld. It is important to understand 
the structure of this file as you may need to modify it as your application code grows. The linker script file is a 
structured text file, with a number of sections that describe your project to the linker. First some search paths 
are defined for the compiler libraries. These search paths are defined in HiTOP and must point to the libraries of 
the GCC installation you are using: 
 
SEARCH_DIR( "C:\Program Files\Hitex\GnuToolPackageARM\ARM-hitex-elf\lib\interwork" 
) 
SEARCH_DIR( "C:\Program Files\Hitex\GnuToolPackageARM\lib\gcc\ARM-hitex-
elf\4.0.0\interwork" ) 
  
The GCC compiler comes with several builds of the libraries. The version selected here supports ARM/THUMB 
interworking. The next section in the script file defines the list of input object files that make up the complete 
project: 
 
GROUP ( objects\startup.o 
        objects\main.o 
        objects\interrupt.o 
        objects\THUMB.o )  
 
If you add any additional source modules to your project you must update this list manually. 
 
Following the group section is the target memory layout:  
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MEMORY 
{ 
 
   IntCodeRAM   (rx) : ORIGIN = 0x00000000, LENGTH = 512K   /* this is flash */ 
   IntDataRAM   (rw) : ORIGIN = 0x40000000, LENGTH = 64k 
 
} 
 
This section defines the size and location of the target memory. The description above describes the memory 
configuration of the LPC2300/LPC2400 used as a single-chip device with 512k of FLASH memory starting from 
address 0x0000000 and 64k of RAM starting from 0x40000000. Later on, when we look at the external memory 
interface of the LPC2300/LPC2400, we will look at laying out code for targets with external memory. The final 
user section describes how the application code should be laid out within the target memory. 
 
SECTIONS 
{ 
 
 .text 
  { 
   … 
  } 
 .data  
  { 
   … 
  } 
} 
 
The description of the application code is split into two basic sections: “.text” and “.data”. The “.text” section 
contains the executable code and the code constants (basically anything that should be located in the FLASH 
memory). The “.data” section allocates all of your volatile variables into the user RAM. 
 
.text : 
    { 
            __code_start__ = .; 
            objects\startup.o (.text)         /* Startup code */ 
            objects\*.o       (.text) 
            . = ALIGN(4); 
            __code_end__ = .; 
            *(.glue_7t) *(.glue_7) 
 
  } >IntCodeRAM = 0 
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The text section ensures that the startup code is assigned first, so it will be placed on the reset vector. Then the 
remaining application code is assigned locations within the FLASH memory. The align command ensures that 
each relocatable section is placed on the next available word boundary. 
 
 .data : AT (_etext) 
  { 
    /* used for initialized data */ 
    __data_start__ = . ; 
    PROVIDE (__data_start__ = .) ; 
    *(.data) 
    SORT(CONSTRUCTORS) 
    __data_end__ = . ; 
    PROVIDE (__data_end__ = .) ; 
  } >IntDataRAM 
  . = ALIGN(4); 
 
The “.data” section allocates the user variables into the on-chip RAM defined for the LPC2300/LPC2400. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The HiTOP project settings allow you to
customise the IDE for the ARM compiler
you are using and integrate it with the make
utility. 
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2.3 Interworking ARM/THUMB Code 
 
One of the most important things that we need to do in our application code is to interwork the ARM and 
THUMB instruction sets. In order to allow this interoperability, ARM have defined a standard called the ARM 
Procedure Call Standard (APCS) which is in turn part of the ARM binary standard. The APCS defines, among 
other things, how functions call one another, how parameters are passed and how stacks are handled. The 
APCS adds a veneer of assembler code to support various compiler features. The more you use, the larger 
these veneers get. In theory, the APCS allows code built in different toolsets to work together, so that you can 
take a library compiled by a different compiler and use it with the Keil or GCC toolset.  

 
 

 

 
 
 
 

The ARM Procedure Call Standard defines how
the User CPU registers should be used by
compilers. Adhering to this standard allows
interworking between different manufacturers’
tools. 

 
 
 
 
 
 
 
 
 

The APCS splits the register file into a number of regions. R0 - R3 are used for parameter passing between 
functions. If you need to pass more than 16 bytes, spilled parameters are passed via the stack. Local variables 
are allocated to R4 - R11, and R12 is reserved as a memory location for the intra-call veneer code. uVision 
allows you a great deal of control over which instruction set is used on each region of your code. At the project 
level, in the Options for Target Compiler tab you can globally enable ARM/THUMB interworking and select the 
default instruction set. 

 
 
 
 
 
 
 
 

 
The same menu is available on each source group folder and for each C module. This allows you to select the ARM or 
THUMB instruction set for a group of modules or for individual C modules. 
 
In addition, the programmer can force a given function to be compiled as ARM or THUMB code. This is done 
with the two programming directives #pragma ARM and #pragma THUMB, as shown below. The main function 
is compiled as ARM code and calls a function called “thumb_function”. (No prizes for guessing that this function 
is compiled in the 16-bit instruction set). 
 

 
#pragma ARM // Switch to ARM instructions 
 
int main(void) 
{ 
 while(1) 
 { 
  thumb_function(); //Call THUMB function 
 } 
} 
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#pragma THUMB //Switch to THUMB instructions 
 
void thumb_function(void) 
{ 
 unsigned long i,delay; 
 
 for (i = 0x00010000;i < 0x01000000 ;i = i<<1)   //LED flasher  
 { 
  for (delay = 0;delay<0x000100000;delay++)   //simple delay loop 
  { 
   ; 
  } 
 IOSET1 = i; //Set the next LED 
 } 
} 

 
 

 

2.3.1 Interworking With The GCC Compiler 
 
The GCC compiler also supports interworking between the ARM and THUMB instruction sets. When generating 
the code, the compiler must be enabled to allow interworking. This is achieved with the following switch: 
 
-mTHUMB-interwork 
 
The GCC compiler is designed to compile a given C module in either the ARM or THUMBinstruction set. 
Therefore you must lay out your source code so that each module only contains functions that will be encoded 
as ARM or THUMB functions. By default the compiler will encode all source code in the ARM instruction set. To 
force a module to be encoded in the THUMB instruction set, use the following directive when you compile the 
code:       -mTHUMB 
 
 
 
 
 
 

The HiTOP IDE project settings
allow you to easily define the
compilation settings for each
module. 

 
 
 
 
 
 
 
 
 
 
The linker can then take both ARM and THUMB object files and produce a final executable that interworks both 
instruction sets. 

 
Once you have defined the instruction set usage for your project, it can be compiled and the linker will resolve 
the interworking issues automatically. As your program develops you can easily reselect an instruction set for 
the project, module or function and re-compile, it’s that easy. 

Exercise 3:  Interworking  
This exercise demonstrates setting up a project which interworks ARM and THUMB code. 
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2.4 STDIO Libraries 

 
In the first few chapters of this book we will be writing code that is designed to run without the aid of an 
operating system. In this case there is no support for stdin or stdout. In order to use any of the high-level 
formatted IO library functions, we must provide low-level drivers tailored to IO devices that we plan to use. The 
low-level functions that the Real View libraries call are collected together in a single file called “retarget.c”. The 
template of this file can be found in c:\keil\arm\startup\. “Retarget.c” contains two functions that are used by 
high-level library calls link “printf” and “scanf”. These functions are used to read and write a single character to 
“stdin” and “stdout”. 

 
int fputc(int ch, FILE *f) { 
  return (sendchar(ch)); 
} 
 
int fgetc(FILE *f) { 
  return (sendchar(getkey())); 

 
You need to provide the low-level functions “sendchar” and “getkey” which read and write a single character to 
the IO stream. The default functions provided use UART1, but you can adapt these to use a device such as a 
memory mapped LCD and keyboard. 

 
int sendchar (int ch)  {                 /* Write character to Serial Port    */ 
 
  if (ch == '\n')  { 
    while (!(U1LSR & 0x20)); 
    U1THR = CR;                          /* output CR */ 
  } 
  while (!(U1LSR & 0x20)); 
  return (U1THR = ch); 
} 
 
 
int getkey (void)  {                     /* Read character from Serial Port   */ 
 
  while (!(U1LSR & 0x01)); 
 
  return (U1RBR); 

} 
 
 
 

 

2.4.1 STDIO With The GCC Compiler 
 
The GCC compiler libraries are designed to operate with an operating system designed to the POSIX standard. 
This means that the low-level calls of the STRIO libraries make calls to standard functions expected to be 
supplied by the operating system. As we are writing procedural C code without an operating system, these 
functions must be supplied by our code. The high-level library functions that output data call a low-level function 
called “write”, which must be modified to write a single character to the stdout device:  
 
int write (int file, char * ptr, int len) { 
  int i; 
 
  for (i = 0; i < len; i++) putchar (*ptr++); 
  return len; 
} 
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Similarly, the functions such as “scanf” which read data from the stdin device make a low-level call to a function 
called “read” to read a single input character:  
 
 
int read(int file, char *ptr, int len); 
{ 
 int i; 
 for (i=0;i<len;i++) *ptr++ = getchar(); 
 return len; 
} 

 

2.5 Accessing Peripherals 
Once we have built some code and got it running on an LPC2300 device, it will at some point be necessary to 
access the Special Function Registers (SFR) in the peripherals. As all the peripherals are memory mapped they 
can be accessed as normal memory locations. Each SFR location can be accessed by ‘hardwiring’ a volatile 
pointer to its memory location as shown below. 

 
#define SFR   (*((volatile unsigned long *) 0xFFFFF000)) 

 
The Real View Compiler comes with a set of “include” files which define all the SFRs in the different LPC2300 
variants. Just include the correct file and you can directly access the peripheral SFRs from your C code. The 
names of the “include” files are: 
 
LPC21xx.h 
LPC22xx.h 
LPC210x.h 

 
 

2.5.1 Accessing Peripherals With The GCC Compiler 
 
The pointer method used to make absolute access to the Special Function Registers is ANSI C. Consequently 
the same “include” file can be used with the GCC Compiler. 
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2.6 Interrupt Service Routines 
In addition to accessing the on-chip peripherals, your C code will have to service interrupt requests. It is 
possible to convert a standard function into an ISR, as shown below: 
 
void  FIQint (void) __irq 
{ 

IOSET1 = 0x00FF0000; //Set the LED pins 
EXTINT  = 0x00000002; //Clear the peripheral interrupt flag 

} 
 

The keyword “__irq” defines the function as either fast or general purpose interrupt request service routine, and 
will use the correct return mechanism. Handling software interrupts is a special case and we will look at this in 
the next section. 
 
As well as declaring a C function as an interrupt routine, you must link the interrupt vector to the function. We 
saw that the interrupt vector table loads a constant (which is the address) on an exception trap loop held in the 
startup code.  So if you just enable an exception without modifying the startup code, the program will always 
end up in the exception trap and never reach your C code. Therefore once we have declared a function as an 
interrupt, we must link the vector table to this function as shown below. 
 
 

 

 
Since the ARM CPU will automatically switch to the ARM instruction set when it starts to process an exception, 
you must make sure all exception and interrupt routines are coded in the ARM instruction set. The SWI and IRQ 
exceptions are special cases. We will look at SWI handling next, and the IRQ interrupt structure in Chapter 3. 
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2.6.1 Interrupt Handling With The GCC Compiler 
The principles of handling an exception with the GCC compiler are essentially the same as the Keil Real View 
compiler. In the GCC compiler a C routine may be converted into an exception handler by using the non-ANSI 
attribute keyword. 
 
void fiqint (void)   __attribute__ ((interrupt("FIQ"))); 
{ 
 
 IOSET1  = 0x00FF0000; //Set the LED pins 
 EXTINT  = 0x00000002; //Clear the peripheral interrupt flag 
 
} 
 
The keyword “__fiq” defines the function as a fast interrupt request service routine and will use the correct return 
mechanism. Other types of interrupt are supported by the keywords “__IRQ”, “__SWI” and “_UNDEF”. 
 
As well as declaring a C function as an interrupt routine, you must link the interrupt vector to the function. 
 
Vectors:        LDR     PC,Reset_Addr          
                LDR     PC,Undef_Addr 
                LDR     PC,SWI_Addr 
                LDR     PC,PAbt_Addr 
                LDR     PC,DAbt_Addr 
                NOP                            /* Reserved Vector */ 
;               LDR     PC,IRQ_Addr 
                LDR     PC,[PC, #-0x0404]      /* Vector from VicVectAddr */ 
                LDR     PC,FIQ_Addr 
 
Reset_Addr:     DD      Reset_Handler 
Undef_Addr:     DD      Undef_Handler?A 
SWI_Addr:       DD      SWI_Handler?A 
PAbt_Addr:      DD      PAbt_Handler?A 
DAbt_Addr:      DD      DAbt_Handler?A 
                DD      0                      /* Reserved Address */ 
IRQ_Addr:       DD      IRQ_Handler?A 
FIQ_Addr:       DD      FIQ_Handler?A 
 
The vector table is in two parts. First there is the physical vector table which has a Load Register Instruction 
(LDR) on each vector. This loads the contents of a 32-bit wide memory location into the PC, forcing a jump to 
any location within the processor’s address space. These values are held in the second half of the vector table, 
or constants table which follows immediately after the vector table. This means that the complete vector table 
takes the first 64 bytes of memory. The startup code contains predefined names for the Interrupt Service 
Routines (ISR). You can link your ISR functions to each interrupt vector by using the same name as your C 
function name. The table below shows the constants table symbols and the corresponding C function prototypes 
that should be used.  
 
Exception Source Constant C Function Prototype 
Undefined Instruction Undef_Handler voidUndef_Handler(void)  __attribute__ ((interrupt("undef”))); 
Software Interrupt SWI_Handler void SWI_Handler(void)  __attribute__ ((interrupt("swi”)));  
Prefetch Abort  PAbt_Handler void PAbt_Handler (void)  __attribute__ ((interrupt("undef”))); 
Data Abort  DAbt_Handler void DAbt_Handler (void) __attribute__ ((interrupt("undef”))); 
Fast Interrupt   FIQ_Handler void FIQ_Handler (void)  __attribute__ ((interrupt("fiq”))); 
 
As you can see from the table, there is no routine defined for the IRQ interrupt source. The IRQ exceptions are 
special cases as we will see later. Only the IRQ and FIQ interrupt sources can be disabled. The protection 
exceptions (Undefined Instruction, Prefetch Abort, and Data Abort) are always enabled. Consequently these 
exceptions must always be trapped. As a minimum you should ensure that these interrupt sources are trapped 
in a tight loop, as shown below. 
 
  Pabt_Handler:  B        Pabt Handler    ;  Branch back to Pabt_Handler 
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2.6.2 Debugging The Error Exception Handlers 
Three of the ARM exceptions are intended to trap program errors. An Undefined Instruction occurs if the Op 
code fetched from the memory is not an ARM or THUMB instruction. Program Abort and Data Abort are 
triggered if a fetch or data access is made to a region of memory that is not defined as RAM or ROM or an SFR 
region. If one of these protection mechanisms is triggered, your code will end up in the exception traps. If (or 
when) this occurs it can be very difficult to work out the cause of the program error without a real time trace.  
If your code does encounter a memory error and ends up in one of these loops, you can examine the contents 
of the Abort Link Register to determine the address+4 of the instruction which caused the error. The SPSR will 
contain details of the operating mode which the CPU was in when the error occurred. From here you can 
backtrack and examine the contents of the stack immediately before the application program crashed. So the 
CPU registers can produce some useful post mortem diagnostics if you know what you are looking for. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the HiTOP debugger the
exception assistant allows you to
track back to the last instruction
executed before an exception was
generated. 

 
 

Exercise 4:  Simple Interrupt 
This exercise demonstrates how to set up and service a basic FIQ interrupt. 

 
 
 
 

 

2.6.3 Software Interrupt 
 

As we saw in Chapter 1, the ARM and THUMB instruction sets include a software interrupt instruction. When 
executed, the SWI instruction will generate an exception and force the CPU into Supervisor Mode, jumping the 
Program Counter to the Software Interrupt Exception Vector. Once in the privileged Supervisor Mode, the CPU 
has full access to the CPSR and SPSR registers that are not accessible in User Mode. It also means that code 
called by a software interrupt will have its own stack, and if necessary, a dedicated region of memory. This 
allows the possibility of partitioning your code into separate operating modes. For example, application code 
running in User Mode that makes calls to low-level drivers via software interrupts running in Supervisor Mode. 
The low-level drivers can have their own stack and memory region, which cannot be crashed by the application 
code. This splits your code into a BIOS layer and an application layer, where each layer can be developed 
separately. They can then be linked together with minimal integration problems. The SWI mechanism is also a 
useful mechanism for linking together two separately compiled programs, such as an application program and a 
bootloader. Dealing with the Software Interrupt Exception is a special case. As we have seen, it is possible to 
encode an integer into the unused portion of the SWI opcode. 
 
 
#define SWIcall2 asm{ swi#2} 
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Now when you enter the Software Interrupt Handler, the return address will be stored in R14, the Link Register. 
With some assembler code you can read this value and calculate the address of the SWI instruction that 
generated the interrupt. It is then possible to read this memory location mask from the instruction op code to 
obtain the integer value. This value can then be used to determine what code should be run in the Software 
Interrupt Handler. 
 
However in the Real View Compiler there is a more elegant method of handling software interrupts. A function 
can be defined as a software interrupt by using the following non-ANSI keyword adjacent to the function 
prototype: 
 
 
 
void __swi(1) SysCall_1 (int pattern);   
 
void __SWI_1 (void)     // void call to software interrupt 
{ 
  ……………… 
} 
 
In addition, the assembler file SWI.S must be included as part of the project.  
 

 
Now when a call is made to the function, an SWI instruction is used. This causes the processor to enter the 

 file. This code determines which function 
is mechanism makes it very easy to take 

dvantage of the exception structure of the ARM7 processor, and to partition code which is non-critical code 

mp r 

te this line of code, it will generate a software interrupt, switch the CPU into Supervisor 
hich will place the application into the SWI handler 

ne what code to run. It would be possible to read the 

r14"); 

ithin the SWI handler. 
 

Supervisor Privileged Mode and execute the code in the SWI_VEC.S
has been called and handles the necessary parameter passing. Th
a
running in User Mode or privileged code such as a BIOS or Operating System. In the Tutorial section we will 
take a closer look at how this works. 
 

2.6.4 Software Interrupts In The GCC Co ile
 
In the GCC compiler there is no direct support for the software interrupt mechanism. However it is possible to 
create a software interrupt call by using the inline assembler. The SWI instruction can also be compiled with a 
user-defined integer encoded into the ‘empty’ portion of the instruction (bits 0 - 23), as shown below. 
  
#define SoftwareInterrupt2 asm ("swi #02")  
 

ow when we execuN
Mode and vector the PC to the SWI interrupt vector, w
outine.  Once we enter this routine, we need to determir

contents of a global variable, and then use a switch statement to run a specific function depending on the 
contents of the global. However, there is a more elegant method. In the GCC compiler there is a register 
keyword that allows us to access a CPU register directly from C code. The declaration below declares a pointer 

 the Link Register. to
 
egister unsigned * link_ptr asm ("r

 
When we enter the Software Interrupt Routine we can use this pointer to read the contents of the SWI 
instruction which generated the interrupt. This allows us to read the integer number encoded into the SWI 
instruction. We can then use this number to decide which function to run w
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temp = *(link_ptr-1) & 0x00FFFFFF; 

 encoded integer (in this case 2) is now stored in the temp variable and we can use its 
ontents to decide which code to run. The SWI instruction is a convenient method of leaving User Mode to enter 
e Supervisor Mode and run some privileged code. The SWI calls can be used as part of a BIOS where all 

access to the special function registers is made via software interrupt calls. This in effect partitions your 
application code, so that all the hardware drivers run in Supervisor Mode with their own stack and if necessary 
their own memory space. You do not have to build your code this way, but if you want to make use of it the 
mechanism is there. 
 

e in RAM” section describe 
atures that are disabled in the evaluation version of the compiler. 

bsolute locations in the LPC2300 memory map. Within a C 
module it is possible to locate various progra  segments at any memory location. This is done by selecting the 
required C module within uVision and openi  its Options menu. This menu allows you to assign the program 
segments within this module to any regions defined in the project target settings. 
 

 
 

fic location, for example a structure to be located over the memory 
l, you must define the memory region in the project target dialog. 

hen create a “dummy” module that contains only the structure definition, and then locate the “Zero Initialised 

hip FLASH. 
However, if you are running from external F you are stuck with the access time of the external FLASH.  
One trick is to boot the executable code into st RAM and then run from this RAM. This means that you need to 
compile position independent code that can AM, or compile code so it runs in the RAM and 
is loaded by a separate bootloader program. ions will work but require extra effort to develop. 

 
The line above takes the contents of the Link Register and deducts one. Remember it is a word-wide pointer, so 
we are in fact deducting four bytes. This rolls the contents of the Link Register back by four so it is pointing at 
the address of the SWI instruction. Then the contents of the instruction with the top eight bits masked off (the 
condition codes and the SWI op code) are copied into the temp variable.  
 
The result is that the
c
th

 

 

Exercise 5:  Software Interrupt 
The SWI support in the Keil compiler is demonstrated in this example. You can easily partition code 
to run in either the user mode or in supe isor mode. 

 

2.6.5 Locating Variables At Absolute Memory Locations 
 

Please note that the features described in this section and the “Locate Cod
fe
 
It is often necessary to locate program variables at a

m
ng

 

 
 
 

rv

 
 
If you want to locate a variable at a speci
mapped registers of an external periphera
T
Data” (which is in the “dummy” module) into this segment.  
 
 

2.6.6 Locating Code In RAM 
 
As we shall see later, the main performance bottleneck for the ARM7 CPU is fetching the instructions to execute 
from the FLASH memory. The LPC2300 has special hardware to solve this problem for the on-c

LASH, 
fa
be copied into the R
 Both of these solut
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Fortunately, the uVision IDE allows you to sily boot code from the FLASH into the RAM. This is done by 
simply locating the Code/Const section of a module (or group of modules) into a RAM segment. 

 

ions or library functions that are not also stored in the RAM. So if your “fast” RAM function makes 
alls to a maths routine stored in the FLASH memory, you may not get the performance you were expecting. 
his method of locating functions in RAM is not only simple and easy to use, it has the added advantage that 

correct address. 
e which can be 

ating objects at specific locations, and there are probably a 
iscussed here can be used to boot code into RAM and also locate 

The basis of the method presented here is the GNU-C “SECTION __attribute__” 
rective. This allows a particular object (code or data) to be placed into a section with a user-defined name. 

xed in memory at the desired storage address, but has its runtime address set to 
 linker control file. 

) Define a macro such as: 

n as it is distinctive and meaningful, if rather dull. 

ant to store in ROM but 

ototype sets the attribute 
nsigned int erase_flash (unsigned int sector) _RAMCODE_ ; 

ote: The function itself is not changed. The presence of the RAMCODE macro and hence the 
_attribute__(section())” control will cause the code generated for the function to be placed into a SECTION 

called “.ramcode”. 
 
 
 
 

ea

 
 
 
 
 
 
 
 
 

Now the selected code will be linked to run from the RAM region, and the default startup code will automatically 
load the code from FLASH memory into RAM at runtime. The compiler does not check if your RAM function is 
calling funct
c
T
the linker knows where the function will finally end up and can place the debug symbols at the 
This will give you not only a ROMable image which will run standalone, but also an imag
debugged. 
 
 

2.6.7 Using The GCC Compiler To Load Code And Data Into RAM 
The GCC Compiler has no direct support for loc
number of ways to do it. The method d
variables at absolute locations. 
di
This special section is then fi
somewhere in SRAM via the
 
Step-by-step, the process is: 
 
 
(i
 
#define RAMCODE __attribute__ ((section (".ramcode"))) 
 
The name “RAMCODE” was chose
 
 
(ii) Place the RAMCODE macro at the end of the prototype for the function you w
execute in RAM: 
 
// Erase FLASH Function 
// Function pr
u
 
N
“_
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(iii) Add the lines after “PROVIDE (etext = .);” to the .LD linker control file: 
 
/* .rodata section which is used for read-only data (constants) */ 
 
.rodata . : 
{ 
*(.rodata) 
} >IntCodeRAM 
 
. = ALIGN(4); 
 
/* Create a symbol that can be accessed from C */ 
 
_ramcode_rom_image = . ; 
PROVIDE (ramcode_rom_image = .) ; 
 
 
_etext = . ; 
PROVIDE (etext = .); 
 
/* ADD THE FOLLOWING LINES */ 
/********************************************/ 
/* Code that will be stored in ROM and */ 
/* copied to RAM in main() */ 
/* It is placed in the IntDataRAM (SRAM), */ 
/* defined in the MEMORY { } section at the */ 
/* at the top of this file */ 
 
/* The .ramcode section comes from RAMCODE.C */ 
/* Please send your donations to Mike Beach */ 
 
.ramcode :  
 
/* Put the ROM image at the end of the .rodata area */ 
AT ( ADDR (.rodata) + SIZEOF (.rodata)) 
{  
/* Set the values of the public symbols called */ 
/* _ramcode and _eramcode that will be accessed from C */ 
 
_ramcode = . ; *(.ramcode) ; _eramcode = . ; 
 
} >IntDataRAM 
 
/* Create the _eramcode symbol */ 
PROVIDE (_eramcode = .); 
 
 
Here, the function will be stored in ROM after the “.rodata” section. Generally this is at the top of the used 
Code/Constant area. 
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These lines create public symbols called “_eramcode” (end of ramcode) and “_ramcode” (start of ramcode), 
which are used by the copy routine to determine the destination address. The “ramcode_rom_image” symbol is 
used to find the stored function in the ROM. These are referenced in C modules using:  
 
extern unsigned long _eramcode ; // End of area in RAM  
extern unsigned long _ramcode ; // Start of area in RAM at which functions  
// will be loaded  
extern unsigned long _ramcode_rom_image ; // Start of area in ROM in which  
// functions are stored 
 
 
(iv) Add the following code to the start of your main() function. This copies the function from ROM to RAM, ready 
for execution: 
 
// Copy FLASH Erase and Write Functions Into SRAM 
 
// Point to base of ROM image of functions 
func_copy_ptr = (unsigned long *) &_ramcode_rom_image ;  
 
// Point to final run time address of functions 
ramcode_ptr = (unsigned long *) &_ramcode ;  
 
// Find length of area to copy from ROM to RAM 
func_copy_length = (unsigned long) &_eramcode - (unsigned long) &_ramcode ;  
 
// Do the copy 
for(i = 0 ; i < func_copy_length/sizeof(unsigned int) ; i++) 
{ 
 
ramcode_ptr[i] = func_copy_ptr[i] ;  
 
} 
 
You will need to have some suitable pointers already defined: 
 
unsigned long *func_copy_ptr ; 
unsigned long *ramcode_ptr ; 
unsigned long func_copy_length ; 
 
 
(v) Due to the great distance between the ROM from where the function will be called (0x00000000) and the 
execution address in RAM (0xA0000000), it is not possible to make a direct function call to run the function. 
Instead you need to use a function point and use an indirect call: 
 
// Get start addresses of functions now located in SRAM 
// We cannot call functions at 0xA0000000 directly so we need to use  
// function pointers 
SRAM_erase_FLASH_func = (unsigned long (*)(unsigned int))&erase_flash ; 
SRAM_write_FLASH_func = (unsigned long (*)(unsigned int, 
unsigned int))&write_flash ; 
 
To call the function in RAM, use: 
 
// We are in BANK0 
// ERASE sector 4 at 0x8000 
error_status = SRAM_erase_FLASH_func(0x10) ; // Function located in SRAM 
 
 

© Hitex (UK) Ltd.                                                                                     Page 51 



 
Chapter 2:  Software Development                                                                                                            
 

(vi) Look in the MAP file and check that the .ramcode section is in the right place and that the ROM image of the 
function is just after the .rodata section:  
 
.rodata 0x00000618 0x0 
*(.rodata) 
0x00000618 . = ALIGN (0x4) 
0x00000618 _ramcode_rom_image = . 
0x00000618 PROVIDE (ramcode_rom_image, .) 
0x00000618 _etext = . 
0x00000618 PROVIDE (etext, .) 
 
.ramcode 0xa0000000 0x1dc load address 0x00000618 
0xa0000000 _ramcode = . 
*(.ramcode) 
.ramcode 0xa0000000 0x1dc objects\ramcode.o 
0xa0000000 erase_flash 
0xa00000ec write_flash 
0xa00001dc _eramcode = . 
0xa00001dc PROVIDE (_eramcode, .) 
 
And that’s all there is to it! 
 
 

2.6.8 Debug Information When In RAM 
  
Because the GNU-C compiler and linker are being used properly, you will find that the debug information 
required by the HiTOP debugger is fixed up at the execution address, so when you run until the function, the full 
source level debugging will be available! 
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2.7 Inline Functions 
 
It is also possible to increase the performance of your code by inlining your functions. The inline keyword can be 
applied to any function, as shown below: 

 
 __inline void NoSubroutine (void)   
 { 
  … 
 } 

 
When the inline keyword is used, the function will not be coded as a subroutine, but the function code will be 
inserted at the point where the function is called, each time it is called. This removes the prologue and epilogue 
code which is necessary for a subroutine, making its execution time faster. However, you are duplicating the 
function every time it is called, so it is expensive in terms of your FLASH memory. 

 

2.7.1 Inline Functions With The GCC Compiler 
 
The GCC Compiler also supports inlining of C functions in a very similar fashion to the Real View Compiler: 
 
inline void NoSubroutine (void) 
{ 
  … 
} 
 
When the inline keyword is used, the function will not be coded as a subroutine, but the function code will be 
inserted at the point where the function is called, each time it is called. This removes the prologue and epilogue 
code which is necessary for a subroutine, making its execution time faster. However, you are duplicating the 
function every time it is called, so it is expensive in terms of your FLASH memory. The compiler will not inline 
functions unless you have set the optimiser to its “O2” level. 
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2.8 Inline Assembler 
The compiler also allows you to use ARM or THUMB Assembler instructions within a C file. This can be done as 
shown below: 

 
__asm { 
    loop:  LDRB    ch, [src], #1 
              STRB    ch, [dst], #1 
              CMP     ch, #0 
              BNE     loop 
  } 
 
This can be useful if you need to use features which are not supported by the C language, for example the MRS 
and MSR instructions. 

 
 

 

2.8.1 Inline Assembler With The GCC Compiler 
 
Again, like the Real View Compiler the GCC compiler allows you to add assembler instructions inline with your 
C code. 
 
asm ( “mov r15,r2” ); 

 
 

2.8.2 Importing GCC Code 
 

One interesting feature of the Real View Compiler is that it has a GNU emulation mode. By adding the “–gnu” 
switch to the compiler command line, the Real View Compiler can build a project originally written for the GCC 
compiler. Since both the Real View Compiler and the GCC Compiler comply to the ARM binary interface 
standard, it is possible to build a mixed project composed of code written in both the GCC dialect and the Real 
View dialect. 

 
 
 
 
 
 
 
 
 

This raises the interesting possibility of compiling existing Open Source code in the leading industry standard 
C/C++ compiler. 
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2.9  Hardware Debugging Tools 
 
NXP have designed the LPC2300 to have the maximum on-chip debug support. There are several levels of 
support. The simplest is a JTAG debug port. This port allows you to connect to the LPC2300 from the PC for a 
debug session. The JTAG interface allows you to have basic run control of the chip. That is, you can single step 
lines of code, run halt and set breakpoints and also view variables and memory locations once the code is 
halted.  
 

 addition, NXP has included the ARM embedded trace module. The embedded trace module provides much 

he final on-chip debug feature is the Real Monitor. This is a kernel of code which is resident in a reserved area 

he JTAG and ETM tools simply provide a fairly “dumb” serial debug connection to the ARM7 core. A generic 

 
 
 
In
more powerful debugging options and real time trace, code coverage, triggering and performance analysis 
toolsets. In addition to more advanced debug tools, the ETM allows extensive code verification and software 
testing which is just not possible with a simple JTAG interface. If you are designing for safety-critical 
applications, this is a very important consideration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Debug support on the LPC2300 includes a JTAG port for FLASH programming and basic run control
debugging. 

In addition to the JTAG port, NXP have included the ARM ETM module for high-end debugging tools. 

T
of memory. During a debug session the debugger can start the Real Monitor via the JTAG port. The Real 
Monitor can be used to provide “on the fly” updates as your code is running. This process is pseudo real time in 
that the Real Monitor code interrupts your code and uses some processor time to read and communicate debug 
information to the PC.  
 

2.9.1 Important! 
 
T
ARM JTAG tool does not have any understanding of the overall LPC2300 architecture. This means that a 
generic tool will always enter the bootloader after reset because it does not write the “program signature” into 
the FLASH (this feature is discussed later). Consequently, it will never run your code. If you are new to the 
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LPC2300, this is likely to catch you out and be very frustrating. Since the Keil tools are developed for ARM7-
based general purpose microcontrollers, uVision understands the LPC2300 memory architecture and will debug 
the device seamlessly. 
 

2.9.2 Even More Important 

s mentioned above, the JTAG port is a simple serial debug connection to the ARM7 device. It is very important 

 

 
So, by the end of this section you should be le to set up a project in the Keil or Hitex tools, select the compiler 

 
A
to understand its behaviour during reset. If the ARM7 CPU is reset, all of the peripherals including the JTAG are 
reset. When this happens, the ULINK debugger loses control of the chip and has to re-establish control once the 
LPC2300 device comes out of reset. This will take a finite number of clock cycles. While this is happening, any 
code which is on the chip will be run as normal. Once the ULINK regains control of the chip, it performs a soft 
reset by forcing the PC back to address zero. However, the on-chip peripherals are no longer in the reset 
condition, i.e. peripherals will be initialised, interrupt enabled etc. You must bear this in mind if the application 
you are developing could be adversely affected by this. A quick solution is to place a simple delay loop in the 
startup code or at the beginning of main(). After a reset occurs, the CPU will be trapped in this loop until the 
ULINK regains control of the chip. None of the application code will have run, leaving the LPC2300 in its 
initialised condition. 

2.10  Summary 

ab
and LPC2300 variant you want to use, configure the startup code, be able to interwork the ARM and THUMB 
instruction sets, access the LPC2300 peripherals and write C functions to handle exceptions. With this 
grounding, we can now have a look at the LPC2300 system peripherals.  
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3 Chapter 3: System Peripherals   
 

3.1 Outline 
 
Now that we have some familiarity with the ARM7 core and the necessary development tools, we can begin to 
look at the LPC2300 devices themselves. In this section we will concentrate on the system peripherals, that is to 
say the features which are used to control the performance and functional features of the device. This includes 
the on-chip FLASH and SRAM memory, the external bus controller, the clock structure and phase locked loop  
which is used to multiply the external oscillator in order to provide a maximum of 72MHz processor clock, and 
the power control features. Finally, we will take a look at the simplest user interrupt source, the external interrupt 
pins, before going on to look at the exception system in detail. 
 

3.2 Bus Structure 
 
To the programmer, the memory of the LPC2300 device is one contiguous 32-bit address range. However, the 
device itself is made up of a number of buses. These buses are defined by ARM and in general an ARM-based 
microcontroller contains two buses. The ARM7 core is connected to a high-speed bus called the Advanced High 
Performance Bus (AHB). As its name implies, this is the fastest way of connecting peripheral devices to the 
ARM7 core, and is generally reserved for high performance peripherals such as the Vector Interrupt Controller 
which enables fast interrupt handling, and USB and Ethernet controllers.  
 
All the remaining user peripherals are connected to a second standard bus called the Advanced Peripheral Bus.  
The APB bridge contains a clock divider, this allows the APB bus to run at a slower speed than the ARM7 core 
and the AHB. This allows the user peripherals to run at a slower clock rate than the main processor to conserve 
power. The general form of an ARM7-based microcontroller is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Hitex (UK) Ltd.                                                                                     Page 58 

 
 

The generalised bus structure of an
ARM7 based microcontroller consists
of a single AHB bus and a single APB
bus. 

 

 
The LPC2300 has been designed with several high performance peripherals, each with their own DMA units. 
These require frequent bus access, and the basic bus structure would limit overall performance of the 
microcontroller because the ARM7 and DMA units would be continually arbitrating with one another. For this 
reason the LPC2300 has a more complex bus structure which consists of two AHB buses, a single APB bus and 
an additional local bus interface to the ARM7 CPU. 
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The Ethernet MAC and DMA has its own dedicated high speed AHB bus. The USB controller and its dedicated 
DMA is located on the second AHB bus along with the general purpose DMA unit. All of the general purpose 
peripherals are bridged off this AHB bus onto a single APB bus.  
 
Finally, there is a third local bus which is used to connect the on-chip FLASH and RAM to the CPU. Connection 
of the program code and data store to the ARM7 CPU via the AHB bus is possible, but this introduces some 
execution stalls because of contention on the bus. Using a separate local bus removes the possibility of these 
stalls to give the best processor performance. Because it is so much faster to read and write to registers on the 
local bus, NXP have moved the GPIO registers onto the local bus. As we will see later this allows you to “bit 
bash” port pins much faster than using registers located on the APB bus. 
 

3.3 Memory Map 
 
Despite the number of internal buses, the LPC2300 has a completely linear memory map. The general layout is 
shown below. 

The LPC2300 introduces a second
AHB bus dedicated to the Ethernet
peripheral, and a local bus for the
FLASH and SRAM. 

The memory map of the LPC2300 includes
regions for on-chip FLASH memory, user
SRAM, a pre-programmed bootloader, external
bus and user peripherals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig Memory map 
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The on-chip FLASH is fixed at 0x00000000 upwards with the user RAM fixed at 0x4000000 upwards. The 
dedicated USB SRAM appears at 0x7FD00000 and the  Ethernet SRAM appears at 0x7FE00000. The 
LPC2300 is pre-programmed at manufacture with a FLASH bootloader and the ARM real monitor debug 
program. These programs are placed in the region 0x7FFFFFF – 0x8000000. The region between 0x8000000 
and 0xE000000 is reserved for external memory. The user peripherals located on the AHB are all mapped into 
the region between 0xE000000 and 0xE020000, and each peripheral is allocated a 16k memory page. Finally 
the Vector Interrupt Unit is located at the top of the address range at 0xFFFFF000. 
 
If your user code tries to access memory outside these regions, or non-existent memory within them, an abort 
exception will be produced by the CPU. This mechanism is hardwired into the design of the processor and 
cannot be changed or switched off. 
 

3.4 Register Programming 
 
Before we start our tour through the system block, it is worth noting how Special Function Registers (SFR) are 
programmed on ARM7 chips. 
 

 
 
Each underlying SFR is controlled by three user registers. A Set register which is used to set bits, a Clear 
register which is used to clear bits by writing a logic 1 to the bits you wish to clear, and a Status register which is 
used to read the current contents of the register. The most common mistake made when new to the LPC2300 is 
to write zero into the Clear Register which has no effect. 
 

3.5 Memory Accelerator Module 
 
The Memory Accelerator Module (MAM) is the key to the high instruction execution rate of the LPC2300. The 
MAM is present on the local bus and sits between the FLASH memory and the ARM7 CPU.  
 

As a general rule all Special
Function Registers originating from
ARM are controlled by three
registers: a Set, Clear and Status
register.  

NB To clear bits you must write a
logic 1 to the relevant bit in the
Clear Register.  

Running from on-chip FLASH is a performance
bottleneck for all ARM7 implementations. NXP have
added a Memory Accelerator Module which greatly
enhances the performance of the ARM7 CPU.  
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One of the main constraints in designing a high performance, single-chip microcontroller based on the ARM7 is 
the access time to the on-chip FLASH memory. The ARM CPU is capable of running up to 80MHz, however the 
on-chip FLASH has an access time of 50ns. Consequently, just running out of the FLASH would limit the 
execution speed to 20MHz (a quarter of the possible clock rate of the processor.) There are a number of ways 
round this problem. The simplest is to load the critical sections of your program into RAM and run out of RAM. 
As the RAM has a much faster access time, our overall performance will be greatly increased. The downside is 
that on-chip RAM is a finite and precious resource. Using it to hold program instructions greatly limits the size of 
application code which we could run. Another approach would be to have an on-chip cache. A cache is a small 
region of memory placed between the processor and memory store, which stores regions of recently referenced 
main memory. In a well-designed cache, the processor will use the cache memory whenever possible, thus 
reducing the bottleneck imposed by slow memory. However, a full cache is a complex peripheral that demands 
a high number of gates and consequently a large portion of the LPC2300 die area. This flies in the face of the 
ARM7 design, which has simplicity as its watchword.  Another downside of a full cache is that the runtime of 
code using the cache is no longer deterministic and could not be used by any application that required 
predictability and repeatability. 
 
The Memory Accelerator Module is a compromise between the complexity of a full cache and the simplicity of  
allowing the processor to directly access the FLASH memory.  
 
 
 
 
 
 
 

The FLASH memory is arranged in a bank of
128-bit wide memory. One FLASH access
from the MAM loads four ARM instructions or
eight THUMB instructions which can be
executed by the ARM7 CPU. 

 
 
 
 
 
 
 
 
 
 
 
 
Like a cache, the MAM attempts to have the next ARM instruction in its local memory in time for the CPU to 
execute. First of all the FLASH memory is 128 bits wide (four instructions) rather than 32 bits wide. This means 
that a single FLASH access can load four ARM instructions or eight THUMB instructions to fast memory located 
in the MAM unit. This memory includes prefetch, data and branch trail buffers. This technique works particularly 
well with the ARM instructions, which can use the condition codes to iron out small branches in order to keep 
the code-flow largely linear. In the case of small loops and jumps, the MAM has branch and trail buffers that 
hold recently loaded instructions which can be re-executed if required. 
  
The complexities of the MAM are transparent to the user and it is configured by two registers, the Timing 
Register and the Control Register. There are some additional registers to provide runtime information on the 
effectiveness of the MAM. The Timing Register is used to control the relationship between the CPU clock and 
the FLASH access time. By writing to the first three bits of the Timing Register you can specify the number of 
CPU clock cycles required by the MAM to access the FLASH. The recommended settings are 1 for a system 
clock slower than 20MHz, 2 for a system clock between 20 MHz - 40 MHz and 3 for a system clock above 40 
MHz. 
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On reset the MAM is disabled and all access to code and constant data is made directly to the FLASH.  It is 
possible to partially enable the MAM so that all sequential code is fetched from it, but branches and constant 
data stored in the FLASH are accessed directly from the FLASH. Finally, the MAM may be fully enabled so that 
it fetches all FLASH memory accesses from the MAM. The reason for these modes is that, like a cache code, 
running from the MAM is not deterministic, so we have the option to switch it off or reduce its impact if we need 
to guarantee the run time of our application code. However, even in its full operating mode, the impact of the 
MAM is not as great as a cache. It is possible to predict runtime performance particularly with the ‘use 
performance analysis’ features in development tools. 
 
To help with this analysis and also to gauge the effectiveness of the MAM, there are a group of statistical 
registers which can be used to measure the MAM’s performance.  
 
 

The MAM has some statistics
registers which show the number of
accesses to the FLASH and the
number of accesses to the MAM, so
the effectiveness of the MAM can be
calculated. 

 
The Statistics registers are based around two counters which record the accesses made to the FLASH and the 
accesses made to the MAM buffers. The Statistical Control Register can further refine the type of access which 
will cause the counters to increment. By configuring the Statistical Control Register we can differentiate between 
code constant and instruction fetches, so it is possible to determine the instruction or data hit rate or the 
combined instruction and data hit rate. These metrics can give us some information on the efficacy of the MAM 
with our application. On the CD there is a simple example which demonstrates the use of the MAM, its statistical 
registers and how vital it is to the overall performance of the LPC2300 family. 
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3.5.1 Example MAM Configuration 
 
The example code shown below starts the LPC2300 with the PLL set to 60MHz and the MAM disabled. The 
code FLASHes each LED in sequence with a delay loop between each increment. An A/D conversion is also 
done and if the result is above 0x00000080, the code enables the MAM for maximum execution speed. The 
effect of the MAM can be seen on the update rate of the LEDs. In the next section we will look at burning the 
code into the FLASH to observe its operation. 
 
int main(void) 
{ 
 unsigned int delay; 
 unsigned int FLASHer = 0x00010000;  // define locals 
 
 IODIR1 = 0x00FF0000;    // set all ports to output 
 VPBDIV = 0x02; 
 ADCR   = 0x00270601;                    // Setup A/D: 10-bit AIN0 @ 3MHz  
 ADCR |= 0x01000000;                     // Start A/D Conversion  
 
 while(1) 
 { 
  do 
 { 
  val = ADDR;     // Read A/D Data Register  
 }         
 
 while ((val & 0x80000000) == 0); 
 val = ((val >> 6) & 0x03FF); 
 
 if (val <0x80) 
 { 
  MAMCR = 0; 
  MAMTIM = 0x03; 
  MAMCR = 0x02; 
 } 
 else 
 { 
  MAMCR = 0x0; 
 } 
 for(delay = 0;delay<0x100000;delay++) //simple delay loop 
 { 
  ; 
 } 
 
 ChangeGPIOPinState(FLASHer); //set the state of the ports 
 FLASHer = FLASHer <<1;  //shift the active led 
  
 if(FLASHer&0x01000000)  
 { 
  FLASHer = 0x00010000; //Increment FLASHer led and test for  
      // overflow 
 } 
 } 
} 
 
 
void ChangeGPIOPinState(unsigned int state) 
{ 
 

IOCLR1 = ~state; //clear output pins 
IOSET1 =  state; //set output pins 

 
} 
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3.6 FLASH Memory Programming 
 
Although the internal FLASH is arranged as a 128-bit wide bank, you will be relieved to know that, to the user, it 
can be treated as one contiguous memory space and no special tools are required to prepare the code prior to 
programming the chip. In terms of programming the FLASH, to the user it appears as a series of 8K sectors 
which can be individually erased and programmed. There are several methods which can be used to program 
the on-chip FLASH. The easiest is by the built-in bootloader which allows your code to be downloaded via 
UART 0 into RAM and then be programmed into the FLASH. It is also possible to use a JTAG development tool 
to program the memory. This is useful during development because it can be done from the debugging 
environment without the need to keep switching between debugger and bootloader. Also, the JTAG connection 
can be very fast, up to 400Kbytes/sec download, so in large applications, particularly those using external 
FLASH memory, it can be the best method of production programming. Finally it is also possible to reprogram 
sections of the FLASH memory under command of the application already on the chip. This, in application 
programming, can use any method to load the new code onto the chip (SPI CAN I2C) and then load it into a 
given section of FLASH. So there is an easy to use mechanism which allows field updates to your application. 
 

3.6.1 Memory Map Control 
 
Before looking at the operation of the bootloader we must first understand the different memory modes available 
on the LPC2300. As we have seen, the ARM7 interrupt vector table and its constants table take up the first 64 
bytes of memory. In the LPC2300 these first 64 bytes may be mapped from a number of locations, depending 
on the mode set in the MEMMAP Register. It is important to note that these modes have nothing to do with the 
ARM7 operating modes. The MEMMAP Register allows you to select between Boot Mode, FLASH Mode, RAM 
Mode and External Memory Mode. When selected, a new vector table will be mapped into the first 64 bytes of 
memory. So for the RAM Mode the contents of 0x4000000 - 0x400003F will be mapped to the start of memory. 
This allows a program to be loaded into RAM starting at 0x4000000 and the vector table can then be redirected, 
thus allowing the program and its interrupts to run in RAM. This mode is normally only used for debugging small 
programs. FLASH Mode leaves the first 64 bytes of user FLASH unchanged and is the normal mode for user 
applications. Boot Mode replaces the first 64 bytes of FLASH with the vector table for the bootloader and places 
a jump to the on-chip bootloader on the reset vector. 
 
 

The MEMMAP Register maps the first 64 b
from one of four regions. 

ytes of memory
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3.6.2 Bootloader 
 
Every time the LPC2300 comes out of reset its memory map will be in Boot Mode, so the instruction on the 
reset vector will cause it to jump into the bootloader code entry point at 0x7FFFFFFF. This can be the bane of 
new users if they load their code into FLASH with a JTAG, reset and single step the first instruction, only to find 
that the program counter is at some wild high address. If this happens, you need to program the MEMMAP 
register to 0x00000002, to force the chip into FLASH mode and return to the user vector table. 
 
Once the bootloader code has been entered, it will perform a number of checks to see if the FLASH needs to be 
programmed. First the watchdog is checked to see if the processor has had a hard reset of a soft reset. If it is a 
hard reset, the logic level on pin 2.10 will be tested. If it is low, then the bootloader command handler will be 
entered. If it is a soft reset (i.e. watchdog timeout) or pin 2.10 is high, then there is no external request to 
reprogram the FLASH. However, before handing over to the user application, the bootloader will check to see if 
there is a valid user program in FLASH. In order to detect if a valid program is present, every user program must 
have a program signature. This signature is a word-wide number that is stored in the unused location in the 
ARM7 vector table at 0x00000014. The program signature is the two’s compliment of the checksum of the 
ARM7 vector table. 
 

The program signature is calculated as
the two’s compliment of the checksum
of the vector table. This signature must
be stored in the unused vector at
0x00000014 or your program will not run 

When this value is summed with the program signature the result will be zero for a valid program. If a valid 
program is detected, the memory operating mode is switched to FLASH (which restores the user vector table), 
the program counter is forced to zero and the user application starts execution. If there is no valid program, then 
the bootloader enters its command handler. So, without the program signature your code will never run! The 
program signature can be added to your startup code as shown below: 
 
  LDR     PC, Reset_Addr 
      LDR     PC, Undefined_Addr 
      LDR     PC, SWI_Addr 
      LDR     PC, Prefetch_Addr 
      LDR     PC, Abort_Addr 
 
      .long     0xB8A06F58   /* Program signature */ 
  LDR     PC, IRQ_Addr 
      LDR     PC, FIQ_Addr 
 

3.6.3 NXP ISP Utility 
 
If there is a valid program signature, or pin 2.10 is held low after reset, the LPC2000 will start the bootloader. 
Before handing over to the command handler it enters an auto-Baud routine. This routine listens on UART 0 for 
a synchronisation character. When this is sent by the host, the LPC2000 measures the bit period and adjusts 
the UART 0 Baud rate generator to match the host. Once this is done some further handshaking and 
configuration takes place and then control is passed to the command handler. 
 
The Bootloader command handler takes commands from UART 0 in ASCII format. The command set is shown 
below and allows you full programming control of the FLASH. In addition the GO command is a simple 
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debugging command which can be used to start execution of code loa
bootloader communication protocol is given in the LPC2000 datasheet. 
 

 
 
NXP provide a ready made FLASH In System Programming utility for th
development board. This tool automatically calculates and adds the pro
that your program will run. If you are using this tool to program the F
instruction on the unused vector for the tool to work correctly. 
 
 
 
 
 
 
 

Exercise 11:  Memory Accelerator Module and FLASH Programmin
his exercise describes the use of the NXP FLASH programming
e LPC2000. This program runs without the MAM switched on. B

T
th
is enabled, so we can see the performance increase caused by thi
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3.6.4 In-Application Programming 
It is also possible to reprogram the FLASH memory from within your program. All of the bootloader commands 
are available as an on-chip API and can be called by your code. To access the bootloader functions you must 
set up a table in RAM which contains a command code for the function you want to use followed by its 
parameters. The start address of this table is stored in R0. The start address of a second table which contains 
the status code and function results is stored in R1.   
 

The bootloader functions can be
accessed to perform in-application
programming. Commands are passed
via two tables in memory. The start
addresses for each table are stored in R0
and R1. 

 
 
The IAP entry point is at 0x7FFFFFF0 if you wish to call the functions from a THUMB function, or at 
0x7FFFFFF1 if you wish to enter from an ARM function. The return address is expected to be stored in the Link 
Register. This convention is designed to work within the ARM procedure call standard. A method of calling the 
IAP routines through function pointers is detailed in the datasheet. An alternative method is shown below and 
both methods are used in the example program. If you are short of program space you can experiment with both 
methods to see which is the most efficient in your compiler. 
 
If we define a THUMB function with three parameters as shown below, we can pass the start address of a 
command and result array and according to the APCS convention these values will be stored in R0 and R1. 
 
void iap (unsigned *cmd, unsigned *rslt, unsigned entry) 
{ 
  asm("mov r15,r2"); 
}  
 
We can also store the address of the entry point to the IAP routines in the next available parameter register: R2. 
In THUMB Mode we cannot program the high registers directly, but we can move low registers to high registers, 
hence we can move the contents of R2 directly into the program counter and initiate the requested In-
Application Programming routine. When the IAP routine has finished, it will return to your application code using 
the value stored in the Link Register, which is the next instruction in the function which called our void IAP (…) 
function. You should also note that the In-Application functions return in ARM Mode not THUMB. The IAP 
functions require the top 32 bytes of on-chip RAM, so you must either locate the stacks to start below this region 
so it is unused, or, if you need all the RAM, place the IRQ stack at the top of memory and disable interrupts 
before you enter the IAP routines. Using a pointer, you can now copy the top 32 bytes of on-chip SRAM into a 
temporary array and then restore them once you return from the IAP functions.  This way you will not risk 
corrupting any stacked data. 
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3.6.5 FLASH Protection 
When your design goes into production it is often necessary “lock” the FLASH Memory so your code cannot be 
patched or pirated. To protect your code on the LPC2300 you must locate the word 0x87654321 at location 
0x000001FC. When the LPC2300 leaves reset and enters the bootloader this location will be checked, and if 
the protection pattern is found the bootloader code will disable the JTAG and disable any commands in the 
bootloader command handler which can be used to read or modify the FLASH memory.  If you need to do field 
firmware updates you can recover access to the FLASH by using the bootloader to erase all the contents of the 
FLASH. This clears the protection pattern, and full access to the FLASH is then granted by the bootloader. The 
in-application programming routines are still enabled when the FLASH is locked so it is still possible for the 
application code to modify the FLASH memory. 
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3.6.6 System Clocks 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The LPC2300 has two main internal clocks. The first is Cclk, the CPU clock, which is used to clock the ARM7 
CPU and the AHB peripherals which include the USB controller, Ethernet controller and the general purpose 
DMA. The second internal clock is Pclk, the peripheral clock, which is used to clock all the peripherals on the 
APB bus. Both of these clocks may be derived from one of three oscillator sources, an internal RC oscillator, an 
external main oscillator and an external watch crystal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The LPC2300 clock system is
controlled by an array of control and
divider registers. 
 

The internal
clock of the
LPC2300 may
be generated
from one of
three 
oscillators 
which may be
configured 
and selected
dynamically. 
 

 
 
 
 
After reset the LPC2300 will default to using the internal RC oscillator. This oscillator has a nominal frequency of 
4 MHz. You can run the LPC2300 entirely from this clock source and it may be used as an input to the PLL. 
However it is not accurate enough to be used for the USB controller. Only the main external oscillator is stable 
enough to provide an accurate clock source for the USB controller.  The RC oscillator allows the LPC2300 to 
start processing instructions while the main external oscillator is still stabilising. This allows a fast startup after 
reset or fast exit from a Power Down Mode. The RC oscillator also provides a known clock frequency for the 
bootloader code which will always run after a hard reset.  Once the bootloader code has run and the application 
code is entered, the system clock source may be selected with the Clock Source Select Register. This register 
controls which oscillator is connected to the input of the Phase Locked Loop.  
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On exit from reset the LPC2300 will run on the internal RC oscillator and the main oscillator is disabled. The 
startup code must first enable the external oscillator by setting the OSCEN bit in the System Control and Status 
Register. You must also configure the OSCRANGE bit to select either an external frequency of 1 MHz - 20 MHz 
or 15 MHz - 24 MHz.  
 
 

The System Control and Status
Register must be programmed after
reset to enable the main external
oscillator. 

 
 
 
 
 
 
 
Once the external oscillator is enabled the OSCSTAT bit will be set once it has become stable. When this 
happens you can make the external oscillator the main system clock by programming the CLKSRC field in the 
Clock Source Select Register. However you must ensure that the PLL is not connected when you switch system 
clocks. Care should be taken here as the bootloader code enables the PLL and leaves it connected before 
handing over to your application code. 
 

3.6.7 Phase Locked Loop 
The LPC2300 PLL is designed to work over a wide range of input frequencies from 32 KHz up to 50 MHz, so it 
can work with the on-chip RC oscillator, the RTC oscillator or the main external oscillator. However only the 
main external oscillator is capable of generating a frequency stable enough to clock the USB peripheral. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The PLL is used to multiply the
external crystal frequency up to the
maximum 550 MHz to provide an
intermediate frequency which is
divided down to provide the CPU and
peripheral clocks. 
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The PLL is used to derive an output frequency which must be in the range 275 MHz - 550 MHz. This PLL 
frequency is then divided down to provide separate clocks for the USB controller, USBclk and the CPU Cclk.  A 
further set of dividers is used to generate the individual Pclk’s clocks for each of the peripherals on the APB bus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The output from
the PLL enters a
series of dividers
that are used to
determine the
USB, CPU and
peripheral clocks. 

 
 
This scheme allows us to generate a wide range of clock frequencies for all the different modules within the 
LPC2300. In particular, it removes the need for a separate USB PLL or dedicated USB clock.  
 
 
The output of the PLL is given by:  
 
Fcco = (2 x M x Fin) / N   
 
where M and N are user-defined values held in PLLCFG. 
 
CClk = Fcco/Cclksel 
 
USBclk = Fcco/USBclksel  
 
Each peripheral on the APB bus derives its clock from Cclk and has a programmable divider which divides Cclk 
by 1, 2 or 4. 
 
The USB controller must have a 48 MHz clock, so in order to use the USB peripheral we must derive a value of 
Fcco that is a multiple of 48 MHz and rests between 275 MHz and 550 MHz. If we set the output of the PLL to 
480 MHz we can divide this with USBSEL to give 48 MHz. We can also divide this by CPUSEL to give 60 MHz 
for the CPU frequency. This is a useful frequency for running the CAN module and also to maintain 
compatability with earlier LPC2100 devices that have a maximum frequency of 60 MHz. If Fcco is 480 MHz and 
we use an external oscillator of 12 MHz and select N = 1, then M must be 20. Furthermore, to get the USB 
clock, USDSEL must equal 10; and for a Cclk of 60 MHz, Cclksel must equal 8. 
 
After reset the bootloader code runs and configures the PLL for its own use. So before we configure the PLL or 
change the system oscillator the PLL must be disconnected and halted. Also, writing to the PLL Control and 
Configuration Registers has no effect until a feed sequence is written to the PLL Feed Register. When the feed 
sequence is written, the contents of the PLL registers are transferred to the internal PLL registers and the PLL 
configuration is updated. The PLL feed sequence is simple: the value 0xAA followed by 0x55. Finally, take care 
with all the timing values used, the value written into the various timing registers is the calculated value minus 
one.   
 
SCS    &= ~0x0000010; //Enable main oscillator 
SCS    |= 0x00000020; //Select main oscillator range 
PLLCON  &= ~0x00000002;  //disconnect the PLL 
PLLFEED  = 0xAA;  //write feed sequence 
PLLFEED  = 0x55; 
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PLLCON  &= ~0x00000001; //Disable the PLL 
PLLFEED  = 0xAA;  //Write feed sequence 
PLLFEED = 0x55; 
while(!(SCS&0x00000040));  //Wait until main oscillator is stable 
CLKSRC  = 0x00000001;  //Select main oscillator as PLL input 
PLLCFG  = 0x00000000;  //Write PLL multiplier and divider values 
PLLFEED  = 0xAA;  //Write feed sequence 
PLLFEED  = 0x55; 
PLLCON  = 0x00000001;  //Enable the PLL 
PLLFEED  = 0xAA;  //Write feed sequence 
PLLFEED  = 0x55; 
USBSEL  = 0x000000005; //Write USBSEL divider value 
CCLKSEL  = 0x000000004; //Write CPU divider value 
while(PLLSTAT & 0x000);  //Wait for the PLL to Lock 
PLLCON  |=0x00000002;  //Connect the PLL 
PLLFEED  = 0xAA;  //Write feed sequence 
PLLFEED  = 0x55; 
 

3.6.8 Peripheral Clocks 
 
The clock source for each peripheral on the APB is derived from the CPU clock Cclk. There are two peripheral 
clock selection registers which between them contain a bit pair for each peripheral on the APB. Programming 
this bit pair allows the peripheral clock to be divided down from Cclk by a factor of 1, 2 or 4. After reset the 
default value for each peripheral clock is Cclk/4 so each user peripheral on the APB is running at ¼ the speed of 
the CPU. This means that the LPC2300 will startup with its peripherals consuming minimum power, but you 
must increase the Pclk frequency for each peripheral in order to get the best performance from the APH 
peripherals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 
Exercise 5: System Clock Configuration 
This exercise looks at selecting the system oscillator. The Clock source selection register can be
used to select between the external RTC watch crystal, the internal RC oscillator and the main
external oscillator. 
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3.7 Power Control  
Power consumption on all (well-designed) microcontrollers is a direct relationship with the number of gates and 
the switching speed. The LPC2300 is no exception: the simplicity and low gate count of the ARM7 core 
contribute to its low power consumption. The LPC2300 has four different power down modes which control two 
separate power domains. In addition to the power control modes, the clock to each peripheral can be stopped. 
This can be used for dynamic power management or you can simply switch off any peripherals you are not 
using. 
 

3.7.1 Power Domains 
Within the LPC2300 there are two separate power domains. One consists of the real time clock and 2k of low 
power SRAM known as the battery RAM. The second power domain consists of the ARM7 CPU and the 
remaining peripherals. These separate power domains allow the bulk of the LPC2300 to be switched off while 
retaining critical variables in the battery RAM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.7.2 Global Power Control Modes 
 
The four global power modes are controlled by the PCON Register. The PM0, PM1 and PM2 bits can be used 
to place the LPC2300 into Idle, Sleep, Power Down or Deep Power Down Mode. 

Power Down Mode halts the processor and the
peripheral clocks. The external interrupts can
be used to restart the processor and
peripherals. 

The LPC2300 has two separate
power domains: the CPU and
peripherals which are supplied
by Vdd; and the RTC and the
battery RAM which are
supplied by Vbatt. 

 
 
 

 

3.7.2.1 Idle Mode 
Idle Mode is entered when the three power control bits are set to 001. In Idle Mode the clock to the ARM7 CPU 
is halted but the peripherals keep running. A reset or interrupt from a peripheral will cause the CPU clock to be 
enabled and processing can resume.  
 
 

3.7.2.2 Sleep Mode 
Sleep Mode is entered when the three power control bits are set to 101. In Sleep Mode all the clocks to the CPU 
and peripherals are halted except the real time clock. The external oscillator is powered down and the PLL is 
halted. However to allow the LPC2300 to resume processing quickly, the FLASH is kept in Standby Mode and 
the on-chip RC oscillator is still running. The SRAM and registers are also preserved.  The LPC2300 can exit 
Sleep Mode when there is an interrupt from the RTC or an interrupt from the external interrupt lines. A reset will 
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also cause the chip to wake up. Once the LPC2300 resumes processing you must re-enable the main oscillator 
and PLL in order to start processing at full speed. 
 

Sleep Mode halts the clocks to the CPU and all
the peripherals except the RTC.  

 
 

3.7.2.3 Power down 
 
Power Down Mode is entered when the three power control bits are set to 010. Power Down Mode has the 
same effect as Sleep Mode except that the FLASH memory is also placed in Power Down Mode. When the chip 
restarts there is an additional 100 usec startup time before the FLASH memory can be accessed.  
 
 

3.7.2.4 Deep Power Down 
Deep Power Down Mode is entered when the three power control bits are set to 110. When Deep Power Down 
Mode is entered all power is removed from the chip, and the contents of the SRAM and CPU registers are lost. 
So you don’t get much deeper than that. However if power is applied to the vbat pin the RTC will continue to run 
and the contents of the battery RAM will be preserved.  The LPC2300 can be woken up from Deep Power Down 
Mode by an external reset or an RTC alarm interrupt. When the chip leaves Deep Power Down Mode it will 
resume as if from a hard reset. 
 
 

3.7.2.5 Peripheral Power Control 
 
The Peripheral Power Control Register (PCONP) contains a clock gating bit for each user peripheral within the 
LPC2300. If the gating bit is set to 1 the peripheral clock is enabled, and 0 disables the peripheral clock.  This 
register allows you to simply disable peripherals you are not using and thus reduce overall power consumption. 
The Peripheral Power Control Register may also be used to dynamically enable and disable peripheral clocks 
for intelligent power management.  After a reset most peripherals are enabled, however the more complex and 
power-hungry peripherals are disabled. Before you can write to any registers within these peripherals you must 
ensure that their clock is switched on within the PCONP Register. 
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On reset the following peripherals are disabled by default: 
 
Analogue to Digital Converter 
Both CAN Controllers 
Timers 2 and 3 
UART 2 and 3 
I2S Interface 
SD Card 
General Purpose DMA 
Ethernet MAC 
USB Controller 
 
During development it is likely you will be using a JTAG development tool connected to the ARM7 via a 
dedicated serial link. If you place the CPU into Idle or Power Down Mode no further debugging will be possible 
until the CPU is woken up.  
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3.8 LPC2300 Interrupt System 
 
In the C code section we saw how to deal with ARM7 exceptions for an undefined instruction, a memory abort 
and a SWI  instruction. In this section we will look at the remaining two exception sources: the General Purpose 
Interrupt (IRQ) and Fast Interrupt (FIQ). These two exceptions are used to handle all the interrupt sources 
external to the ARM7 CPU. In the case of the LPC2300 these are the user peripherals. In order to examine the 
LPC interrupt structure, we need a simple interrupt source.  For this we can use the external interrupt pins which 
are the easiest peripheral to configure, and EINT0 is connected to a switch on the development board which 
allows us to trigger an interrupt at will and observe the results with the debugger. 
 

3.8.1 Pin Connect Block 
All of the I/O pins on the LPC2300 are connected to a number of internal functions via a multiplexer called the 
Pin Select Block. The Pin Select Block allows the user to configure a pin as GPIO or select up to three other 
functions.  
 

 
 
 
 
 

The Pin Select module allows each I/O pin to
be multiplexed between one of four
peripherals. 

 
 
 
 
On reset all the I/O pins are configured as GPIO. The secondary functions are selected through the PINSEL 
registers. The EINT0 interrupt line shares the same I/O pin as GPIO 2.10. Holding this pin low during reset also 
forces the LPC2300 to enter the bootloader command handler. So in order to use the external interrupt we must 
configure the Pin Select Register to switch from the GPIO function to EINT0. 
 
 

3.8.2 External Interrupt Pins 
 
The external interrupts are controlled by the four registers shown below. The EXMODE Register can select 
whether the interrupt is level or edge sensitive. If an external interrupt is configured as edge sensitive, the 
EXPOL Register is used to qualify whether the interrupt is triggered on the rising or falling edge. In the case of 
level-sensitive triggering, the external interrupts can only trigger on a logic zero level. If the Power Down Mode 
is being used, the EXWAKE Register can enable an interrupt to wake up the CPU. So to set up a simple 
interrupt source program, configure the EINT0 interrupt to be level sensitive and then connect it to the processor 
pin via the Pinsel 0 Register. 
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3.8.3 Interrupt Structure 
 
The ARM7 CPU has two external interrupt lines for the Fast Interrupt Request (FIQ) and general purpose 
interrupt IRQ request modes. As a generalisation, in an ARM7 system there should only be one interrupt source 
which generates an FIQ interrupt so that the processor can enter this mode and start processing the interrupt as 
fast as possible. This means that all the other interrupt sources must be connected to the IRQ interrupt. In a 
simple system they could be connected through a large OR gate. This would mean that when an interrupt was 
asserted the CPU would have to check each peripheral in order to determine the source of the interrupt. This 
could take many cycles. Clearly a more sophisticated approach is required. In order to handle the external 
interrupts efficiently, an on-chip module called the Vector Interrupt Controller (VIC) has been added. 

The VIC provides additional
hardware support for the on-chip
peripheral interrupts. Without the VIC
the interrupt response time would be
very slow. 

The external interrupt pins are an easily
configurable interrupt source when first
experimenting with the LPC2300
interrupt structure.  

 

 
 
The VIC is a component from the ARM prime cell range of modules and as such is a highly optimised interrupt 
controller. It is used to handle all the on-chip interrupt sources from peripherals. Each of the on-chip interrupt 
sources is connected to the VIC on a fixed channel. Your application software can connect each of these 
channels to the CPU interrupt lines (FIQ, IRQ) in one of three ways. The VIC allows each interrupt to be 
handled as an FIQ interrupt, a vectored IRQ interrupt, or a non-vectored IRQ interrupt. The interrupt response 
time varies between these three handling methods. FIQ is the fastest, followed by vectored IRQ, and non-
vectored IRQ is the slowest.  We will look at each of these interrupt handling methods in turn. 
 

3.8.4 FIQ Interrupt 
 
Any interrupt source may be assigned as the FIQ interrupt. The VIC Interrupt Select Register has a unique bit 
for each interrupt. Setting this bit connects the selected channel to the FIQ interrupt. In an ideal system we 
would only have one FIQ interrupt. However setting multiple bits in the Interrupt Select Register will enable 
multiple FIQ interrupt sources. If this is the case, on entry the interrupt source can be determined by examining 
the VIC FIQ Status Register and the appropriate code executed. Clearly, having several FIQ sources slows 
entry into the ISR code. Once you have selected an FIQ source the interrupt can be enabled in the VIC Interrupt 
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Enable Register. As well as configuring the VIC, the peripheral generating the interrupt must be configured and 
its own interrupt registers enabled. Once an FIQ interrupt is generated, the processor will change to FIQ Mode 
and vector to 0x0000001C, the FIQ vector. You must place a jump to your ISR routine at this location in order to 
serve the interrupt.  
 

3.8.5 Leaving an FIQ Interrupt 
 
As we have seen, declaring a C function as an FIQ interrupt will make the compiler use the correct return 
instructions to resume execution of the background code at the point at which it was interrupted. However, 
before you exit the ISR code you must make sure that any interrupt status flags in the peripheral have been 
cleared. If this is not done you will get continuous interrupts until the flag is cleared. Again, be careful, as to 
clear the flag you will have to write a logic 1 not a logic 0. 

At the end of an interrupt the interrupt status flag
must be cleared. Failure to do this will result in
continuous interrupts. 
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3.8.5.1 Example Program:  FIQ Interrupt 
 
This function sets up the external interrupt as an FIQ interrupt then sits in a loop.  
 
void main (void) 
{ 
 
 IODIR1 = 0x00FF0000;   // Set the LED pins as outputs 
 PINSEL0 = 0x20000000;    // Select the EINT1 function in the pin connect block  
 VICIntSelect = 0x00008000;  // Enable a VIC Channel as FIQ 
 VICIntEnable = 0x00008000;  // Enable the EINT1 interrupt in the VIC 
 
 IOCLR1 = 0x00FF0000;      // Clear the LEDs 
 
 while(1); //Loop here forever 
} 
 
In the startup code the FIQ interrupt routine must be added to the vector table. There are a set of default 
interrupt traps that follow the vector table and the constants table. You must disable the default FIQ_Handler 
routine and import the label. This links the C routine to the interrupt vector.  
 
Vectors         LDR     PC, Reset_Addr          
                LDR     PC, Undef_Addr 
                LDR     PC, SWI_Addr 
                LDR     PC, PAbt_Addr 
                LDR     PC, DAbt_Addr 
                NOP                            ; Reserved Vector  
;               LDR     PC, IRQ_Addr 
                LDR     PC, [PC, #-0x0120]     ; Vector from VicVectAddr 
                LDR     PC, FIQ_Addr 
 

IMPORT FIQ_Handler 
 
Reset_Addr      DCD     Reset_Handler 
Undef_Addr      DCD     Undef_Handler 
SWI_Addr        DCD     SWI_Handler 
PAbt_Addr       DCD     PAbt_Handler 
DAbt_Addr       DCD     DAbt_Handler 
                DCD     0                      ; Reserved Address  
IRQ_Addr        DCD     IRQ_Handler 
FIQ_Addr        DCD     FIQ_Handler 
 
Undef_Handler   B       Undef_Handler 
SWI_Handler     B       SWI_Handler 
PAbt_Handler    B       PAbt_Handler 
DAbt_Handler    B       DAbt_Handler 
IRQ_Handler     B       IRQ_Handler 
;FIQ_Handler     B       FIQ_Handler 
 
When the INT0 button is pressed on the MCB2300 the FIQ interrupt is generated and the code will vector to the 
“fiqint” routine. The routine is declared as an interrupt routine by using the “__fiq” language extension. Before 
exiting the ISR the peripheral flag is cleared. 
 
__irq  void Fiq_Handler (void)  
{ 
 IOSET1 = 0x00FF0000; // Set the LED pins 
 EXTINT = 0x00000002; // Clear the peripheral interrupt flag 
 
} 
 
 
 

Exercise
This exercise sets up the VIC to respond to an external interrupt line as an FIQ exception. 

 8:  FIQ Interrupt 
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3.8.6  Vectored IRQ 
 
If we have one interrupt source defined as an FIQ interrupt, all the remaining interrupt sources must be 
connected to the remaining IRQ line. To ensure efficient and timely processing of these interrupts, the VIC 
provides a programmable hardware lookup table which delivers the address of the C function to run for a given 
interrupt source. The VIC contains 32 slots for vectored addressing. Each slot contains a Vector Address 
Register and a Vector Priority Register. If you have used the VIC in the LPC2300-based microcontrollers it is 
worth noting that it essentially works the same way, but the Vector Priority Register replaces the Vector Control 
Register.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Vector Priority Register allows you to assign a priority to each interrupt slot. It supports 16 priority levels, 15 
being the lowest priority and 0 the highest.  After reset the priority of all the VIC slots is set to 15, and the 
individual priority can be elevated by the user. If you set two slots to the same priority, the slot with the lowest 
VIC slot number will win if both interrupt sources are pending. 
 
The other register in the VIC slot is the Vector Address Register. As its name suggests, this register must be 
initialised with the address of the appropriate C function to run when the interrupt associated with the slot 
occurs. In practice, when a vectored interrupt is generated, the interrupt channel is routed to a specific slot and 
the address of the ISR in the slot’s Vector Address Register is loaded into a new register called the Vector 
Address Register. So whenever an interrupt configured as a vectored interrupt is generated, the address of its 
ISR will be loaded into a fixed memory location called the Vector Address Register.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For a vectored IRQ the VIC provides a hardware
lookup table for the address of each ISR. The
interrupt priority of each peripheral may also be
controlled. 

When an interrupt occurs the vector
address slot associated with the
interrupt channel will transfer its
contents to the Vector Address
Register. 

 
While this is happening in the VIC unit, the ARM7 CPU is going through its normal entry into the IRQ Mode and 
will jump to 0x00000018, the IRQ interrupt vector.  In order to enter the appropriate ISR, the address in the VIC 
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Vector Address Register must be loaded into the PC. The assembly instruction shown below does this in a 
single cycle. 
 
LDA PC,[PC #-0x0120] 

 
As we are on the IRQ we know the address is 0x00000018 + 8 (for the pipeline).  If we deduct 0x0120 from this, 
it wraps the address round the top of the 32-bit address space and loads the contents of address 0xFFFFFF000 
(the Vector Address Register). 

 
 

3.8.7 Leaving An IRQ Interrupt 
 
As in the FIQ interrupt, you must ensure that the interrupt status flags are cleared in the peripheral which 
generated the request. In addition, at the end of the interrupt you must do a dummy write to the Vector Address 
Register. This signals the end of the interrupt to the VIC, and any pending IRQ interrupt will be asserted. 

When an IRQ exception occurs the CPU
executes the instruction LDA PC[PC,#-
0xFF0] which loads the contents of the
Vector Address Register into the PC,
forcing a jump to the ISR. 

At the end of a vectored IRQ interrupt you
must make a dummy write to the Vector
Address Register in addition to clearing the
peripheral flag to clear the interrupt. 

 

3.8.8 Example Program: IRQ Interrupt 
 
This example is a repeat of the FIQ example, but demonstrates how to set up the VIC for a vectored IRQ 
interrupt. 
 
The vector table should contain the instruction to read the VIC vector address as follows: 
 
Vectors:     LDR     PC,Reset_Addr          
             LDR     PC,Undef_Addr 
             LDR     PC,SWI_Addr 
             LDR     PC,PAbt_Addr 
             LDR     PC,DAbt_Addr 
             NOP                             
             LDR     PC,[PC, #-0x0120]      /* Vector from VicVectAddr */ 
             LDR     PC,FIQ_Addr 
 
The C routines to enable the VIC and serve the interrupt are shown below: 
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void main (void) 
{ 
 
 IODIR1 = 0x000FF000; //Set the LED pins as outputs 
 PINSEL0 = 0x20000000; //Enable the EXTINT1 interrupt 
 VICVectCntl0 = 0x0000002F;  //select a priority slot for a  
       // given interrupt 
 VICVectAddr0 = (unsigned)EXTINTVectoredIRQ;  // pass the address  
          // of the IRQ into  
          // the VIC slot 
 VICIntEnable = 0x00004000; //enable interrupt 
 
 while(1); 
 
} 
 
 
void EXTINTVectoredIRQ (void)  __irq 
{ 
 
 IOSET1 = 0x000FF000; // Set the LED pins 
 EXTINT = 0x00000002; // Clear the peripheral interrupt flag 
 VICVectAddr = 0x00000000;  // Dummy write to signal end  
      // of interrupt 
} 
 
 

 
 
 

Exercise 10:  Vectored Interrupt 
his exercise uses the same interrupt source as in Exercise 11, but this time the VIC iT s

configured to respond to it as a vectored IRQ exception. 
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3.8.9 Software Interrupt 
 
Within the VIC it is possible for the application software to generate an interrupt on any given channel through 
the VIC Software Interrupt Registers. These registers are nothing to do with the Software Interrupt Instruction 
(SWI), but allow interrupt sources to be tested either for power-on testing or for simulation during development.  
 
 
 

 

It is possible to simulate an
interrupt source via the
software interrupt set and clear
registers in the VIC. 

 
 
In addition, the VIC has a protected mode which prevents any of the VIC registers from being accessed in 
USER Mode. If the application code wishes to access the VIC, it has to enter a privileged mode. This can be in 
an FIQ or IRQ interrupt, or by running a SWI instruction. 
 
Typical latencies for interrupt sources using the VIC are shown below. In the case of the non-vectored 
interrupts, use the latency for the vectored interrupt plus the time taken to read the IRQ Status Register and 
decide which routine to run. 
 
•FIQ 
 Interrupt Sync  

+ Worst Case Instruction Execution  
+ Entry to First Instruction 
= FIQ Latency = 12 cycles = 200 nS @ 60MHz 
 

•IRQ 
 Interrupt Sync 

 + Worst Case Instruction Execution 
 + Entry to First Instruction 
 + Nesting 
 = IRQ Latency = 25 cycles = 416nS @ 60MHz 
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3.8.10 Nested Interrupts 
 
The interrupt structure within the ARM7 CPU and the VIC does not support nested interrupts. If your application 
requires interrupts to be able to interrupt ISRs then you must provide support for this in software. Fortunately 
this is easy to do with a couple of macros. Before discussing how nested interrupts work, it is important to 
remember that the IRQ interrupt is disabled when the ARM7 CPU responds to an external interrupt. Also, on 
entry to a C function that has been declared as an IRQ interrupt routine, the “LR_isr” is pushed onto the stack. 
 
 
 
 

 

Two macros can be
used to allow nested
interrupt processing in
the LPC2000 for a very
small code and time
overhead. 

 
 
 
 
 
 
 
 

 
 
 
 
 
Once the processor has entered the IRQ interrupt routine, we need to execute a few instructions to enable 
nested interrupt handling. First of all the “SPSR_irq” must be preserved by placing it on the stack. This allows us 
to restore the CPSR correctly when we return to User Mode. Next we must enable the IRQ interrupt to allow 
further interrupts and switch to the System Mode (remember System Mode is User Mode but the MSR and MRS 
instructions work). In System Mode the new Link Register must again be preserved because it may have values 
which are being used by the background (User Mode) code, so this register is pushed onto the system stack 
(also the user stack). Once this is done we can run the ISR code and then execute a second macro that 
reverses this process. The second macro restores the state of the Link Register, disables the IRQ interrupts and 
switches back to IRQ Mode. Finally, it restores the “SPSR_irq” and then the interrupt can be ended. The two 
macros that perform these operations are shown below. 
 
#define IENABLE                      /* Nested Interrupts Entry */    
  __asm { MRS     LR, SPSR      }    /* Copy SPSR_irq to LR     */    
  __asm { STMFD   SP!, {LR}     }    /* Save SPSR_irq           */    
  __asm { MSR     CPSR_c, #0x1F }    /* Enable IRQ (Sys Mode)   */    
  __asm { STMFD   SP!, {LR}     }    /* Save LR                 */    
 
#define IDISABLE                      /* Nested Interrupts Exit */   
  __asm { LDMFD   SP!, {LR}     }     /* Restore LR              */   
  __asm { MSR     CPSR_c, #0x92 }     /* Disable IRQ (IRQ Mode)  */   
  __asm { LDMFD   SP!, {LR}     }     /* Restore SPSR_irq to LR  */   
  __asm { MSR     SPSR_cxsf, LR }     /* Copy LR to SPSR_irq     */ 
 
 
The total code overhead is 8 instructions or 32 bytes for ARM code and execution of both macros takes a total 
of 230 nSec. This scheme allows any interrupt to interrupt any other interrupt. If you need to prioritise interrupt 
nesting, the macros would need to block low priority interrupts by disabling the lower priority interrupt sources in 
the VIC. 
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3.9 DMA Controller 
 
Like the Vector Interrupt Controller, the DMA Controller is a peripheral from the ARM prime cell library and is 
highly optimised for the ARM bus structure. The general purpose DMA Controller is connected to the AHB bus 
via two ports. A slave port through which the ARM7 CPU can access the DMA register set, and a master port 
that the DMA engine uses to gain control of the bus and arbitrate with the ARM7 CPU and the dedicated USB 
and Ethernet DMA units. 
Within the DMA Controller there are two independent DMA units which can each be configured to make memory 
to memory transfers, memory to peripheral, peripheral to memory and peripheral to peripheral transfers. At the 
end of a transfer each DMA Controller can raise an interrupt, and each of these eight DMA unit interrupts are 
ORed together and connected to a single VIC interrupt channel. 
 

3.9.1 DMA Overview 
 
In order to examine the operation of the DMA unit, it is best to first look at the simplest type of transfer: memory 
to memory transfers. In this case the DMA unit will gain arbitration of the AHB bus and fetch the source data into 
its internal FIFO. This data is then drained from the internal FIFO to the destination memory locations. The 
fetching and draining of the DMA data can be done as single transfers or bursts of several transfers. In the case 
of burst transfers the DMA unit can assert a lock on the internal buses until each stage of the DMA transfer has 
completed. The DMA unit is also capable of fetching and draining different sizes of data. This means it is 
possible to pack and unpack data as part of a DMA transfer. For example you could read in four 32-bit words of 
data from memory, and then write out 16 bytes to the UART TX buffer. When the DMA has won bus arbitration 
and is ready to transfer data, it will handle the flow control of the fetch and drain transfers. However, in the case 
of a peripheral to memory or memory to peripheral transfer, the peripheral can be the flow controller and will 
only allow a fetch or drain transfer when it is ready to sink or source data. In addition the DMA unit supports 
scatter gather transfers. Within each DMA unit you can define a series of DMA transfers as a series of linked list 
items. These transfers are automatically performed one after another. This allows data in non-contiguous 
memory locations to be collected by the DMA unit and transferred to a single block of memory or a peripheral 
device. Similarly a contiguous block of data can be scattered to several different locations by a programmed set 
of DMA transfers. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The DMA Controller contains a global set of
configuration and status registers and a set of five
registers for each DMA unit. 

 
 
Although there are some 24 registers in the DMA unit, it can be subdivided into 14 DMA configuration and 
status flags followed by five control registers for each DMA unit. The general configuration and status registers 
are principally concerned with enabling the DMA Controller and controlling the individual DMA units’ interrupts. 
The DMA Controller is enabled by setting the EN bit in the Configuration Register. Each DMA unit has two 
interrupt lines, a terminal count interrupt which is set at the end of a transfer, and an error interrupt which is set if 
the DMA unit encounters a bus error. Each interrupt source is enabled in the Channel Configuration Register 
within each DMA unit. In addition, each interrupt source has an Interrupt Status Register and a Raw Interrupt 
Status Register. The Raw Interrupt Status Register shows the condition of all interrupt flags regardless of 
whether they are enabled or not, while the Interrupt Status Register only shows the status of DMA interrupts that 
have been enabled. In the case of a DMA transfer where the DMA unit is the flow controller, a burst or single 
style transfer must be initiated with the Software Burst or Software Single Request Registers.  
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3.9.2 DMA Synchronisation 
 
The DMA units can work across all the internal LPC2300 buses. If these buses are running at different speeds, 
the synchronisation bits for the different DMA request signals must be set in the Synchronisation Register. This 
will eliminate any bus problems but does affect the DMA response time. 
 
 

3.9.3 Memory to Memory Transfer 
 
Once the DMA unit has been enabled and the interrupts have been configured, the channel registers may be 
configured for individual transfers. In the case of a memory to memory transfer the start source and destination 
addresses are programmed into the eponymous registers. The Linked List Register is used for scatter gather 
transfers and, in a single transfer, should be set to zero.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Each DMA unit has a Control Register that defines the characteristics of each DMA transfer. 
 
 
The Control Register allows you to set the transfer size on the destination bus when the DMA unit is the flow 
controller. When peripherals are the flow controller this field should be set to zero. As the transfer progresses 
the contents of this field are decremented, however if you need to read this field you should disable the DMA 
unit in order to get a meaningful value.  The source and destination width fields allow you to define transfer word 
size to be fetched into and drained out of the DMA unit. The DMA controller allows you to define different source 
and destination widths, and each DMA unit will pack and unpack the data as required. Depending on your 
requirements, the source and destination address may be incremented after each transfer by setting the DI and 
SI bits. This allows you to block transfer data from one continuous address range to another, or you can copy a 
block of data to a single non-incremented memory location such as a peripheral register. The Control Register 
also allows you to define several protection options. The PROT0 bit can be set to prevent the DMA registers 
from being accessed by code running in the ARM9 User Mode for the duration of the transfer. The PROT1 
Register allows you to define if the DMA destination addresses are buffered address ranges which can be 
accessed in a single cycle. This allows the DMA unit to transfer the data at its fastest rate, but may introduce 
data coherency problems as the buffered data has to be written to the real SRAM.  The Terminal Count Interrupt 
Enable will generate an interrupt at the end of the DMA transfer which tells the ARM7 CPU that the DMA 
transfer has finished and the DMA unit is free for further operations. The final field in the Control Register allows 
you to define the burst transfer size used by the DMA Controller. 
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3.9.4 Burst Transfer 
Each of the DMA units can fetch a single word into the DMA unit and then drain it to the destination. During 
these operations the DMA unit must win arbitration of the bus from the ARM7 CPU and the other DMA units 
before it can act as a bus master. It is possible to burst fetch and drain multiple words to and from the DMA unit 
by configuring the destination and source burst fields in the Control Register. Each DMA unit supports burst 
sizes or up to 256 transfers. By setting the lock bit in the Channel Control Register, a DMA unit which has won 
arbitration will not de-grant the bus until the transfer has finished.  
 
 
 
 
 
 

Exercise 12:  DMA  Memory to Memory Transfer 
This exercise demonstrates configuration of the DMA unit to perform a memory to memory DMA
transfer. 

 
 
 

3.9.5 Peripheral DMA Support 
The table below shows which peripherals can be flow controllers for any of the DMA units. 
 

I2C0 
I2C1 
 

SD/MMC interface 
SSP0 
SSP1 
 
 
In each case, the peripheral DMA support must be enabled and the DMA configuration register source and 
destination peripheral fields must be programmed with the required DMA request signals.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once enabled, the DMA unit is placed under control of the peripheral transfers within each of the DMA units.  
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3.9.6 Scatter Gather Transfer 
 
Each DMA unit supports Scatter Gather transfers. This mechanism allows multiple DMA transfers to be 
programmed to take place one after the other. This allows data dispersed over many different locations to be 
gathered into one contiguous memory block. Similarly a block of memory can be scattered to separate locations 
by a series of automated DMA transfers. An area of SRAM must first be programmed with a DMA “item” which 
is a four words long record that contains the Source Address, Destination Address, Link List Address and 
Control Word for the next DMA transfer. The Start Address of this DMA item is stored in the DMA unit Linked 
List Register, and at the end of the current transfer the DMA item pointed to by the Link List Register is 
automatically loaded into the Channel Control Registers. This loads a new Linked List Pointer to the next DMA 
item. This allows multiple DMA transfers to be linked together. The terminating transfer in a DMA chain should 
enable the DMA interrupt in the Control Register so that after the last transfer an interrupt can be generated and 
a new set of DMA transfers can be initialised. 
 
 

Exercise 12:  Scatter-Gather DMA Transfer. 
In this exercise the DMA unit is configured with a linked list of transfers. The linked list caused the
DMA unit to gather several regions of memory into one block of contiguous data. 

 
 
 
 
 
 
 

3.10  Summary 
 
This is the most important chapter in this book as it describes the system architecture of the LPC2300 family. 
You must be familiar with all the topics in this chapter in order to be able to successfully configure the LPC2300 
for its best performance, and to avoid many of the common pitfalls which trap people who are new to this family 
of devices. 
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4 Chapter 4: User Peripherals 
 

4.1 Outline 
 
This chapter presents each of the user peripherals in turn. The examples show how to configure and operate 
each peripheral. Once you are familiar with how the peripherals work, the example code can be used as the 
basis for a set of low-level drivers. 
 

4.2 General Purpose I/O 
 
The LPC23xx has up to five General purpose IO ports which each contain 32 IO lines giving a maximum of 160 
pins. To maintain compatibility with the earlier LPC21xx devices PORT0 and PORT1 have a set of legacy 
control registers on the APB bus. However, controlling these two ports by these registers is quite slow. The 
LPC23xx family has a second set of GPIO control registers located on the local bus called the Fast GPIO 
control registers. Unless you are porting existing code, use the fast registers and ignore the legacy GPIO 
registers. In addition PORT0 and PORT2 can generate an interrupt when there is a rising or falling edge on an 
individual pin. 
 

4.2.1 Fast IO Registers 
 
In the earlier LPC2100 devices the GPIO control registers were located on the APB bus along with all of the 
other peripherals.  However addressing these registers took a large number of cycles for the data to pass over 
the AHB and onto the APB. In total to toggle a port pin took 14 cycles so at 60MHz the fastest you could toggle 
a port pin was around 4.3 MHz . On the later LPC213x devices NXP introduced a new set of fast GPIO registers 
located on the ARM7 local bus. These registers allow a port pin to be toggled in just two cycles or at a rate of 
30MHz. -a vast improvement. In addition the Fast GPIO registers introduce a mask register that improves the bit 
manipulation of each port. 
 
 
 
 

The LPC2300 GPIO control registers are located on
the local bus. This allows much faster control of port
pins.  A set of legacy registers are located on the APB
which can also control Port0 and Port 1. 

The upper line of the Oscilloscope shows bit toggling
of a port pin with the fast IO registers as compared to
toggling with the slower APB legacy registers. 
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On reset the pin connect block configures all the peripheral pins to be general purpose I/O (GPIO) input pins. 
The GPIO pins are controlled by four registers, as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The FIODIR pin allows each pin to be individually configured as an input (0) or an output (1). If the pin is an 
output the FIOSET and FIOCLR registers allow you to control the state of the pin. Writing a ‘1’ to these registers 
will set or clear the corresponding pin. Remember you write a ‘1’ to the FIOCLR register to clear a pin not a ‘0’.  
The state of the GPIO pin can be read at any time by reading the contents of the FIOPIN register.  
The FIOMASK register is used to mask individual bits of the FIOSET,FIOCLR and FIOPIN register. If a bit in the 
FIOMASK register is set to 0 the corresponding bit in the FIOSET,FIOCLR and FIOPIN will be updated. This 
masking helps speed up low level IO bit manipulation. A simple program to flash the LED on the evaluation 
board is shown below. 
 
int main(void) 
{ 
 unsigned int delay; 
 unsigned int flasher = 0x00010000;  // define locals 
 
 IODIR1 = 0x00FF0000;    // set all ports to output 
 
 while(1) 
 { 
  for(delay = 0;delay<0x10000;delay++) //simple delay loop 
  { 
   ; 
  } 
 
 IOCLR1 = ~flasher;     //clear output pins 
 IOSET1 =  flasher;   //set the state of the ports 
  
 flasher = flasher <<1;    //shift the active led 
 if(flasher&0x01000000) flasher = 0x00010000; //Increment flasher  
          //led and test for  
 }         //overflow 
} 
 

Each GPIO pin is controlled by a bit in each
of the four GPIO registers. These bits are
data direction, set ,clear and pin status. 

Exercise 13 : GPIO 
This simple exercise demonstrates using the GPIO as an LED chaser program. 

© Hitex (UK) Ltd.                                                                                     Page 91 



 
Chapter 4: User Peripherals                                                                                                           

 

 

4.2.2 Interrupt Port 
 
In addition to their GPIO 0 and 2 can be used to generate an interrupt from a transition on any of  their port pins. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two interrupt enable registers allow you to enable interrupt generation for rising or falling edge on a pin by 
pin basis. So, an individual pin can generate an interrupt for both a rising and falling edge. Both port interrupt 
channels are connected to the same VIC slot as the dedicated EINT3 line. When an interrupt is generated you 
must check status registers to see which pin has generated the interrupt and if necessary which transition has 
occurred. As with all peripheral interrupts, you must clear the interrupt flags before exiting the interrupt handler. 
 
 
 
 
 
 
 

Port 0 and 2 may generate an interrupt when
any port pin or changes state.  

Exercise 14: GPIO interrupt Port 
This exercise enables a port- wide interrupt  on port 2, which can be triggered by the INT0 button. 
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4.3 General Purpose Timers 
 
The LPC2300 has four of general purpose timers. All of the general purpose timers are identical in structure and 
use. The timers are based around a 32-bit timer counter with a 32-bit prescaler. The default clock source for all 
of the timers is the APB peripheral clock Pclk 
 

 
 
The tick rate of the timer is controlled by the value stored in the prescaler register. The prescale counter will 
increment on each tick of Pclk until it reaches the value stored in the prescaler register. When it hits the 
prescale value, the timer counter is incremented by one and the prescale counter resets to zero and starts 
counting again. The Timer control register contains only two bits which are used to enable/disable the timer and 
reset its count. 
 

4.3.1 Capture Mode 
 
In addition to the basic counter each timer has up to four capture channels. The capture channels allow you to 
capture the value of the timer counter when an input signal makes a transition. 

The four  timers and the PWM module
have the same basic timer structure. A
32-bit timer counter with a 32-bit
prescaler. 

Each capture channel has a capture pin.
This pin can trigger a capture event on
a rising or falling edge. When an event
occurs the value in the timer counter is
latched into an associated capture
register. 

 

 
 
Each capture channel has an associated capture pin which can be enabled via the pin connect block. The 
Capture control register can configure if a rising or falling edge, or both, on this pin will trigger a capture event. 
When the capture event occurs, the current value in the timer counter will be transferred into the associated 
capture register and if necessary an interrupt can be generated. The code below demonstrates how to configure 
a capture channel. This example sets up a capture event on a rising edge on pin 0.2 (Capture 0.0) and 
generates an interrupt. 
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int main(void) 
{ 
 VPBDIV  = 0x00000002; // Set pclk to 30 MHz 
 PINSEL0 = 0x00000020; // Enable pin 0.2 as capture channel0 
 T0PR    = 0x00007530; // Load prescaler for 1 Msec tick 
 T0TCR   = 0x00000002; // Reset counter and prescaler 
 T0CCR = 0x00000005;  // Capture on rising edge of channel0 
 T0TCR = 0x00000001;  // enable timer 
 
 VICVectAddr4 = (unsigned)T0isr; // Set the timer ISR vector address 
 VICVectCntl4 = 0x00000024;    // Set channel 
 VICIntEnable = 0x00000010;     // Enable the interrupt 
 
 while(1); 
} 
 
void T0isr (void) __irq 
{ 
 static int value; 
 value  = T0CR0;  // read the capture value 
 T0IR   |= 0x00000001; // Clear match 0 interrupt 
 VICVectAddr = 0x00000000; // Dummy write to signal end of  
       // interrupt 
} 
 

4.3.2 Counter mode 
The count control register allows you to select between using each timer as a counter or a pure timer. This 
register allows you to change the clock source from PCLK to an external clock source which is applied to a 
selected timer capture pin. The timer can be incremented on a rising, falling or both edges of the external clock 
signal. 
 
 
 
 
 
 

 

4.3.3 Match mode 
 
Each timer also has up to four match channels. Each match channel has a match register which stores a 32-bit 
number. The current value of the timer counter is compared against the match register. When the values match 
an event is triggered. This event can perform an action to the timer (reset, stop or generate interrupt) and also 
influence an external pin (set, clear, toggle). 
 
 

 

When the timer counter equals the
value stored in the match register,
it can trigger a timer event and also
affect an external match pin 

Exercise 16 : Timer Capture. 
his exercise configures a general purpose timer with a capture event to measure the width of aT

pulse applied to a capture pin. 
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To configure the timer for a match event, load the match register with the desired value. The internal match 
event can now be configured through the Match Control Register. In this register each channel has a group of 
bits which can be used to enable the following actions on a match event: generate a timer interrupt, reset the 
timer or stop the timer. Any combination of these events may be enabled. In addition, each match channel has 
an associated match pin which can be modified when a match event occurs. As with the capture pins, you must 
first use the pin connect block to connect the external pin to the match channel. The match pins are then 
controlled by the first four bits in the external match register. 
 

The EMR register defines the action
applied to the match pin when a match is
made on its channel. The CPU can also
directly control the logic level on the
match pin by directly writing to the first
four bits in the register 

  
 
The external match register contains a configuration field for each match channel. Programming this field 
decides the action to be carried out on the match pin when a match event occurs. In addition, each match pin 
has a bit that can be directly programmed to change the logic level on the pin.  
 
The example below demonstrates how to perform simple pulse width modulation using two match channels. 
Match channel zero is used to generate the period of the PWM signal. When the match event occurs the timer is 
reset and an interrupt is generated. The interrupt is used to set the Match 1 pin high. Match channel 1 is used to 
control the duty cycle. When the match 1 event occurs the Match 1 pin is cleared to zero. So by changing the 
value in the Match 1 register it is possible to modulate the PWM signal 
 
int main(void) 
{ 
 VPBDIV = 0x00000002; // Configure the  VPB divi 
 PINSEL0 |= 0x00000800; // Match1 as output 
 T0PR  = 0x0000001E; // Load presaler 
 T0TCR  = 0x00000002; // Reset counter and presale 
 T0MCR  = 0x00000003; // On match reset the counter and generate an  
      // interrupt 
 T0MR0 = 0x00000010; // Set the cycle time 
 T0MR1 = 0x00000008; // Set 50% duty cycle 
 T0EMR  = 0x00000042; // On match clear MAT1 and set MAT1 pin high for  
      // first cycle 
 T0TCR  = 0x00000001; // Enable timer 
 VICVectAddr4 = (unsigned)T0isr; // Set the timer ISR vector address 
 VICVectCntl4 = 0x00000024;      // Set channel 
 VICIntEnable |= 0x00000010;    //Enable the interrupt 
 
 while(1); 
} 
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void T0isr (void) __irq 
{ 
 T0EMR |= 0x00000002;  // Set MAT1 high for beginning of the cycle 
 T0IR |= 0x00000001;  // Clear match 0 interrupt 
 VICVectAddr = 0x00000000; // Dummy write to signal end of interrupt 
} 
 
 
 
 

 
Exercise 15: Timer Match 
This second timer exercise uses two match channels to generate a PWM signal. There is some CPU
overhead in the timer interrupt routine. 
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4.4 PWM Modulator 
 
At first sight the PWM modulator looks a lot more complicated than the general purpose timers. However it is 
really an extra general purpose timer with some additional hardware. The PWM modulator is capable of 
producing six channels of single edge controlled PWM or three channels of dual edge controlled PWM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the general purpose timers, when a new value is written to a match register, the new match value becomes 
effective immediately. Unless care is taken in your software, this may be part way through a PWM cycle. If you 
are updating several channels, the new PWM values will take effect at different points in the cycle and may 
cause unexpected results. The PWM modulator has an additional shadow latch mechanism which allows the 
PWM values to be updated on the fly but, the new values will only take effect simultaneously at the beginning of 
a new cycle.  

The PWM module is a third general purpose
time with additional hardware for dedicated
PWM generation. 

The PWM shadow latches allow the
match registers to be updated through
the PWM cycle but the new values will
only become effective at the beginning
of a cycle.  

 

 
The value in a given match register may be updated at any time but it will not become effective until the bit 
corresponding to the match channel is set in the Latch Enable register (LER). Once the LER is set, the value in 
the match register will be transferred to the shadow register at the beginning of the next cycle. This ensures that 
all updates are done simultaneously at the beginning of a cycle. Apart from the shadow latches, the PWM 
modulator match channels function in the same way as the timer match registers. 
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The second hardware addition to the PWM modulator over the basic timers is in the output to the device pins. In 
place of the match channels directly controlling the match output pin are a series of SR flip-flops.  
 
 

 
This arrangement of SR flip-flop and multiplexers allows the PWM modulator to produce either single edge or 
dual edge controlled PWM channels. The multiplexer is controlled by the PWMSEL register and can configure 
the output stage in one of two configurations. The first arrangement is for single edge modulation. 

Additional circuitry on the match output channels allows
the generation of six channels of single edge PWM
modulation or three channels of dual edge PWM
modulation. 

The multiplexer can be 
programmed to use Match 0 to 
set the external pin at the 
beginning of a cycle the 
remaining match channels are 
used to modulate each PWM 
channel. 

 

 
 
 
Here the multiplexer is connecting Match 0 to the S input of each flip-flop and each of the remaining channels 
are connected to the R input. With this scheme, Match 0 is set up to count the total cycle period. At the end of 
the cycle it will reset the counter and set match 0 high. This causes all the flip-flops to be set at the beginning of 
the cycle. The output Q goes high raising all the output pins high. Modulation of the PWM signal is done with the 
remaining match channels. Each PWM channel has an associated match channel which is connected to the R 
input of the flip-flop. When the match is made, the flip-flop is reset and the PWM pin is set low. This allows 
modulation of the PWM signal by changing the value of the dedicated match channel. 
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By reprogramming the multiplexer the output stage of the PWM modulator can be configured to dual edge 
controlled modulation. In this configuration Match 0 is not connected to any output and is used solely to reset 
the timer at the end of each PWM period. In this configuration the S and R inputs to each flip-flop have a 
dedicated Match channel. At the beginning of a cycle the PWM output is low. The rising edge of the pulse is 
controlled by the Match channel connected to the S input and the falling edge is controlled by the Match channel 
connected to the R input.  The example below illustrates how to configure the PWM module for dual edge PWM 
. 
 
void main(void) 
{ 
 PINSEL0 |= 0x00028000; //Enable pin 0.7   as PWM2  
 PWMPR  = 0x00000001; //Load prescaler 
 
 PWMPCR = 0x0000404;  //PWM channel 2 double edge control, output enabled 
 PWMMCR = 0x00000003; //On match with timer reset the counter 
 PWMMR0 = 0x00000010; //set cycle rate to sixteen ticks 
 PWMMR1 = 0x00000002; //set rising edge of PWM2 to 2 ticks 
 PWMMR2 = 0x00000008; //set falling edge of PWM2 to 8 ticks 
 PWMLER = 0x00000007; //enable shadow latch for match 0 - 2  
 PWMEMR = 0x00000280; //Match 1 and Match 2 outputs set high 
 PWMTCR = 0x00000002; //Reset counter and prescaler  
 PWMTCR = 0x00000009; //enable counter and PWM, release counter from reset 
 
 while(1)   // main loop 
 { 
  //........  //Modulate PWMMR1 and PWMMR2 
 } 
} 
 
One important line to note is that the PWMEMR register is used to ensure the output of the match channel is 
logic 1 when the match occurs. If this register is not programmed correctly the PWM scheme will not work. Also 
the PWM modulator does not require any interrupt to make it work unlike the basic timers. 
 

4.4.1 Counter Mode 
Like the general purpose timers the PWM unit also has a counter mode.  The count control register allows you 
to select between using each timer as a counter or a pure timer. This register allows you to change the clock 
source from PCLK to an external clock source which is applied to a selected timer capture pin. The timer can be 
incremented on a rising, falling or both edges of the external clock signal. 
 
 
 
 
 
 

Match 0 controls the period of the PWM cycle. Two match channels are
used to modulate the pulse rise and fall times for each PWM channel. 

Exercise 17 : Centre-Aligned PWM 
This exercise configures the PWM unit to produce a centre aligned PWM signal without any CPU
overhead. 
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4.5 Real Time Clock 
 
The LPC23xx  Real Time Clock (RTC) is a clock calendar accurate up to the year 2099. The RTC has the 
option to run from and external 32KHz watch crystal or from the internal PCLK. The RTC also has an associated 
2K of Low power SRAM called the battery RAM. The RTC and battery SRAM have a separate power domain so 
by supplying 3.3V to the Vbat pin, the RTC can be kept running and the contents of the battery ram may be 
preserved when the LPC23xx is powered down. Both the RTC and the battery ram are designed to consume 
minimum power and can be run from a battery. This arrangement means that the RTC may be used to provide a 
perpetual clock calendar, if this is not required, the RTC can be used to provide a time reference and periodic 
interrupts without the need for an additional external oscillator.  
 

The RTC is a clock calendar with
alarm  valid up until the year 2099.  

 

4.5.1 RTC Time Reference 
 
Two time references are available for the RTC, either the external 32 KHz oscillator or the internal Pclk.  
The RTC clock runs on a standard 32.7KHz clock crystal frequency. This can simply be derived from an 
external watch crystal connected to the RTCX1 and RTCX2 pins.  If this oscillator is fitted, it may be selected as 
the clock source by setting the CLKSRC bit in the Clock control register. If you do not need a perpetual calendar  
the RTC can be clocked from Pclk by clearing the CLKSRC bit . In order to derive the 32.768 KHZ  frequency  
Pclk is connected to the reference clock divider. The output of this divider is then passed to the RTC. In effect, 
this is a prescaler which can accurately divide any Pclk frequency to produce the required 32KHz frequency.  
 

The RTC watch crystal frequency may
be derived from any value of Pclk. 

 
 
To ensure that the RTC clock can be accurately derived from any Pclk  the prescaler is more complicated than 
the general purpose timer prescalers. The prescaler is programmed by two registers called PREINT and 
PREFRAC. As their name implies, these hold integer and fractional divisor values. The equations used to 
calculate the load values for these registers are as follows: 
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PREINT = (int)(pclk/32768)-1 
 
PREFRAC = pclk – ((PREINT+1) x 32768) 
 
So for a 30MHz Pclk: 
 
PREINT = (int)( 30,000,000/32768)-1 = 914 
 
Then: 
 
PREFRAC = 30,000,000 – ((914+1) x 32768) = 17280 
 
These values can be programmed directly into the RTC prescaler registers and the RTC is then ready to run. 
Just enable the clock in the clock control register and the time counters will start.  
 
PREINT  = 0x00000392;  //Set RTC prescaler for 30.000 MHz Pclk 
PREFRAC = 0x00004380; 
CCR    = 0x00000001;  //Start the RTC 
 
There are eight time-counter registers, each of which contains a single time quantity which can be read at any 
time. In addition, there are a set of consolidation registers which present the same time quantities in three 
words, allowing all the time information to be read in just three operations. 
 

The RTC consolidation registers
allow all the clock calendar
information to be read in three
words. 

 
 
As well as maintaining a clock, the RTC can also generate alarm events as interrupts. There are two interrupt  
mechanisms. You can program the RTC to generate an interrupt when any time-counter register is incremented, 
so, you could generate an interrupt every second when the second counter is updated or once a year when the 
year counter is incremented. The counter increment interrupt register allows you to enable an increment 
interrupt for each of the eight time-counter registers. 
 
The second method for generating an RTC interrupt is with the alarm registers. Each time-counter register has a 
matching Alarm register. If the matching Alarm register is unmasked it is compared to the time counter register. 
If all the unmasked alarm registers match the time counter registers then an interrupt is generated. So, it is 
possible to set an alarm between now and 2099 with one seconds' accuracy. The Alarm Mask register controls 
which alarm registers are used in the compare. As both the increment and alarm events can generate an RTC 
interrupt it is necessary to distinguish between them from within the interrupt. The Interrupt location register 
provides two flags which can be interrogated to see what caused the RTC interrupt. Again, remember that these 
flags must be cleared to cancel the interrupt. An RTC program which sets the clock and uses both styles of 
interrupt is shown below. 
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int main(void) 
{ 
 VPBDIV = 0x00000002; 
 IODIR1 = 0x00FF0000; // set LED ports to output 
 IOSET1 = 0x00020000;   
 PREINT = 0x00000392; // Set RTC prescaler for 30MHz Pclk 
 PREFRAC = 0x00004380; 
 CIIR = 0x00000001;   // Enable seconds counter interrupt 
 ALSEC = 0x00000003;  // Set alarm register for 3 seconds 
 AMR = 0x000000FE;     // Enable seconds Alarm 
 CCR = 0x00000001;     // Start the RTC 
 
 VICVectAddr13 = (unsigned)RTC_isr; //Set the timer ISR vector address 
 VICVectCntl13 = 0x0000002D;   //Set channel 
 VICIntEnable  = 0x00002000;  //Enable the interrupt 
 
 while(1); 
 
} 
 
void RTC_isr(void) 
{ 
 unsigned led; 
 
 if(ILR&0x00000001) //Test for RTC counter interrupt  
 { 
  led = IOPIN1;  //read the current state of the IO pins 
  IOCLR1 =  led&0x00030000; //Clear the illuminated LED 
  IOSET1 = ~led&0x00030000; //Set the idle LED 
  ILR = 0x00000001;  //Clear the interrupt register 
 } 
 
 if(ILR & 0x00000002) 
 {  
  IOSET1 = 0x00100000;  //Set LED 0.7 
  ILR = 0x00000002;  //clear the interrupt register 
 } 
 
 VICVectAddr = 0x00000000;  //Dummy write to signal end of interrupt 
}  
 
 
 
 
 

Exercise 18 : Real Time Clock 
his exercise configures the RTC and demonstrates both the alarm and increment interrupts. T
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4.6 Watchdog 
 
In common with many microcontrollers, the LPC23xx family has a watchdog system to provide a method of 
recovering control of a program that has crashed. The watchdog may be clocked from either the internal RC 
oscillator, the RTC oscillator or Pclk. 
 

Timeout 

he watchdog has four registers as shown above. The watchdog timeout period is set by a value programmed 

dperiod = Twdck x WDTC x 4 

nd the maximum is 2^32. Hence the minimum watchdog period at 

nce the watchdog constant is programmed, the operating mode of the watchdog can be configured. The 

 
he Mode register also contains two flags; the WDTOF is set when the watchdog times out and is only cleared 

you should not enable the reset option as this will trip up the JTAG debugger when the watchdog times out. 

 

4.6.1 Watchdog 
 
T
into the Watchdog Constant Register (WDTCR). The timeout period is determined by the following formula. 
 
W
 

he minimum value for WDTC is 256 aT
60MHz is 17.066us and the maximum is just under 5 minutes.  
 
O
Watchdog mode register contains three enable bits controlling: whether the watchdog generates an interrupt, 
whether it generates a reset and a final bit which is used to enable operation of the watchdog. 
 

The on-chip watchdog can force a
processor reset or interrupt. In the case of
a watchdog reset, a flag is set so your
code can stop a “soft reset”. 

The watchdog mode register allows configuration of
the  watchdog action on underflow (reset or interrupt). 

T
after an external hard reset. This allows your startup code to detect if the reset event was a power on reset or a 
reset due to a program error. The Mode register also contains the watchdog interrupt flag. This flag is read-only 
but, it must be read in order to clear the watchdog interrupt. If you need to debug code with the watchdog active, 
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Once the watchdog timer constant and mode registers have been configured, the watchdog can be kicked into 
ction by writing to the feed register. This needs a feed sequence similar to the PLL. To feed the watchdog you 

hich allows you to read the current value of 
e watchdog timer. 

a
must write 0xAA followed by 0x55. If this sequence is not followed, a watchdog feed error occurs and a 
watchdog timeout event is generated with its resulting interrupt/reset.  It is also important to note that although 
the watchdog may be enabled via the watchdog mode register, it does not start running until the first correct 
watchdog feed sequence is encountered. Once fully started, the watchdog must receive regular feed sequences 
in order to stop the watchdog counter reaching zero and timing out. 
 
The final Watchdog register is the Watchdog Timer Value Register w
th
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4.7 UART 
 
The LPC23xx devices currently have four on-chip UARTS. They are all identical to use except UART1 has 
additional modem support and UART3 which has IrDA support. . All the UARTs  conform to the “550 industry 
standard” specification. Both have a built-in Baud rate generator with autobaud capability and 16 byte transmit 
and receive FIFOs. As well as being suitable for RS232 wired communication, UART3 can be configured to 
work with the IrDA standard for infra-red communication. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.7.1 Baud Rate Configuration 
 
The BAUD rate of each UART may be configured by the application code or the autobaud rate feature may be 
enabled and the Baud rate will be configured to match the incoming data. 
 
Initialisation of the UART0 BAUD rate generator is shown below:  
 
void init_serial (void)  /* Initialize Serial Interface       */ 
{                    
  PINSEL0  = 0x00050000;  /* Enable RXD1 and TXD1              */  
  U1LCR  = 0x00000083;  /* 8 bits, no Parity, 1 Stop bit     */ 
  U1DLL  = 0x000000C2;  /* 9600 Baud Rate @ 30MHz VPB Clock  */ 
  U1LCR  = 0x00000003;  /* DLAB = 0                          */ 
}  
 
First the pinselect block must be programmed to switch the processor pins from GPIO to the UART functions. 
Next the UART line control register is used to configure the format of the transmitter data character.  
 

UART Line control register: The LCR
configures the format of transmitted
data. Setting the DLAB bit allows
programming of the BAUD rate
generators. 

In our example the character format is set to 8 bits, no parity and one stop bit. In the LCR, there is an additional 
bit called DLAB which is the divisor latch access bit. In order to be able to program the Baud rate generator, this 
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bit must be set.  The Baud rate generator is a sixteen bit prescaler which divides down Pclk to generate the 
UART clock which must run at 16 times the Baud rate. Hence, the formula used to calculate the UART Baud 
rate is:  
 
 Divisor  = Pclk/16 x BAUD 
 
In our case at 30MHz: 
 
 Divisor = 30,000,000/16 x 9600 = (approx) 194 or 0xC2 
 
This gives a true Baud rate of 9665. Often it is not possible to get an exact Baud rate for the UARTs however, 
they will work with up to around a 5% error in the bit timing. So you have some leeway with the UART timings if 
you need to adjust the Pclk to get exact timings on other peripherals such as the CAN bit timings. The divisor 
value is held in two registers: Divisor latch MSB (DLM) and Divisor latch LSB (DLL). The first eight bits of both 
registers holds each half of the divisor as shown below. Finally, the DLAB bit in the LCR register must be set 
back to zero to protect the contents of the divisor registers. 
 

UART baud rate: The UART clock
frequency must be 16 times the
required BAUD rate. This is derived by
dividing Pclk by a 16-bit divisor
register.  

 

4.7.2 Auto Baud Rate Detection 
 
Each LPC23xx UART may be configured to automatically detect the baud rate of an incoming serial data 
packet. When the baud rate is detected the divisor latches are programmed with the correct values to initialise 
the UART at the correct BAUD rate.  
 
 

An additional autobaud feature
allows the UART to determine its
own baud rate 

 
 
 
 
 
This feature is configured by the auto baud control register.  By setting the start bit in this register the UART will 
wait to receive the ASCII character A ( which is 0x61 ‘A’ or 0x41 ‘a’ ) . When the character is received, an 
internal timer is used to measure the period between edges within the character and thus determine the baud 
rate.  The Auto baud rate detector has two operating modes. Mode 1 measures the length of the start bit to 
determine the baud rate, mode 0 measures the length of the start bit and bit zero of the data character. Both 
modes work equally well but mode 0 is more suitable for higher baud rates and mode 1 for lower baud rates.  
 
If the user does not send an ‘A’ or ‘a’ character, the auto baud will fail and time out. By setting the Auto Restart 
bit, the UART will attempt to determine the baud rate on the next character received. If enabled the UART can 
generate an interrupt for a successful auto baud configuration and an auto baud time out failure. 
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4.7.3 Data Transfer 
Once the UART is initialised, characters can be transmitted by writing to the Transmit Holding Register. 
Similarly, characters may be received by reading from the Receive Buffer Register. In fact both these registers 
occupy the same memory location. Writing a character places the character in the transmit FIFO and reading 
from this location loads a character from the Receive FIFO. The two routines shown below demonstrate 
handling of transmit and receive characters. 
 
int putchar (int ch)     /* Write character to Serial Port    */ 
{                     
 
  if (ch == '\n')  { 
    while (!(U1LSR & 0x20)); 
    U1THR = CR;                 /* output CR */ 
  } 
  while (!(U1LSR & 0x20)); 
  return (U1THR = ch); 
} 
 
int getchar (void)    /* Read character from Serial Port   */ 
{                     
 
  while (!(U1LSR & 0x01)); 
 
  return (U1RBR); 
} 
 
The putchar() and getchar functions are used to read/write a single character to the UART. These low level 
drivers are called by the Keil STDIO functions such as printf() and scanf(). So, if you want to redirect the 
standard I/O from the UART to say an LCD display and a keypad, rewrite these functions to support sending 
and receiving a single character to your desired I/O devices. Both the putchar() and getchar() functions read the 
Link Status Register (LSR) to check on UART error conditions and to check the status of the receive and 
transmit FIFOS. 
 

 
The UART has a single interrupt channel to the VIC but three sources of interrupt. UART interrupts can be 
generated on a change in the Receive line status. So, if an error condition occurs, an interrupt is generated and 
the LSR can be read to see what is the cause of the error. The remaining two interrupt sources are receive and 
transmit interrupts. The receive interrupt is triggered by characters being received into the RX FIFO. The depth 
at which the interrupt is triggered is set in the UART FIFO control register. 
 
The receive interrupt can be set to trigger after it has received 1,4,8 or 14 characters. So, if the interrupt is set to 
trigger when eight characters are in the buffer and a total of 34 characters are sent,  four interrupts will be 
generated with two characters left in the FIFO. These remaining characters will cause a “character time out 
indication” (CTI) interrupt. The CTI interrupt occurs when there are one or more characters in the FIFO and no 
FIFO activity has occurred for 3.5- 4.5 character times.  
 
 
 

UART Line Status Register: The
LSR contains flags which indicate
events within the UART. It may be
polled or should be read after a
UART interrupt is generated. 
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The transmit FIFO will also generate interrupts when the transmit holding register is empty and when the 

 

ART1 has the same basic structure as UART0 However it has additional support for modem control. This 

transmit shift register is empty. 
 

 
U
consists of additional external pins to support the full modem interface (CTS,DCD,DSR,DTR,RI,RTS), there are 
two additional registers the modem control register and the modem status register and an additional interrupt 
source to provide a modem status interrupt. 
 

 

UART Transmit FIFO: Like the RX FIFO, the TX
FIFO is 16 bytes deep and can generate an
interrupt when empty and when it has finished
transmitting. 

UART1 Modem registers: 

UART1 has additional support
for modem interfacing. The DTR
and RTS signals may be directly
controlled. Changes in modem
status can also generate a UART
interrupt. 

UART RX FIFO: Each UART has a sixteen byte
receive FIFO which can be programmed to generate
a UART interrupt at various trigger levels. The
character timeout interrupt can be used to read
bytes which do not reach a trigger level. 
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These additional features allow optimal connection to a modem with an interrupt generated each time there is a 
hange in the modem status register. 

.7.4 IrDA Communication 

egister that allows you to shape the TX pulses to meet the IrDA 
tandard.  

he IrDA control register is used to enable the IrDA feature.  The pulses data may also be inverted and you can 
efine the effective pulse width as either a standard 3/ Baud rate or as multiples of Pclk 

c
 
 

4
 
UART3 has an additional IrDA control r
s
 
 
 
 
 
 

UART3 has additional IrDA
support which is configured
through the IrDA control
register. 

 
 
 
T
d
 
 

Exercise 19: UART 
we saw how to use the STDIO library with the UARTs. In this example we look at how thIn Exercise 4 e

UARTs are initialised to run at a specific baud rate.  
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4.8 I2C Interface 
 
As Philips were the original inventors of the I2C bus standard, it is not surprising to find the LPC23xx equipped 
with a fully featured I2C interface. In fact, there are three fully independent I2C interfaces. Each I2C interface 
can operate in master or slave mode up to 400K bits per second and in master mode it will automatically 
arbitrate in a multi-master system.  
 

 
A typical I2C system is shown above where the LPC2300 is connected to two external port expander chips. As 
with the other peripherals, the Serial Clock (SCL) and Data (SDA) lines must be converted from GPIO pins to 
I2C pins via the pin connect block. 
 
 
 

he I2C peripheral interface is composed of seven registers. The control register has two separate registers 

 order to initialise the I2C interface, we need to run the following lines of code: 

ICVectCntl1 = 0x00000029;       // select a priority slot for a given interrupt 
 

   pins 

he I2C peripheral must be programmed to respond to each event which occurs on the bus. This makes it a 
very interrupt-driven peripheral. Consequently the first thing we must do is to configure the VIC to respond to a 

I2C peripheral registers.  

The programmers’ interface includes two
timing registers: set and clear registers for
the control register, an address register to
hold the node address when in slave mode
and a data register to send and receive
bytes of data . 

Typical I2C bus configuration.
The bus consists of separate
clock and data lines with a
pull up resistor on each line.
The two external devices used
in the example are port
expander chips. 

T
which are used to set and clear bits in the control register (I2CONSET, I2CONCLR). The bit rate is also 
determined by two registers (I2SCLH, I2SCLL). The status register returns control codes which relate to 
different events on the bus. The data register is used to supply each byte to be transmitted or as data is 
received it will be transferred to this register. Finally, when the LPC2000 is configured as a slave device its 
network address is set by programming the I2ADR register.  
 
In
 
V
VICVectAddr1 = (unsigned)I2CISR // pass the address of the IRQ into the VIC slot
VICIntEnable = 0x00000200;  // enable interrupt 
 
INSEL0 = 0x50;     // Switch GPIO to I2CP
I2SCLH  = 0x08;     // Set bit rate  to 57.6KHz 
I2SCLL     = 0x08; 
 
T
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I2C interrupt. Next, the pinselect block is configured to connect the I2C data and clock lines to the external pins. 
Lastly we must set the bit rate by programming I2SCLH and I2SCLL. In both of these registers, only the first 16 
bits are used to hold the timing values. The formula for the I2C bit rate is given as: 
 
Bit Rate = Pclk/(I2SCLH+I2CSLL) 
 
In the above example the PLL is not enabled and the external crystal is 14.7456MHz. Hence the I2C bit rate is: 

cation with other bus devices to read and write data as a 
us master. The contents of the I2C control register are 

C peripheral must be enabled and the 
heral acknowledging any potential master and 

 
ne is pulled high and the data is 

ulled low. The address of the slave, which the master wants to talk to, is then written onto the bus followed by 

 
Bit Rate = 14.7456/B ( 8 + 8) = 937500 
 
Once configured, the LPC2100 can initiate communi
us master or receive and reply to requests from a bb

shown below. Remember this register is controlled by the CONSET and CONCLR registers. 
 
 

We will first look at the bus master mode. To enter this mode, the I2
acknowledge bit must be set to zero. This prevents the I2C perip
entering the slave mode. In the master mode the LPC2000 device is responsible for initiating any 
communication. During a I2C bus transfer a number of bus events must occur. 
 

I2C control registers:
The control registers are used to enable
the I2C peripheral and interrupt as well
as controlling the I2C bus start, stop
and ack conditions. 

Typical I2C transaction :A I2C
bus transaction is
characterised by a start
condition, slave address data
exchange and stop condition
with acknowledge
handshaking. 

The bus master must first signal a start condition. To do this the I2C clock li
p
a bit which states if a read or write is being requested. If the slave has received this preamble correctly it will 
reply with an acknowledge. Then data can be transferred as a series of bytes and acknowledges until the 
master terminates the transaction with a stop condition. The I2C peripheral on the LPC2000 series is really a 
I2C engine. It controls all the bus events but has no intelligence. This means that the ARM7 CPU has to micro-
manage the I2C bus for each transaction. Fortunately this is easy to do and is centred around the I2C interrupt. 
Once the I2C peripheral is initialised in master mode we can start a write data transfer as follows: 
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void I2CTransferByte(unsigned Addr,unsigned Data) 
{ 
 
 I2CAddress = Addr; // Place address and data in Globals to be used by  
      // the interrupt 
 I2CData = Data; 
 I2CONCLR = 0x000000FF; // Clear all I2C settings 
 I2CONSET = 0x00000040; // Enable the I2C interface 
 I2CONSET = 0x00000020; // Start condition 
} 
 
The slave address and data to be sent are placed in global variables so that they can be used by the I2C 
interrupt routine. The address is a seven-bit address with the LSB set for write and cleared for read. The routine 
next clears the I2C control flags, enables the I2C peripheral and asserts a start condition. Once the start 
condition has been written onto the bus an interrupt is generated and a result code can be read from the I2C 
status register. 

 

I2C status Register: For each bus event
an interrupt is generated, a condition
code is returned in the status register.
This code is used to determine the next
action to perform within the I2C
peripheral  

 
If the start condition has been successful, this code will be 0x08. Next the application software must write the 
slave address and the R/W bit into the I2Cdata register. This will be written on to the bus and will be 
acknowledged by the slave. When the acknowledge is received, another interrupt is generated and the status 
register will contain the code 0x18 if the transfer was successful. Now that the slave has been addressed and is 
ready to receive data, we can write a string of bytes into the I2C data register. As each byte is written it will be 
transmitted and acknowledged. When it is acknowledged an interrupt is generated and 0x28 will be in the status 
register if the transfer was successful. If it failed and had a NACK the code will be 0x20 and the byte must be 
sent again. So, as each byte is transferred an interrupt is generated, the status code can be checked and the 
next byte can be sent. Once all the bytes have been sent the stop condition can be asserted by writing to the 
I2C control register and the transaction is finished. The I2C interrupt is really a state machine that examines the 
status register on each interrupt and performs the necessary action. This is easy to implement as a switch 
statement as shown below. 
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void I2CISR (void) // I2C interrupt routine 
{ 
 
switch (I2STAT) // Read result code and switch to next action 
{ 
     
 case ( 0x08):  // Start bit 
  I2CONCLR = 0x20;    // Clear start bit 
  I2DAT = I2CAddress; // Send address and  
     // write bit 
 break; 
 
 case (0x18):  // Slave address+W, ACK 
  I2DAT = I2Cdata; // Write data to TX register 
 break; 
 
 case (0x20):  // Slave address +W, Not ACK 
  I2DAT = I2CAddress; // Resend address and write bit 
 break; 
 
 case (0x28):  // Data sent, Ack 
  I2CONSET = 0x10; // Stop condition 
 break; 
 
 default : 
 break; 
 } 
 
 I2CONCLR = 0x08;    // Clear I2C interrupt flag 
 VICVectAddr = 0x00000000; // Clear interrupt in  
} 
 
This example sends a single byte but could be easily modified to send multiple bytes. Additional case 
statements may be added to handle a master request for data. 

I2C master TX: This bus
transaction demonstrates a
master to slave write
transaction. 

 
 
In the case of a master receive, the start condition will be the same but this time the address written on to the 
bus will have the R/W bit cleared. When the acknowledge is received after the slave address is sent, it will be 
followed by the first byte of data from the slave so the master does not have to do anything. However, in the 
case statement we can set the acknowledge bit so that an ACK is generated as soon as the byte has been 
transferred. As each byte is transferred, the data can be read from I2CDAT. When all the bytes have been 
received, the stop condition can be asserted and the transaction ends. 
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The same I2CtransferByte() function can be used to start a read transaction and the additional case statements 
required in the interrupt are shown below. 
 
case (0x40) :  // Slave Address +R, ACK 
 I2CONSET = 0x04; // Enable ACK for data byte 
break; 
 
case (0x48) :  // Slave Address +R, Not Ack 
 I2CONSET = 0x20; // Resend Start condition 
break; 
 
case (0x50) :  // Data Received, ACK  
 message = I2DAT; 
 I2CONSET = 0x10; // Stop condition 
 lock = 0;         // Signal end of I2C activity      
break; 
 
case (0x58):  // Data Received, Not Ack 
 I2CONSET = 0x20; // Resend Start condition 
break; 
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4.9 SPI Interface 
 
Like the I2C interface the SPI interface is a simple peripheral “engine” which can write and read data to the SPI 
bus, but is not intelligent enough to manage the bus. It is up to your code to initialise the SPI interface and then 
manage the bus transfers.  

 
The SPI peripheral has four external pins: a serial clock pin, slave select pin and two data pins; master in/slave 
out and master out/slave in. The serial clock pin provides a clock source of up to 400Kbits/sec when in master 
mode or will accept an external clock source when in slave mode. The SPI bus is purely a serial data 
connection for high-speed data transfer and unlike I2C does not have any addressing scheme built into the 
serial transfer. An external peripheral is selected by a slave select pin which is a separate pin. Typically, if the 
LPC2000 is acting in master mode, it could use a GPIO pin to act as slave select (chip enable) for the desired 
SPI peripheral. When the SPI peripheral is in slave mode, it has its own slave select input which must be pulled 
low to allow an SPI master to communicate with it. The two data transfer pins 'master in / slave out' and 'master 
out / slave in' are connected to the remote SPI device and their orientation depends on whether the device is 
operating in master or slave mode. The diagram below shows a typical configuration for connecting to an 
EEROM device. 
 
The programmers’ interface for the SPI peripheral has five registers. The clock counter register determines the 
Baud rate. Pclk is simply divided by the value in the clock counter to give the SPI bit rate. This register must 

hold a minimum value of eight. The control register is used to configure the operation of the SPI bus. The size of 
the data transfer defaults to eight bits. However, by setting  BitEnable to 1 the BITS field can be used to he data 
size from between 8 bits up to 16 bits. 

 

SPI EEROM peripheral:
This diagram shows how to interface an
external EEROM onto the SPI bus of the
LPC2000. It should be noted that pins
P0.7 and P0.20 must be pulled high to
enable the SPI peripheral as a master. 
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Because of the simple nature of the SPI data transfer and the wide range of SPI peripherals available, the SPI 
clock and data lines can be configured to operate in several different configurations. Firstly the polarity and 
phase of the clock must be defined. The polarity can be active high or active low as shown below and the clock 
phase can be edge or centre aligned.  
 
 
 
 
 
 
 
 
 
 
 
 
Finally the data orientation may also be defined as the most significant bit transferred first or the least significant 
bit transferred first. 
 

The SPI data transmission can be
configured to match the
characteristics of any SPI device. 

 
Each of these configuration features has a configuration bit in the control register and you must program these 
bits to match the SPI peripheral you are trying to communicate with. Once the bit rate has been set and the 
control register configured then communication can begin. To communicate with the SPI memory shown above, 
first set the GPIO pin to enable the memory for communication. Then writing to the SPI data register will send a 
byte of data and reading from the register will collect any data sent from the external peripheral. The actual data 
protocol used in the transaction will depend on the SPI device you are trying to communicate with. 
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4.10  Analog To Digital Converter 
 
The A/D converter present on some LPC2300 variants is a 10-bit successive approximation converter with a 
conversion time of 2.44 uSec or just shy of 410 KSps. The A/D converter has either 6 or 8 multiplexed inputs 
depending on the variant. The programming interface for the A/D converter is shown below. 
 
 
 
 
 
 
 

A/D analog to digital converter: The converter is
available with 4 or 8 channels of 10-bit resolution.  

 
 
 
 
 
 
The A/D control register establishes the configuration of the converter and controls the start of conversion. The 
first step in configuring the converter is to set up the peripheral clock. As with all the other peripherals, the A/D 
clock is derived from the PCLK. This PCLK must be divided down to equal 4.5MHz. This is a maximum value 
and if PCLK cannot be divided down to equal 4.5MHz then the nearest value below 4.5MHz which can be 
achieved should be selected. 
 

AD
The c
conv
resolu

 Control register:
ontrol register determines the

ersion mode, channel and
tion. 

PCLK is divided by the value stored in the CLKDIV field plus one. Hence the equation for the A/D clock is as 
follows: 
 
CLKDIV = (PCLK/Adclk) - 1  
 
As well as being able to stop the clock to the A/D converter in the peripheral power down register, the A/D has 
the ability to fully power down. This reduces the overall power consumption and the on-chip noise created by 
the A/D. On reset the A/D is in power down mode, so as well as setting the clock rate the A/D must be switched 
on. This is controlled by the PDN bit in ADCR. Logic one in this field enables the converter. Unlike other 
peripherals the A/D converter can make measurements of the external pins when they are configured as GPIO 
pins. However, by using the pinselect block to make the external pins dedicated to the A/D converter, the overall 
conversion accuracy is increased. 
 
Prior to a conversion the resolution of the result may be defined by programming the CLKS field. The A/D has a 
maximum resolution of 10 bits but can be programmed to give any resolution down to 3 bits. The conversion 
resolution is equal to the number of clock cycles per conversion minus one. Hence for a 10-bit result the A/D 
requires 11 ADCLK cycles and four for a 3-bit result. Once you have configured the A/D resolution, a conversion 
can be made. The A/D has two conversion modes, hardware and software. The hardware mode allows you to 
select a number of channels and then set the A/D running. In this mode a conversion is made for each channel 
in turn until the converter is stopped. At the end of each conversion the result is available in the A/D Global  data 
register and in a dedicated results register for each channel, ADDR0 – ADDR7.  
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AD data register: The data register
cont

con

ains the conversion result,
channel overrun error and

version done flag. 

 
At the end of a conversion the Done bit is set and an interrupt may also be generated if the global enable and 
channel interrupt enable bits are set in the A?D Interrupt enable register. The conversion result is stored in the 
V/Vdda field as a ratio of the voltage on the analog channel, divided by the voltage on the analog power supply 
pin. The number of the channel for which the conversion was made is also stored alongside the result. This 
value is stored in the CHN field. Finally, if the result of a conversion is not read before the next result is due, it 
will be overwritten by the fresh result and the OVERUN bit is set to one. If you are using multiple A/D channels 
the A/D status register provides global access to the DONE and Overrun bits for each channel. 
 
The example below demonstrates use of the A/D converter in hardware mode. 
 
int main(void) 
{ 
 VPBDIV = 0x00000002;   // Set the Pclk to 30 MHz 
 IODIR1 = 0x00FF0000;      // P1.16..23 defined as Outputs   
 ADCR   = 0x00270607;      // Setup A/D: 10-bit AIN0 @ 3MHz  
 
 VICVectCntl0 = 0x00000032;    // connect A/D to slot 0 
 VICVectAddr0 = (unsigned)AD_ISR;   // pass the address of the IRQ into the 
VIC  
            // slot 
 VICIntEnable = 0x00040000;  // enable interrupt 
 
 while(1) 
 { 
  ;     
 } 
} 
  
void AD_ISR (void) 
{ 
 unsigned val,chan; 
 static unsigned result[4]; 
 
 val = ADCR; 
 val = ((val >> 6) & 0x03FF);   // Extract the A/D result  
 chan = ((ADCR >>0x18) & 0x07); 
 result[chan] = val; 
} 
 
The A/D has a second software conversion mode. In this case, a channel is selected for conversion using the 
SEL bits and the conversion is started under software control by writing 0x01 to the START field. This causes 
the A/D to perform a single conversion and store the results in the ADDR in the same fashion as the hardware 
mode. The end of conversion can be signalled by an interrupt, or by polling the done bit in the ADDR. In the 
software conversion mode it is possible to start a conversion when a match event occurs on timer zero or timer 
one. Or when a selected edge occurs on P0.16 or P0.22, the edge can be rising or falling, as selected by the 
EDGE field in the ADCR. 
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The A/D may be started by a software
event  or it may be started by several
hardware triggers. 

 
 
 
 
 
 
 
 

The simplest method of using the A/D converter is shown below. 
 
VPBDIV = 0x02;  //Set the Pclk to 30 MHz 
IODIR1 = 0x00FF0000;    // P1.16..23 defined as Outputs   
ADCR   = 0x00270601;     // Setup A/D: 10-bit AIN0 @ 3MHz  
ADCR  |= 0x01000000;     // Start A/D Conversion  
 
while(1) 
{ 
     
do 
{ 
    val = ADDR;      // Read A/D Data Register  
}         
 
 
 
 
 
 

Exercise 20 : Analog To Digital Converter 
uses the A/D to convert an external voltage source and modulate a bank of LEDs with

e result. 
This exercise 
th
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4.11 Digital To Analog Converter 
 
The LPC23xx variants have a 10-bit Digital to analog converter. This is an easy-to-use peripheral as it only has 
a single register. 
 
The DAC is enabled by writing to bits 20 and 21 of PINSEL1 and converting pin 0.26 from GPIO to the AOUT 
function. It should also be noted that a channel of the analog to digital converter also shares this pin. 

Once enabled a conversion can be started by writing to the VALUE bits in the control register. The conversion 
time is dependant on the value of the BIAS bit. If it is set to one the conversion time is 2.5uSec but it can drive 
700 uA. If it is zero, the conversion time is 1 uSec but it is only able to deliver 350 uA. However, the total settling 
time is also dependent on the external impedance and the data setsheet values are valid for a 100pF 
capacitance  
.  

The DAC is controlled by a single register.
The value to be converted is written here
along with the bias value.

 
 
 
 
 
 
 

© 
Exercise 24: Digital to Analog Converter 
This exercise simulates a sine wave which is sampled by the Analog to digital converter. These
values are loaded straight into the Digital to Analog converter to regenerate the sine wave. The two
sine waves can be compared in the logic analyzer window. 
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4.12  Synchronous Peripheral Controller 
 
The LPC23xx has two synchronous peripheral controllers.  Like the VIC, EMI and DMA units the SSP units are 
based on the ARM Prime cell modules which are specifically designed to interface with the ARM bus structure. 
Each synchronous peripheral controller provides a single channel of synchronous serial communication which 
can be configured as a bus master or slave. The  SSP can communicate with most common serial peripherals 
and supports the Motorola SPI, National Microwire and Texas SSI protocols. The SSP is interfaced to external 
devices with either 3 or four external pins depending on the protocol in use. The Master out slave in (MOSI) and 
master in slave out (MISO) pins provide for a full duplex serial bus with a third pin used for the serial clock 
(SCK). An additional slave select (NSS) pin is used as a peripheral enable line when the SSP is used in slave 
mode. This pin should be held high when the SSP is used in master mode. Internally the SSP has separate 
transmit and receive FIFOs which can be up to 16 bits wide and eight words deep. The serial clock is derived 
from the internal peripheral clock and the SSp can support data rates of up to 2 MHz. The SSp is connected to 
the VIC by a single interrupt channel which can be triggered by receive of transmit events, a receive overrun 
and a receive timeout. For high performance serial connections the SSP can act as a flow controller for any of 
the DMA units. 
 
 
 
 
 

The synchronous serial peripheral supports the SPI,
microwire and SSI protocols. The SSP can also be a flow
controller for the DMA units. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The initial configuration of the SSP is made by programming control register 0 and control register 1. After a 
reset the SSP is disabled and may be enabled by setting the SSP_ENABLE bit in control register 1. The SSP 
peripheral should be configured and transmit data  written into the FIFO before the peripheral is enabled. This 
register also allows you to configure the SSP as a master or slave device. If the SSP is configured as a slave 
device it is also possible to prevent it from writing data onto the bus by setting the slave output disable. In a 
multiple slave system the serial bus can be connected to each slave and the SOD bit may be used to control 
which slave device can write data onto the bus. This removes the need for a master to control slave select pins 
with GPIO lines or external multiplexers. Finally, control register 1 can be used to enable a loopback test mode 
which internally connects the output shift register to the input shift register. 
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The remaining SSP configuration options can be found in control register 0. This register contains a frame 
format field which allows you to select between the SPI, microwire and synchronous serial frame formats. 
Depending on the selected protocol the data size field can configure the transmit and receive word size from 
four bits up to 16 bits. If the SPI protocol is selected the CPOL field allows you to select the clock polarity and 
CPHA selects the clock phase.  

Control register 1 is used to enable the SSP peripheral and define it as Master or slave and optionally
enable the loopback test mode. 

 
 
 
 
 
 
 

Control register 0 is used to define the serial protocol that the SSP will use to communicate with external
devices.  

 
The final field in control register zero controls one of two clock dividers used to define the SSP bit rate.  Like the  
other user peripherals the SSP is clocked from the APB bus clock ( Pclk).  The SSP contains a clock prescaler 
register that can be used to divide PCLK by any even value between 2 and 254, bit zero in this register is 
hardwired to zero. The serial clock rate field in control register 0 can then further divide PCLK by a maximum of 
256. The SSP serial data rate can be calculated from the following formula.  
 
  SSP bit rate = Pclk/(CPSRDIV x *( 1+ SCR) 
 
Where CPSRDIV = clock prescaler register. 
   

SCR = serial clock rate ( control register 0) 
 
Two DMA units can be configured to support receive and transmit data transfers to and from each SSP 
peripheral. The DMA support can be enabled by setting the TXDMA and RXDMA bits within the DMA control 
register. In addition you must configure a DMA unit to support each transmit and receive channel ( see the DMA 
section in chapter 3).  
 
 
 
 
 
 
 
 
 
 
 
 
If you are not using the DMA support the SSP peripheral can be used by polling the status register or by 
enabling the SSP interrupts. Data can be transmitted by writing the correct word size to the data register where 
it will be queued in the transmit FIFO before entering the transmit shift register.  Received data will enter the 
receive shift register and then be queued in the receive FIFO which can be accessed be reading the data 
register. The status register provides transmit and receive FIFO flags that allow you to control data flow during 
polled operation. 

The  DMA support allows the synchronous serial peripheral to be a sink or source flow controller for the
general purpose DMA units. 
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The status register contains flags for the receive FIFO status (RFF,RNE) and transmit FIFO status
(TNF,TFE) and a busy flag. 

 
 
 
 
 
 
 
 
The SSP has a single interrupt line connected to a VIC interrupt channel and internally the SSP has transmit 
and receive interrupts when the FIFO is half empty ( transmit) and half full ( receive). The receive interrupt has 
an additional receive time out interrupt which is triggered when no characters have been received for xx bit 
periods and there is data in the FIFO. This allows your firmware to collect the last few words of data at the end 
of a transfer that would not trigger a FIFO interrupt. The final interrupt source can signal a receive overrun 
where the receive FIFO is full and further data has been placed on the serial bus. 
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4.12.1 I2S Controller 
 
The LPC23xx  also hosts an I2S or inter integrated circuit sound interface. The I2S standard allows you to easily 
build audio systems out of standard building blocks which are linked together by the three wire I2S serial bus. 
The I2S bus supports transfer of Audio data as 8/16 or 32 bit words. Both mono and stereo data streams are 
supported over a wide range of sampling frequencies, or from 16 – 48 MHz. The I2S peripheral has separate 
transmit and receive channels which can operate independently.  The I2S peripheral can also be a DMA flow 
controller, both the transmit and receive channels have an 8 byte FIFO which can trigger a DMA transfer when a 
threshold is crossed. 
 
 
 
 
 
 
 
 
 
 
 
 

The I2S peripheral provides a simple physical interface  to
audio analog devices. The I2S peripheral is also supported
by the General purpose DMA unit which allows you to stream
audio data over the I2S interface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The I2S data bus consists of a serial clock serial data and a word select signal that is used to synchronise data 
transmissions. I2S data is transmit on the next falling clock edge after a WS rising or falling edge. In stereo 
mode left channel, data is sent when WS is low and right channel data is sent when WS is high. In mono mode 
the same data is sent for both channels. 
 
The I2S transmit and receive bit rate is configured by two separate clock rate registers. The configured bit rate 
must reflect the desired sampling rate of the audio data, so for 48 KHz 16 bit stereo data the bit rate is simply 
48000 x 16 x 2 = 1.536MHz. The I2S clock is derived from Pclk  so the transmit and receive rates are given by 
TXrate = (Pclk/Bit rate)-1, RXrate = (Pclk/Bit rate)-1.  
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Once the bit rate is configured the transmit and receive channels can be configured through the digital audio 
input and output registers. 
 

The Digital Audio Output and Digital
Audio Input registers configure
audio stream formats. The output
register has an additional mute
option. 

 
 
 
 
 
 
 
 
 
 
These registers allow you to configure the word width, and mono or stereo operation and whether the channel is 
operating in master or slave mode. The operation of each channel can also be independently halted and reset. 
In addition the transmit channel has a mute mode that allows data to be continuously written to the FIFO but 
only zeros will be transmitted. 
 
Data may be directly read and written into the FIFOS by the TXFIFO and RXFIFO registers The Interrupt 
request register can enable TX and RX channel interrupts which can be triggered by a user defined threshold 
level within the FIFO’s.  
 
 
 
 
 
 
 
 
 
 

The I2S peripheral has TX and RX interrupts
that can be configured to trigger when data
in the FIFO reached a user defined depth. 

 
The I2S peripheral is also designed to work as a DMA flow controller and has two dedicated DMA request lines 
that may be configured for either the TX or RX channels 
 
Both DMA configuration registers operate in the same way. The RX and TX DMA enable bits allow you to 
connect the DMA channel to either the receive or transmit FIFO. Then in a similar fashion to the interrupt 
register a user defined threshold level can be defined to trigger a DMA transfer. 
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4.13  SD-MMC Card Interface 
 
Multi media and secure digital cards are flash based memory cards typically used in consumer electronics such 
as digital cameras and MP3 players. As they provide many megabytes of storage they are becoming a useful 
storage medium for more general embedded systems. Both MMC and SD cards can be accessed by a simple 
SPI port, however the LPC2300/LPC2400 has a dedicated multi media card interface. The SD_MMC peripheral 
a four bit wide data bus along with the card power supply and control signals.  In addition to supporting high 
speed data transfer the SD_MMC interface can host a card stack of up to four multimedia cards. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The multi media card specification is defined by the multimedia card association which can be found at 
www.mmca.org . Although the MMC specification is an open standard you must purchase it from their website. 
For developers of MMC host systems ( i.e. not the cards themselves) the specification costs $500. However a 
multi media card data sheet is available which details much of the specification and probably enough to allow 
independent host development. A link to this data sheet can be found at the Wikipedia MMC entry 
http://en.wikipedia.org/wiki/Multimedia_Card. The SD card specification is defined by the SD Card Association 
who publish simplified version of the specification on their website at  www.sdcard.org. 
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4.13.1 SD_MMC Register Set 
The SD_MMC controller has registers to control the external clock and power provided by the peripheral to the 
cards. The power register allows you to cycle the external cards through their three states power down, power 
on and power up. The clock register defines the speed of the external bus and its behaviour during bus idle 
periods. The command and argument registers allow you to transfer a fully formed command to the command 
path state machine within the SD_MMC controller which then handles communication with the external card. If 
the a command sent to a card requires a response it will be returned to the four response registers. Data is 
transferred to and from the card through a set of dedicated data registers. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The data control register allows you to define the transfer direction and transfer mode. The SD_MMC peripheral 
supports block mode or streaming transfers. In addition the data control register allows you to enable DMA 
support so that data can be transferred too and from the LPC2300\LPC2400 memory into a SD or MMC card 
without any CPU overhead. The data timer register is used to define the time out period that the peripheral 
should wait for a response from the external card. The data count register should be set to the size of the 
transfer required and the data should be written to the FIFO registers Once the transfer is started by setting the 
enable bit in the data control register  the data count value is transfer d to the FIFO count register. The FIFO 
count value is decremented as each word is read or written.  
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5 The Complex Peripherals 
 
The LPC2300 includes three complex communication peripherals; an Ethernet MAC, Universal Serial Bus 
controller and a Controller Area Network interface. This chapter will outline the operation of these peripherals 
and their associated communication protocols. In general, the Ethernet MAC and USB controller would normally 
be used with a software stack and open source and commercial support for the LPC2300 is readily available. 
 

5.1 Ethernet MAC 
 
The Ethernet MAC (Media Access Controller) is used in conjunction with an external PHY chip (Physical layer) 
to provide a node capable of sending and receiving data over an Ethernet  network. By far the most common 
application for such a node is to communicate with other computers using the TCP/IP communications protocol. 
In order to do this you need a complex stack of software that supports the necessary protocols. In this section 
we will give an outline of the key TCP/IP concepts that you need to be familiar with. Then we will have a look at 
the Ethernet MAC and its software driver. Finally we will look at a commercial and open source TCP/IP stack. 
 

5.2 TCP/IP 
 
The TCP/IP protocol is really suite of protocols that are designed to support local and wide area networking. In 
order to build a TCP/IP based application you do not need to fully understand all these protocols. Within TCP/IP 
however, you do need to understand the basic concepts in order to configure your system correctly. 
 

5.2.1 Network Model 
 
The TCP/IP network model is split into four layers which map onto the ISO seven layer model, as shown below.  
 

The ISO seven layer networking model
maps onto a four layer model used to
describe the TCP/IP network protocol
suite. The equivalent mapping of an
embedded node is also shown  

 
 
 
 
 
 
The network access layer consists of the physical connection to the network.  These are the packetizing of the 
application data for the underlying network and the flow control of the data packets over the network. In our 
system this corresponds to the Ethernet MAC with PHY chip and the low-level device driver. The transport and 
network routing layers are handled by the TCP/IP stack. Broadly speaking the network layer handles the 
transmission of data packets between network node. This is done with the Internet Protocol “IP”.  The transport 
layer provides the connection between application layers of different nodes and this is handled by two protocols 
- the “Transmission Control Protocol” and the “User Datagram Protocol”. The Application layer provides access 
to the communication environment for the user’s application. This access is in the form of well-defined 
application layer protocols such as Telnet, SMTP and HTTP. It is possible to define your own application 
protocol and communicate between nodes using custom TCP and UDP packets. 
 

5.2.2 Ethernet  And IEEE 802.3 
 
Today’s most dominant networking protocol used for local area networks is Ethernet  or rather Ethernet  II, to be 
exact. The Ethernet  specification was developed by Xerox, Intel and Digital (DIX). However the IEEE used the 
original work done by DIX as a basis for their 802.3 standard. While Ethernet  II and 802.3 use the same 
physical wires and can coexist on the same network, an Ethernet  II node cannot communicate directly to an 
802.3 node as their message packet differs in one crucial aspect. 
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Both Ethernet  and IEEE 802.3 are Carrier Sense Multiple Access Collision Detect  (CSMA/CD) networks. Both 
operate as peer-to-peer networks (-multiple access), allowing point-to-point communication between nodes 
communication, broadcast messages to all nodes and finally multicast to a subgroup of nodes. The bus 
arbitration is done by collision detection. This allows any node to begin transmission of a message packet, 
provided the bus is idle. As the node writes data onto the bus, it is also listening back (carrier sense). If a 
second node starts transmitting at the same time, all nodes on the network will sense an error (collision detect),. 
This will cause the message packet to be ignored by all nodes. Both transmitting nodes will back off, each for a 
random period of time. Once the back-off period has expired, both nodes will attempt to send their message 
again if the bus is idle. This simple arbitration method provides fair access to all nodes. However it does have 
the disadvantage of worsening access time with increased traffic levels.  
 
The Ethernet  and IEEE802.3 data packet consists of a preamble of a minimum of seven octets (bytes) of data 
,followed by an octet used as a start of frame delimiter. The preamble and start of frame are a walking ones 
pattern (10101010), which are used to synchronise the nodes and provide the start of the frame. The packet 
next contains six octets for both the destination and source address.  Every Ethernet  and IEEE802.3 node must 
be assigned a globally-unique station address. Assignment of these numbers is managed by the IEEE and this 
will be discussed later.  Since Ethernet /802.3 is a broadcast network, every message packet may be received 
by all the nodes on a network. The address “FF FF FF FF FF FF” is reserved as a broadcast address  and all 
nodes are required to receive packets sent to this address.  Nodes may also belong to multicast groups which 
allow a group of nodes to simultaneously receive the same packet. A multicast address is defined by setting the 
lowest bit of the first octet in the destination address. 

 
 

The Ethernet II and IEEE/802.3 message packets differ in one small but important field. They can coexist
on the same network but Ethernet stations cannot communicate with IEEE/802.3 stations 

 
 
 
The next field is where the Ethernet  and IEEE 802.3 standards diverge. In Ethernet  II this field is used to 
indicate the protocol being carried in the data payload whereas 802.3 uses this field to hold the length of the 
data payload. Next the information field is used to carry the data payload.  The data in the information field must 
be between 46 and 1500 octets long. The final field in the data packed is the Frame Check Sequence, which is 
a simple CRC. This CRC provides error checking over the packet from the start of the destination address field 
to the end of the information field. 
 

5.2.3 TCP/IP Datagrams 
 
The TCP/IP protocol suite uses the Ethernet  data packet as physical transmission medium and a large number 
of protocols are carried in the information section of the Ethernet  packet. 
 
 

The Layer2 frame (Ethernet)
encapsulates the TCP/IP datagrams 

 
 
 
 
 The main three protocols used to transfer application data are the Internet Protocol, the Transmission Control 
Protocol and the User Datagram Protocol. A typical application will also require the Address Routing Protocol 
(ARP) and Internet Control Message Protocol. In order to reduce the size of a TCP/IP implementation for a 
small microcontroller, some embedded stacks only implement a subset of the TCP/IP protocols.  Such stacks 
assume that communication will be between a fully implemented stack i.e. a PC and the embedded node. The 
TCP/IP stacks discussed in this document offer a full implementation which allows the embedded 
microcontroller to operate as a fully functional Internet node. 
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5.2.3.1 Internet Protocol 
 
The Internet Protocol is the basic transmission datagram of the TCP/IP suite. It is used to transfer data between 
two logical IP addresses. However on its own, it is a “best efforts” delivery system. This means that IP packets 
may be lost, arrive out of sequence or be duplicated and that there is no acknowledgement to the sending 
station and no flow control. The IP protocol provides the transport mechanism for sending data between two 
nodes on a TCP/IP network. The IP protocol supports message fragmentation and re-assembly and for a small 
embedded node, this can be expensive in terms of RAM used to buffer messages. The IP protocol rides within 
the Ethernet  information frame, as shown below.  
 
 
 
 
 
 
 
 
 
 
 
 

The Internet Protocol datagram provides station-to-
station delivery of data independent of the Physical
network. It does not provide and acknowledge or
resend mechanism. 

The Internet Protocol header contains a source and destination IP address. The IP address is a 32-bit number 
which is used to uniquely identify a node within the Internet.  This address is independent of the physical 
networking address and in our case the Ethernet  station address. In order for IP packets to reach the 
destination, we must have a discovery process to relate the IP address to the Ethernet  station address. 
 

5.2.3.2 Address Routing Protocol 
 
Address resolution protocol (ARP) is used to discover the station address of a node on a local network. ARP 
can be used on any network which can broadcast messages.  The ARP has its own datagram which is held 
within the Ethernet  frame. 
 
 
 
 
 
 
 
 
 
 
 
 

The ARP protocol provides a
method of routing IP
messages on a LAN. It
provides a discovery method
to link a station Ethernet
MAC address to its IP
address. 

 
When a station needs to discover the Ethernet  station address, it will transmit a broadcast message which 
contains the target IP address along with its Ethernet  station address and IP address.  All the other nodes on 
the network will receive the ARP broadcast message and can cache the sending node’s IP and station 
addresses. This can be used later if they need to send an IP datagram to this station. All of the receiving 
stations will examine the destination IP address in the ARP datagram and the node with the matching IP 
address will reply back with a second ARP datagram which contains its IP address and station address. This 
information is cached by the sending node (and possibly all the other nodes on the network). Now when a node 
on the LAN wishes to communicate to the discovered station, it knows which Ethernet  station address to use to 
route the IP packet to the correct node. If the destination node is not on the local network, the IP datagram will 
be sent to the default network gateway address were it will be routed through the wide area network. 
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5.2.3.3 Subnet mask 
 
A local area network will be a defined as a subnet of a network, or more commonly it will use a specific IP 
address range that is defined for use as a private network (i.e. 192.168.0.xxx). The subnet mask defines the 
portion of the address that is on the local network.  
 
Address 192.168.000.123  11000000.101010000.00000000.1111011 
Subnet   255.255.255.000               11111111.111111111.11111111.0000000 
 
                       Mask                  Address range of the LAN 
 
The subnet mask defines the network address bits that form the identity of the local network. The remaining IP 
address bits can be used to assign the address of nodes on the local network. By using the subnet mask to 
determine the identity of the local network, any IP datagrams not destined for the local network will be forwarded 
through the network gateway and be routed in the wider Internet. 

5.2.3.4 Internet Message Control Protocol (IMCP) 
The Internet control message protocol (ICMP) is mainly used to report errors such as an unreachable 
destination or an unavailable service within a TCP/IP network. ICMP is the protocol used by the PING function 
that is used to check if a node exists on a network.  The Internet message control protocol must be implemented 
in a TCP/IP stack. However in most embedded stacks only the “Ping Echo” reply is implemented. 
 

5.2.3.5 Transmission Control Protocol (TCP) 
 
The transmission control protocol is designed to ride within the IP datagram data payload.  While the 
IP packet provides the transport mechanism across various networks, the TCP datagram provides the logical 
connection between computers and the application software. By providing error checking, fragmentation of large 
messages and acknowledgement to the sender, the tansmission control protocol can be thought of as making a 
logical circuit between two aplications running on different computers. The TCP acknowledge and 
retransmission mechanism uses a “sliding window” method that calls for multiple buffers to hold data that may 
need to be retransmitted. This is expensive in both processing power and user RAM so it is quite a challenge 
when implimenting a small TCP/IP stack. 
 
Where the Internet Protocol provides the address of the destination computer, the transmission control protocol 
provides a source and destination port.  
 

The TCP protocol is transported by the IP protocol and
provides the connection to an application on a remote station.
It supports fragmentation of data packets, acknowledgement
and resending of lost error packets 

 
The port number is used to associate the TCP data with target application software. The standard TCP/IP 
application protocols have “well known ports” so that remote clients may easily connect to a standard service. 
The device providing the service can open a TCP port and listen on this port until a remote client connects. The 
client is then assigned a port on which to receive data from the server. This port is known as an empherial port 
as its assignment only lasts for the duration of the communication session between the server and client. 
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Port Number Protocol 
 
20  FTP Data 
21  FTP Control 
23  Telnet 
25  SMTP 
80  HTTP 
110  POP3 
 
 

5.2.3.6 User Datagram Protocol (UDP) 
 
Like the transmission control the user datagram protocol rides within the data packet of the Internet Protocol. 
Unlike the transmission control protocol, the User datagram protocol provides no acknowledgement and no flow 
control mechanisms. UDP can be defined as a “best efforts”, connectionless protocol. UPD is intended to 
provide a means of transferring data between application processes with minimal overhead but provides no 
extra reliability over the Internet Protocol. 
 
 
 
 
 
 
 
 
Although delivery of a data cannot be guaranteed with the user datagram protocol, its simplicity and ease of use 
make it the basis of many important application protocols such as Domain Name Server (DNS) requests and 
trivial file transfer protocol (TFTP).  
 

5.2.4 LPC23xx Ethernet  Peripheral 
 
The LPC23xx includes an Ethernet  Media Access Control (MAC) sub-layer. The Ethernet MAC is designed to 
interface to an external Ethernet  Physical layer (PHY) to make a complete Ethernet  controller which is fully 
compliant to the IEEE 802.3 standard and supports 10 and 100 Mbps full-duplex communication. The Ethernet 
MAC is located on its own dedicated AHB bus (AHB2), along with 16k of SRAM and its own dedicated scatter-
gather DMA unit. This subsystem of Ethernet MAC, SRAM, DMA and high speed bus makes the LPC2300 ideal 
for high performance TCP/IP applications. 
 
 
 
 
 
 
 
 
 
 

Like the Transmission control protocol the User
datagram protocol is transported by the Internet
protocol. Unlike TCP, UDP is a simple low
overhead protocol that provides an easy method
of communication to a remote application. 

The LPC2300 Ethernet MAC is located on
a dedicated AHB bus with 16K of SRAM.
Ethernet frames are stored in multiple
user- defined buffers within the SRAM.
Transfer of data between the Ethernet
MAC and the and the SRAM is controlled
by dedicated TX and RX DMA units  

 
The Ethernet MAC consists of an interface to the AHB bus, this provides separate ports for the transmit and 
receive DMA channels and a port for the user registers. The Ethernet MAC has independent transmit and 
receive paths. The transmit path includes a DMA manager and transmit flow control with error handling. The 
receive path includes a DMA manager receive buffer and receive filter. The transmit and receive paths are 
interfaced to the external Ethernet  PHY via one of two standard interfaces. The two PHY interface options are 
Media Independent Interface (MII) or Reduced Media Independent Interface (RMII).  Using the MII or RMII 
allows you to select a suitable PHY chip from a number of different manufacturers. 
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The Ethernet  peripheral Special function registers can be divided into four main blocks. There is a group of 
registers which are used to configure the MAC registers, a second group which is used to control operation of 
the Ethernet  DMA unit, a third group which sets up the receive filter tables and a final group which is used to 
control the Ethernet  interrupt sources and power control. 
 

 
 

5.2.4.1 MAC Configuration 
 
The MAC registers consist of a block of seventeen registers that are used to enable the Ethernet MAC and 
interface it to the external PHY and the Ethernet  network.  The two MAC configuration registers are used to set 
the basic operating parameters of the Ethernet MAC. 
 
 
 
 
 
 
 
 
 
 
 
The MAC1 register allows you to perform a soft reset of all the Ethernet MAC sub modules. The MAC1 register 
also allows you to enable TX and RX flow control The MAC1 register must also be configured to enable the 
receive path and during development there is a loopback mode that can be used for testing. 

The Ethernet MAC requires an external PHY
chip and RJ45  “Magnetics” 

The Ethernet Mac registers consist of a MAC
configuration block, DMA control, RX filter
registers and module control groups. 

The MAC1 register
enables the Ethernet MAC
and performs  soft resets
on its internal units. 
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The MAC2 register configures the
operating parameters of the
Ethernet MAC 

 
 
 
 
 
 
 
 
 
The MAC2 register controls the handling and format of Ethernet  packets. In the MAC2 register we can select 
between full or half duplex operation. There are also options to control the padding out of short Ethernet  frames 
and to control the CRC generation. The MAC2 register also allows you to control the Ethernet  arbitration 
procedure by overriding the standard back-off algorithm which is used after a collision. In half duplex mode the 
MAC2 register allows you to enable “backpressure” operation. In this mode, the Ethernet MAC will continually 
generate a preamble signal, thus preventing any other node on the same segment from transmitting. This allows 
the Ethernet MAC to hog the Ethernet  bus and transmit packets back to back without risk of collision with 
another transmitting station. 
 

5.2.4.2 The MII Interface 
 
The external PHY chip can be connected via the standard MII or RMII interface.  The external PHY chip is 
managed through the MII registers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The external PHY chip is controlled through the
MII management registers. These registers allow
you to read, write and monitor the internal
registers of the PHY chip 
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The internal registers of the PHY chip can be accessed by the MII address and MII read and write registers. The 
MII Address register contains a five-bit address field that allows you to specify the address of the internal PHY 
register. Once this address is selected you can read and write data via the MII read and MII write registers.  
 
static uint16_t prvReadPhyRegister( uint32_t aPhyRegisterAdr ) 
{ 
 uint32_t aTimeout; 
 uint32_t  aMII_Indicator; 
 uint16_t aRegisterValue = 0xFFFF; 
    ETH_MIIADR = aPhyRegisterAdr; 
    ETH_MIICMD = PHYREADCOMMAND; 
 /* Wait until operation completed */ 
    for (aTimeout = 0; aTimeout < MII_COMMAND_TIMEOUT; aTimeout++) 
    { 
     aMII_Indicator = ETH_MIIIND; 
   
       if((aMII_Indicator & (0x01 << MII_IND_BUSY)) == 0) 
       { 
        aRegisterValue = (uint16_t)ETH_MIIRDD;  
         break; 
        } 
    } 
    ETH_MIICMD = 0x00; 
    return (aRegisterValue); 
} 
 
static uint16_t prvWritePhyRegister( uint32_t aPhyRegisterAdr, uint16_t 
aRegisterValue ) 
{ 
 uint32_t aTimeout; 
 uint32_t  aMII_Indicator; 
 uint16_t ret = 0xFFFF; 
  ETH_MIIADR = aPhyRegisterAdr; 
   ETH_MIIWTD = aRegisterValue; 
 /* Wait until operation completed */ 
    for (aTimeout = 0; aTimeout < MII_COMMAND_TIMEOUT; aTimeout++) 
    { 
     aMII_Indicator = ETH_MIIIND; 
      
       if((aMII_Indicator & ( 0x01 << MII_IND_BUSY)) == 0) 
       { 
        ret = 0x00; 
         break; 
        } 
    } 
    return (ret); 
} 
 
Typically after reset the software driver will need to force a reset on the PHY chip and set its basic 
communication parameters such as such as bit rate.  
 
The MII address field also contains a PHY address field that supports up to 31 external PHY chips. 
 
The Physical layer configuration registers IPGR, CLRT and MAXF, configure the Ethernet  frame transmission 
parameters. The default values are configured for use with IEEE 802.3 networks, so unless you have a special 
need, these registers can be left in their default state. The contents IPGT register will depend on the speed of 
network you are connecting to. For a 10 Mbps network, the intra-packet gap is 9.6 usec and the recommended 
value for IPGT is 0x12.  At 100 Mbps, the gap is 960ns and the value for IPGT is 0x12. 
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Finally the Ethernet MAC address is held in the station address registers. The three station address registers 
each hold two bytes of the Ethernet MAC address. 
 
bool eEthInit(void) 
{ 
 uint16_t aPhyStatus = 0x00; 
 uint8_t  aMACAddress[6]; 
 uint32_t Timeout; 
 
    /* Power Up the Ethernet MAC controller and configure for MII Interface. */ 
    PCONP |= PCON_ENET; 
 PINSEL2 = 0x55555555;       /* selects 
P1[15:0]  
    PINSEL3 = (PINSEL3 & ~0x0000000F) | 0x00000005; /* selects P1[17:16] */ 
 
 /* Reset all MAC internal modules. */ 
 ETH_MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX | MAC1_RES_MCS_RX | 
               MAC1_SIM_RES | MAC1_SOFT_RES; 
 
 /* reset all datapaths and the host registers */ 
 ETH_COMMAND = CR_REG_RES | CR_TX_RES | CR_RX_RES; 
  
 /* A short delay after reset. */ 
 for (Timeout = 200; Timeout; Timeout--); 
 // remove reset conditions 
 ETH_MAC1 = 0x00; 
 ETH_MIICFG  = 0x00; 
 ETH_COMMAND = 0x00; 
 
 prvInitDMAEngine(); // Initialize DMA Interface 
 
   ETH_COMMAND &= ~CR_RMII; /* Set reduced MII interface */ 
 ETH_PHYSUPP = 0; 
 
  
 ETH_MIICFG = 0x8000; /* reset the MII management */ 
  for (Timeout = 200; Timeout; Timeout--)/* wait until reset done */ 
 
  ETH_COMMAND |= CR_PASS_RUNT_FRM; //pass frames which are too short, but with valid CRC 
   
  
 aPhyStatus = prvConfigurePHY(PHY_DEVICE_NO_1); /* configure PHY */ 
 ETH_MAC1 = 0x00; // MAC1_PASS_ALL; /* configure MAC control registers */ 
 ETH_MAC2 = MAC2_CRC_EN | MAC2_PAD_EN; 
 ETH_MAXF = ETH_MAX_FLEN; 
 ETH_CLRT = CLRT_RETRANSMAX | CLRT_COLLWINDOW; 
 ETH_IPGR = IPGR_DEF; 
 /* Configure MAC 2 register depends on PHY extended Status */ 
 if (aPhyStatus & PHY_EXST_FDX) 
 { 
  ETH_MAC2    |= MAC2_FDPX_ENA;  /* Full duplex is enabled. */ 
  ETH_COMMAND |= CR_FULL_DUP; 
  ETH_IPGT     = IPGT_FULL_DUP; 
 } 
 else  
  ETH_IPGT = IPGT_HALF_DUP;   /* Half duplex interpacket gap */ 
 /* Configure speed */ 
 if (aPhyStatus & PHY_EXST_SPEED_10M) 
  ETH_PHYSUPP = 0;     /* 10MBit mode. */ 
 else 
  ETH_PHYSUPP = SUPP_SPEED_100;  /* 100 MBit supported */ 
 /* 
 * configure station address 
 * 
 * normally the MAC address is not derived from config.h. It should be  
 * read out of a serial EEPROM, Flash configuration or something else  */  
 
 aMACAddress[0] = (uint8_t)SA0; 
 aMACAddress[1] = (uint8_t)SA1; 
 aMACAddress[2] = (uint8_t)SA2; 
 aMACAddress[3] = (uint8_t)SA3; 
 aMACAddress[4] = (uint8_t)SA4; 
 aMACAddress[5] = (uint8_t)SA5; 
 
 vEthSetStationAddress( aMACAddress); 
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 /* configure receive filters */ 
 
 prvConfigureRXFilters(); 
 
 ETH_INTENABLE = INT_RX_DONE | INT_TX_DONE; /* Enable RXdone & TXdone interrupts. */ 
 ETH_INTCLEAR  = 0xFFFF;     /* Reset all interrupts */ 
 
 ETH_COMMAND  |= (CR_RX_EN | CR_TX_EN); /* Enable RX and TX mode of MAC Ethernet  core 
*/ 
 ETH_MAC1     |= MAC1_REC_EN; 
 
 /* enable VIC for Ethernet  interrupt. */ 
 if( INT_PRIORITY > 15 ) 
    return( FALSE ); 
     
    prvSetupInt(INT_SOURCE_ETH, (uint32_t)vEthIntService, INT_PRIORITY);  
    prvEnableEthInterrupt();    
   
    return(TRUE); 
}     
 

5.2.4.3 DMA Configuration 
 
Once the Ethernet MAC has been configured, the transfer of network packets will he handled by the Ethernet  
DMA unit. The 16K of SRAM located on the Ethernet  AHB bus is used to hold an array of buffers, which contain 
Ethernet  frames or frame fragments. The data in these buffers is transferred into the Ethernet MAC as required 
for transmission. This process is controlled by a set of DMA descriptors that are setup in the Ethernet  RAM and 
provide the configuration information for each DMA transfer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The dedicated Ethernet SRAM is configured is TX and RX
buffers by a group of DMA descriptors. The TX and RX DMA
units read a table of buffer descriptors and return a table of
DMA status  words. The CPU manages these descriptors to
control the flow of data through the Ethernet MAC 

 
The software driver must set up a block of TX and RX descriptors in the Ethernet  SRAM with one descriptor for 
each Ethernet  packet buffer that is going to be used.  Each descriptor consists of a pointer to the base address 
of an Ethernet  packet buffer. This buffer is simply an area of RAM that is being used to hold data for an 
Ethernet  frame. The descriptor also contains a control word which contains the transmission parameters for the 
Ethernet  frame. On transmission, the Ethernet  controller also returns a status word that details the 
transmission history of the Ethernet  packet. The interface between the DMA unit and the software driver are the 
RX and TX descriptor registers which are part of the Ethernet MAC control block. 
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The TX and RX descriptor tables are
defined by a base address to
indicate the start address and
number of descriptors to indicate
the size. 

During operation data is written to
the buffers and the producer and
consumer index are managed by
the CPU to initiate DMA transfers. 

 
The Ethernet  descriptor registers are used as pointers to the TX and RX descriptors. For the transmit DMA unit 
the TX descriptor register points to the base address of the first descriptor.  Similarly the TXstatus register 
points to the base address of the status descriptors and the TX descriptor number holds the total number of TX 
descriptors and hence the number of transmit Ethernet  buffers being used.  
 
// initialize receive DMA 
 for( i=0; i < NUMBER_REC_FRAGMENTS; i++ ) 
 { 
  pxEthernet Data->xRXDescr[i].packet = (uint8_t*)(&pxEthernet Data->ucRXBuffer[i][0]); 
  pxEthernet Data->xRXDescr[i].control  = MAXLENGTH_REC_FRAGMENT; 
  pxEthernet Data->xRXDescr[i].control |= RX_CONTROL_INT; 
  pxEthernet Data->xRXStat[i].info = 0x00; 
  pxEthernet Data->xRXStat[i].hashCRC = 0x00; 
 } 
 
 // configure receive descriptor register 
 ETH_RXDESC = (volatile uint32_t)&pxEthernet Data->xRXDescr[0];    
 // start of rec data descr. table 
 ETH_RXSTAT = (volatile uint32_t)&pxEthernet Data->xRXStat[0];    
 // start of rec status info table 
 ETH_RXDESCRNO = NUMBER_REC_FRAGMENTS -1; // number of descriptors -1  
 
 ETH_RXCONSIX = 0x00;  // consumer index  
 
// initialize transmit DMA 
 for( i=0; i < NUMBER_TX_FRAGMENTS; i++ ) 
 { 
  pxEthernet Data->xTXDescr[i].packet  = &pxEthernet Data->ucTXBuffer[i][0]; 
  pxEthernet Data->xTXDescr[i].control  = 0x00; 
  pxEthernet Data->xTXStat[i].status  = 0x00; 
 } 
 
 // configure transmit descriptor register 
 ETH_TXDESC = (volatile uint32_t)&pxEthernet Data->xTXDescr[0];    
 // start of transmit data table  
 ETH_TXSTAT = (volatile uint32_t)&pxEthernet Data->xTXStat[0];    
 // start of transmit status table 
 ETH_TXDESCRNO = NUMBER_TX_FRAGMENTS -1; // number of descriptors -1  
 
 ETH_TXPRODIX = 0x00;  // producer index 
 
 
Once the transmit DMA unit is configured, the SRAM configured as Ethernet  buffers can be filled with data and 
the transmission flow control is handled by the TX producer index and TX consumer index. The TX producer 
index points to the next empty TX descriptor and hence the next empty TX buffer. The consumer index points to 
the next descriptor that is going to be used in the next DMA transfer to transmit the forthcoming Ethernet packet. 
Once the transfer is finished, the consumer index is incremented and the next DMA descriptor will be used. If 
the consumer index is equal to the producer index, no DMA descriptors are currently available and DMA 
transfers will halt. Each time data is placed into the next free packet buffer, the producer index must be 
incremented. When the producer index reaches the top of the descriptor table it must be wrapped back to zero 
and the software driver must start again from the base descriptor address. The consumer index will use the TX 
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descriptor number to glean the size of the descriptor table and will automatically wrap back to zero when the top 
of the descriptor table is reached. 
 
bool eEthSendFrame(uint32_t frameLength, uint8_t* aFrameBuffer) 
{ 
 uint32_t i; 
 uint8_t* pTransmitDescrData; 
 uint32_t currentTXConsumeIndex, currentTXProduceIndex, nextTXProduceIndex; 
 if( (frameLength == 0x00) || (aFrameBuffer == 0x00) ) 
  return(FALSE); 
 if( frameLength > MAXLENGTH_TX_FRAME) 
  return(FALSE); 
 /* DMA send frame status  */  
 currentTXProduceIndex = ETH_TXPRODIX; 
 currentTXConsumeIndex = ETH_TXCONSIX; 
 /* check if a produce buffer available */ 
 nextTXProduceIndex = currentTXProduceIndex; 
 incTXIndex(nextTXProduceIndex); 
 if( nextTXProduceIndex != currentTXConsumeIndex) 
 { 
  /* transmit buffer to hardware (DMA engine) */ 
  pTransmitDescrData = (uint8_t*)pxEthernet Data-
>ucTXBuffer[currentTXProduceIndex]; 
 
  for( i= 0x00; i < frameLength; i++) 
   pTransmitDescrData[i] = aFrameBuffer[i]; 
   
  pxEthernet Data->xTXDescr[currentTXProduceIndex].control = frameLength - 1; 
  pxEthernet Data->xTXDescr[currentTXProduceIndex].control |= TC_LAST_FLAG | 
TX_CONTROL_INT; /* last flag */ 
 
  ETH_TXPRODIX = nextTXProduceIndex; 
  return(TRUE); 
 } 
 else 
 { 
  // no transmit buffers available 
  return(FALSE);  
 } 
} 
 
 
The receive DMA unit operates in a similar fashion. The RX descriptor and RX descriptor number registers 
define a block of receive descriptors and receive descriptors. When an Ethernet frame or frame fragment is 
received, the data will be transferred into the receive packet buffer that is associated with the active DMA 
receive descriptor. The receive DMA unit has producer and consumer descriptors similar to the TX DMA unit. 
When a new data packet is received and transferred to the packet buffer, the producer index is incremented 
(with automatic wrap around). The software driver will use the consumer index to point to the next active receive 
descriptor, once the data has been read from the receive packet buffer. The consumer index must be 
incremented with wrap-around handled by the software driver. If the producer index is equal to the consumer 
index, either no data is available or the consumer index has caught up with the producer index and all buffers 
are empty - if the producer index catches up with the consumer index,  all the buffers are full and no further data 
can be received. 
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void prvReceiveFragment(void) 
{ 
 uint32_t currentRXConsumeIndex, currentRXProduceIndex; 
 uint32_t currentFrameInfo; 
 
 currentRXProduceIndex = ETH_RXPRODIX; 
 currentRXConsumeIndex = ETH_RXCONSIX; 
  
 while( currentRXConsumeIndex != currentRXProduceIndex ) 
 { 
  currentFrameInfo =pxEthernet Data->xRXStat[currentRXConsumeIndex].info; 
 
  if(! (currentFrameInfo & RS_INFO_LAST_FLAG) ) 
  { 
   uxRXFrame[writeIndex].status = 0x00; 
   // this is a fragment, frame not complete 
  } 
  else 
  { 
   if( currentFrameInfo & RS_INFO_ERR) 
   { 
    /* receive frame error, normally skip frame 
       currently there is a flag named range error 
       which is set if there are frames of specific 
       Ethernet  types. These frames are correct and should 
       be stored. 
    */     
    uxRXFrame[writeIndex].status = FRAMECOMPLETE | FRAMEERROR;  
   } 
   else 
   { 
    uxRXFrame[writeIndex].status = FRAMECOMPLETE;  // indicates 
frame complete 
   } 
  } 
  uxRXFrame[writeIndex].Length += ((currentFrameInfo & RS_INFO_SIZE) -1); 
  uxRXFrame[writeIndex].pReceived = pxEthernet Data-
>xRXDescr[currentRXConsumeIndex].packet; 
  incRXIndex(writeIndex); 
 
  incRXIndex(currentRXConsumeIndex); 
 } 
 
 if( currentRXConsumeIndex == 0x00) 
  currentRXConsumeIndex = 2;             
 
 ETH_RXCONSIX = currentRXConsumeIndex; 
} 

5.2.4.4 Receive Filtering 
 
The RX path of the Ethernet unit also supports a number of packet filtering options. This allows the Ethernet 
MAC to reject Ethernet packets that are of no interest to the application software. This is accomplished in 
hardware and greatly reduces the CPU overhead.  Several types of filtering are available: Firstly, if the filters are 
disabled, all frames will be received. Secondly we can filter on the type of packet i.e. the receive filter can be 
configured to accept all unicast, broadcast or multicast messages. For unicast filtering we can also enable a 
perfect match filter that will only receive packets where the destination address matches the station address. 
Finally, where you want to receive a range of packets with varying destination addresses, the Ethernet MAC 
supports imperfect filtering with a CRC hash table.  The RX filter is configured by a dedicated set of RX filter 
registers and the command register in the control block. 
 
The RX filter is enabled by clearing the PassRXF command register. On reset, the filter is enabled so if you 
want to configure the Ethernet MAC to listen in promiscuous mode, this bit should be set. If you are using the 
Receive filter, its basic configuration is controlled by the receive filter control register.  
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This register allows you to enable reception of all unicast, broadcast, and multicast messages or enable perfect 
filtering for unicast messages. If perfect filtering is enabled then only Ethernet packets where the destination 
address matches the station address will be accepted. If you want to receive a range of Ethernet  packets for 
unicast and multicast the Ethernet MAC supports imperfect hash filtering. Hash filtering is a method of filtering 
based on the Ethernet  CRC of the destination address. On reception, the Ethernet MAC will calculate the CRC 
of the destination address. The hash filter uses bits 23 to 28 to give an value between 0 and 63. This number is 
used as an index into the 64-bit hash table which is made up of the two word -wide registers Hash Filter Low 
and Hash Filter High. If the matching bit in the hash table is set to one, the message is accepted.  If it is zero, 
the message is filtered out. The hash filter is imperfect because the fragment of the CRC can match a wide 
range of destination addresses. So the hash filter is a trade-off between a fast, small compact filtering algorithm 
and the possibility of accepting some unwanted packets. 

The receive filter allows perfect and imperfect
hash filtering of unicast and multicast
addresses. The Ethernet MAC also has a
Wake on LAN (WoL) capability. 

The receive hash filter takes a
six bit portion of the RXCRC to
generate a number between 0
and 63. This number is used to
index through the bits in a
double word. If the matching
bit is 1 the frame is accepted, if
it is zero the frame is rejected 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.4.5 Power Management 
 
The LPC2300 can be placed in a power down mode with the peripheral clock suspended. If the Ethernet  clock 
is maintained, the Ethernet MAC can be used to wake up the LPC2300 after a Wake on LAN message. There 
are two types of WoL support in the Ethernet MAC. When the RXFilterEnWoL bit is set in the receive filter 
control register, the Ethernet MAC will generate a wake up interrupt when an Ethernet  packet passes through 
the RXFilter - either the perfect filter or the hash filter. If the MagicPacketEnWoL bit in the filter control register is 
set, the Ethernet MAC will generate a wake up interrupt if a “Magic packet” is received. A Magic packet is an 
Ethernet packet which has 0xFF repeated six times followed by the target station address repeated sixteen 
times in the data payload.  In both cases, the Ethernet  packet must be a valid Ethernet  frame with correct CRC 
to trigger the wake up event.  
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5.2.4.6 Performance 
 
The Ethernet   support within the LPC2300 really consists of the Ethernet MAC, the dedicated DMA unit, the 
16K of local SRAM and the dedicated AHB bus. This forms a high-performance  Ethernet  subsystem within the 
LPC2300. The dedicated AHB bus has a bandwidth of 120MB/s at 60MHz. The user manual calculates that that 
for continuous receive and transmit of 64 byte packets, the DMA and ARM7 CPU accesses to the Ethernet  
AHB bus are at 66.5MB/s or a bandwidth requirement of 55% on the dedicated AHB bus. 
 

Exercise 22: Ethernet Driver 
This exercise demonstrates the use of the low level Ethernet packet driver to send user defined
Ethernet frames. For this exercise you will need an Ethernet packet analyzer such as “Ethereal”. 
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5.2.5 uIP Stack 
 
The complete Ethernet  driver discussed above,  configured for use with the NSC DP83848C PHYTER physical 
layer chip is provided on the CD accompanying this book.  The Ethernet driver has also been integrated with the 
open source uIP embedded TCP/IP stack by Adam Dunkels of the Swedish Institute of Computer Science. This 
stack has been specifically designed to run on small embedded microcontrollers and is a full implementation of 
all the protocols necessary to allow an embedded microcontroller to fully participate in Internet based 
communications.  The full source and documentation is available from www.sics.se/~adam/uIP/. This TCP/IP 
implementation may be used with or without a real time executive. 
 

5.2.5.1 Configuring The Stack 
 
Once you enter main(), the initial configuration of the uIP stack is made before entering the main while() loop.  
An LPC2300 hardware timer is used to a create a timebase which can generate a number of virtual timers. 
These virtual timers provide reference timer ticks for various modules within the uIP stack. Two virtual timers are 
used; one to provide a periodic time reference to the uIP stack and one to provide a periodic tick to call the ARP 
module. The UIP stack and ARP module are initialised with dedicated functions. The network parameters must 
also be set by defining the local IP address the network gateway and the subnet mask.   
  
   timer_set(&periodic_timer, CLOCK_SECOND / 2); 
   timer_set(&arp_timer, CLOCK_SECOND * 10); 
 
   uIP_init();  
 
   uIP_ipaddr(ipaddr, 192,168,1,100); 
   uIP_sethostaddr(ipaddr); 
   uIP_ipaddr(ipaddr, 192,168,1,1); 
   uIP_setdraddr(ipaddr); 
   uIP_ipaddr(ipaddr, 255,255,255,0); 
   uIP_setnetmask(ipaddr); 
 
   uIP_arp_init(); 
 
 

5.2.5.2 Packet Handling 
 
Once the node is configured, the code enters the main while() loop. This must be a non-blocking loop that runs 
forever. In this loop the code must check to see if an Ethernet  packet has been received. If so it must be 
passed to the TCP/IP stack and any application events must be processed, with resulting TCP/IP packets 
queued for transmission. 
 
 
 
 
 

The main while() loop must check for new packets
and pass these to the TCP/IP stack. Any new
packets generated by the application software
must be output to the Ethernet driver. 

Periodic timers are used to maintain TCP and UDP
connections and the local ARP cache 
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First a call is made to the Ethernet  driver to read a freshly-received frame from the Ethernet  buffer. This 
function returns the length of the data packet received. If this is non-zero, the received data frame is examined 
to see what type of packet has been received. This will be an IP packet or an ARP packet. In the case of an IP 
packet the uIP_input function is called to pass the IP datagram to the TCP/IP stack and the application  protocol 
layer. Once this function terminates, any datagrams that are queued for transmission must be passed to the 
Ethernet driver software. When we are handling IP packets, the ARP module is called in order to maintain the 
local internal ARP routing cache. Similarly if an ARP packet is received the ARP module is called to update the 
internal cache and any resulting packets must be sent to the Ethernet  driver. 
 
      uIP_len = (unsigned int)ulReadFrame(uIP_buf);  
      if(uIP_len > 0) { 
         if(BUF->type == htons(UIP_ETHTYPE_IP)) {  
          uIP_arp_ipin(); 
          uIP_input(); 
 
/* If the above function invocation resulted in data that should be sent out on 
the network, the global variable uIP_len is set to a value > 0. */ 
 
            if(uIP_len > 0) { 
             uIP_arp_out(); 
             eEthSendFrame((uint32_t) uIP_len, (uint8_t*) uIP_buf);  
          }  
         } else if(BUF->type == htons(UIP_ETHTYPE_ARP)) { 
            uIP_arp_arpin(); 
 
/* If the above function invocation resulted in data that should be sent out on 
the network, the global variable uIP_len is set to a value > 0. */ 
 
          if(uIP_len > 0) { 
             eEthSendFrame((uint32_t) uIP_len, (uint8_t*) uIP_buf); 
          } 
         } 
      } 
 

5.2.5.3 Maintaining TCP And UDP Connections 
 
In addition to handling incoming packets, the TCP/IP stack must maintain exist connections. The periodic timer 
is used to provide a timer tick that is used to trigger the uIP_periodic function. This function performs all the 
periodic processing functions for a TCP connection. This function should be called for every TCP port, whether 
it is currently in use or not. When this function returns, the TCP/IP stack may have generated a packet for 
transmission. The Ethernet driver must be called to transmit this packet. Like the IP case above, the ARP 
module must be called to ensure the destination is held in the ARP cache. 
 
else if(timer_expired(&periodic_timer)) { 
         timer_reset(&periodic_timer); 
         for(i = 0; i < UIP_CONNS; i++) { 
            uIP_periodic(i); 
 
/* If the above function invocation resulted in data that should be sent out on 
the network, the global variable uIP_len is set to a value > 0. */ 
 
            if(uIP_len > 0) { 
               uIP_arp_out(); 
               eEthSendFrame((uint32_t) uIP_len, (uint8_t*) uIP_buf); 
            }  
         } 
      }  
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If the UDP protocol is in use, a UIP periodic function is called to maintain the UDP connections. Any resulting 
packets must be sent to the Ethernet  driver once the ARP module has been called. 
 
#if UIP_UDP 
         for(i = 0; i < UIP_UDP_CONNS; i++) { 
            uIP_udp_periodic(i); 
 
/* If the above function invocation resulted in data that should be sent out on 
the network, the global variable uIP_len is set to a value > 0. */ 
 
          if(uIP_len > 0) { 
             uIP_arp_out(); 
             eEthSendFrame((uint32_t) uIP_len, (uint8_t*) uIP_buf); 
          } 
         } 
#endif /* UIP_UDP */ 
 

5.2.5.4 Maintaining The ARP Cache 
Finally in order to maintain the local ARP cache when the ARP timer tick expires, the uIP_arp_timer function is 
called to perform the necessary ARP processing functions. 
 
/* Call the ARP timer function every 10 seconds. */ 
         if(timer_expired(&arp_timer)) { 
            timer_reset(&arp_timer); 
            uIP_arp_timer();  
         }  
      } 
   } 
   return 0; 
} 

5.2.5.5 Application Protocols 
 
This code represents the main while loop and configures the Ethernet  controller and the tcp/ip stack so that it 
can be connected to a real network. As it stands the node does not provide any tcp/ip service and will only 
respond to an ICMP PING request.  In order to make the node useful you need to add an application protocol. 
Basic examples of standard protocols are included with the uIP documentation. 
 
 
 
 

Exercise 23: uIP Stack 
This exercise adds the uIP TCP/IP to working the Ethernet driver and places the evaluation board on
a local network. 
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5.2.6 Building A Webserver With A Commercial TCP/IP stack 
 
In this section we are going to look at the quickest and easiest way to build a webserver application  to run on 
the LPC2300. The software used is the Keil MDK-ARM, which is an integrated development environment for 
ARM based microcontrollers. The MDK-ARM uses the ARM Real View compiler to generate the most efficient 
executable and also contains JTAG and simulator support for debugging. The TCP/IP stack and webserver 
implementation are provided by the Keil Run Tme Library  (RTL-ARM).  The TCP/IP stack is provided as a 
library with support for direct TCP connections, Telnet, SMTP, TFTP and HTTP webserver.  A DNS resolver and 
DHCP client for automatic configuration are also included. As well as providing the Ethernet driver for supported 
microcontrollers, the RTL-TCP/IP stack also supports SLIP and PPP connections over RS232 using standard 
UARTS. Each of these application protocols is easy to use and generally just requires the modification of a call-
back function. This allows you to rapidly develop an Internet-based application and spend more time 
concentrating on your application.  
 

5.2.6.1 The Bare Bones Project 
 
The minimal configuration for our webserver application is shown below. The basic files include the 
microcontroller startup code that performs the basic configuration of the micocontroller system peripherals and 
processor stacks and gets you to the MAIN() function in your code. The TCP/IP stack is provided as a compiled 
library that just needs to be added to the project. The low-level Ethernet  driver which is called by the TCP/IP 
library is included as part of the RTL-ARM for supported microcontrollers.  
 
 
 
 

An RTL-TCP/IP webserver project including
the Ethernet driver, TCP/IP library and net
configuration file.  

 
 
 
 
 
 
 
 
 
 
 
Thus all the low-level driver development has been done and you just need to add the driver file to your project.  
All of the TCP/IP configuration parameters are held in the net_config.c file and we will have a look at this in a 
moment. Your application code is held in HTTP_demo.c and the basic structure of the main() function is shown 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
Once the program enters main() it should call the init_TcpNet function to perform the initial configuration of the 
TCP/IP stack. Then it should enter a while() loop which makes frequent calls to the TCP/IP stack through the 
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main_TcpNet function. The TCP/IP  stack must also have a regular timer tick as a time reference. This can be 
done by an interrupt-driven timer routine or by polling a timer. 
 
static void timer_poll ()  
{ 
   if (TIM0->SR & TIM_FLAG_OC2)   // Timer tick every 100 ms 
  { 
      TIM0->SR = ~TIM_FLAG_OC2; 
            timer_tick ();   //Call the TCP/IP time reference function 
     } 
} 
 
This is all the basic application code that you need to get the TCP/IP stack running but before we can compiler 
and test that the code is working, we need to configure the TCP/IP stack to match the network it is going to run 
on. This is done in the net_config.c file. This file can be viewed with a configuration wizard that displays the C 
code as a set of configuration options. In this wizard we can configure the unique MAC address and net bios 
name.  
 
 

 
 
 
 
 

The Net config file allows you to
configure the TCP/IP stack through a
series of template options. This is no
more complicated than configuring
the network on your PC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
You can also define the node TCP/IP parameters such as the local IP address, subnet mask, Default gateway 
address and DNS servers. However if the target network has a DHCP sever you can enable DHCP 
configuration and the node will automatically configure itself when it is plugged onto the network. Once we have 
configured the network parameters we can enable the services we want our node to provide. In this case the 
HTTP server is enabled with the default number of sockets set to five.  The webserver menu also allows you to 
enable password protection for the site. 
 
Once you have set the configuration parameters the code can be compiled and run on the development board. 
At this point the webserver is working but has no content. However it is possible to test that the node is running 
on the network by using the ping command from a DOS box in Windows. 
 
Ping 192.168.1.100 
 

© Hitex (UK) Ltd.                                                                                     Page 148 



Chapter 5: The Complex Peripherals                                                                           

5.2.6.2 Adding Some Web Pages 
 
Once the TCP/IP stack is configured and running on the network, we can start to add some ‘content’ to the 
webserver. Generally this takes the form of HTML pages but it is also possible to add other types of file such as 
gif, jpeg and wav files as well as client-side code such as javascript. These pages can be developed in any web 
authoring tool and you should start with a simple HTML script like the one below. 
 
<html> 
<head> 
  <title>Greetings from Trevor</title> 
</head> 
<body> 
<embed src="sound.wav" autostart="true" hidden="true"> 
<p> Hello World</p> 
<p> <img src="hitex_logo.gif"><br> 
</p> 
<p><br> 
</p> 
<embed src="sound.wav" autostart="true" hidden="true"> 
</body> 
</html> 
 
In order to place these pages in our embedded webserver you must add each of the files ( HTML file, GIF file 
etc) to the project. Each of these files should be added as a text file type.  To get these files into the webserver 
they have to be pre-processed into a virtual file system. This is done by a special utility provided with the MDK-
ARM called FCARM.exe (file converter for ARM). This can be linked to the make system by adding an input file 
to the project as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 

The web content can be added to the project for
easy editing. The web.inp file is a pre-processor that
creates a flash based virtual file system. 

This input file (web.inp) should be added as a custom file type so that in its local options menu you can specify 
how the file should be treated when the project is built. 
 

During the build process the fcarm.exe ( file converter for
ARM) utility is invoked to parse the web content files. 

 
 
 
 
 
 
 
 
 
 
In this case when the project is built, the FCARM utility will be run and it will use the contents of the web.inp file 
as its parameters.  The web.inp file should list the input web content and a destination C file.  
 
index.html,sound.wav,hitex_logo.gif to Web.c nopr root Web  
 
Now when the project is built the three ‘web content’ files are parsed and their contents are stored as C arrays 
in the file web.c.  
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#include <Net_Config.h> 
 
#define FILECNT   3 
 
const U16 FileCnt = FILECNT; 
 
/*---------------------------------------------------------------------------*/ 
 
const U8 index_html[] = { 
   "<HTML>\r\n" 
   "<HEAD>\r\n" 
   "<TITLE>Greetings from Trevor</TITLE>\r\n" 
   "<EMBED src=\"sound.wav\" autostart=true hidden=true>\r\n" 
   "</HEAD>\r\n" 
   "\r\n" 
   "<BODY>\r\n" 
   "<P> Hello World</P>\r\n" 
   "<P> \r\n" 
   "<IMG SRC=\"hitex_logo.gif\">\r\n" 
   "</P>\r\n" 
   "<EMBED src=\"sound.wav\" autostart=true hidden=true>\r\n" 
   "</BODY>\r\n" 
   "</HTML>\r\n" 
}; 
 
 
/*---------------------------------------------------------------------------*/ 
 
const U8 sound_wav[] = { 
   0x52,0x49,0x46,0x46,0xBF,0x22,0x00,0x00,0x57,0x41,0x56,0x45,0x66,0x6D,0x74, 
   0x20,0x10,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x11,0x2B,0x00,0x00,0x11,0x2B, 
   0x00,0x00,0x01,0x00,0x08,0x00,0x64,0x61,0x74,0x61,0x9B,0x22,0x00,0x00,0x80, 
   0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 
   0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 
   0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 
   0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 
   0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 
   0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 
 
const struct http_file FileTab[FILECNT] = { 
   { "index.html", (U8 *)&index_html, 256 }, 
   { "sound.wav", (U8 *)&sound_wav, 8903 }, 
   { "hitex_logo.gif", (U8 *)&hitex_logo_gif, 4637 }, 
}; 
 
 
 
Now to make an active webserver, you simply add the web.c file to your project and rebuild the project. Once 
the code is downloaded into the evaluation board the embedded webserver will send the contents of each array 
when the file name is requested by a web browser. That’s all there is to building an embedded webserver with 
the RTL-ARM! Well not quite, this allows us to serve static web pages to remote clients but for the webserver to 
be of any real use to an embedded application, we have to be able to pass data to and from the C application 
code running on the microcontroller. In the RTL-TCP/IP stack this is done through a Common Gateway 
Interface (CGI). 
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5.2.6.3 The Common Gateway Interface 
 
To enable the CGI interface we simply need to add a new C file from the TCP/IP library  to our project. This file 
is called HTTP_CGI.C and is stored in the TCP Net source directory. In addition, any html file that will access 
the CGI interface must have the extension  .cgi rather than htm or html. 
 

The CGI gateway allows communication between the C
application and the webserver. It is controlled by three call back
functions the HTTP_CGI.c file. 

 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.6.4 Post Method 
 
Now we will have a look at how to send data from the web browser to the C application and how the C 
application can send data back to the web client. To allow a remote user to enter data via a web browser we 
need to add a form cell and a submit button to our web page. The basic code for this is shown below. 
 
<HTML><HEAD><TITLE>Greetings from Trevor</TITLE> 
</HEAD> 
<FORM ACTION=index.cgi METHOD=POST NAME=CGI> 
<BODY> 
<TR><TD><INPUT TYPE=TEXT NAME=lastname SIZE=16 VALUE=""> 
<TD align="right"> 
<INPUT TYPE=SUBMIT NAME=set VALUE="change" id="smb"> 
</BODY> 
</HTML> 
 
When this page is viewed it creates a cell called “lastname” and a submit button which invokes the post method 
when pressed. Pressing the button will post the data in the lastname cell to the CGI interface. This causes the 
TCP/IP stack to call the functions in the HTTP_CGI.C file. 
 
/*---------------------------------------------------------------------------- 
 * HTTP Server Common Gateway Interface Functions 
 *---------------------------------------------------------------------------*/ 
void cgi_process_var (U8 *qs)  
void cgi_process_data (U8 *dat, U16 len)  
U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi)  
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The two functions cgi_process_data() and cgi_processvar() are used to handle the get and post methods for 
sending data to a webserver. The cgi_func() procedure is used to send data back to the web browser. To take 
data from the lastname cell we must customise the cgi_process_ data() function. 
 
void cgi_process_data (U8 *dat, U16 len) { 
   U8 passw[12],retyped[12]; 
   U8 *var,stpassw; 
   P2 = 0; 
   var = (U8 *)alloc_mem (40); 
   do { 
      /* Parse all returned parameters. */ 
      dat = http_get_var (dat, var, 40); 
   if (var[0] != 0) { 
         /* Parameter found, returned string is non 0-length. */ 
         if (str_scomp (var, "lastname=") == __TRUE) { 
            P2 |= 0x01; 
         } 
   } 
    } 
 } 
 
When the submit button is pressed the TCP/IP stack will call this function. In this function a buffer var is 
allocated and the process data is copied into this buffer as a string by calling the http_get_var() function. This 
string will now contain the name of the form cell and any data that has been entered. The form of this string is 
shown below. 
 
 Lastname=Martin 
 
Now all we need to do is add code to parse this string and pass any entered data to our C application. Other 
types of input objects such as tick boxes and radio buttons are handled in much the same way. 
 
 
 

5.2.6.5 Dynamic HTML 
 
As well as taking data into our C application we will also need to be able to display internal C data to a remote 
user via the web server. With the Keil TCP/IP stack this is accomplished with a simple CGI scripting language. 
The scripting language contains four basic commands, which must be placed at the beginning of any page that 
is going to display output data. The commands are as follows: 
 
I include a html file and output it to the browser 
T the text following this command is pure html and should be output to the browser 
C This line of text is a command line and the CGI interface should be invoked 
. A dot must be placed at the end of a cgi file 
# A hash should be placed before a comment 
 
So a HTML file which is intended to output a dynamically changing message to the web browser would look like 
this: 
 
t      <HTML><HEAD><TITLE>Greetings from Trevor</TITLE></HEAD> 
t      <body text=#000000 BGCOLOR=#ccddff LINK=#0000FF VLINK=#0000FF 
ALINK=#FF0000> 
t      <H2 ALIGN=CENTER>Output a Greeting as Dynamic HTML</H2> 
c a     <p> %s </p>  
t      </BODY> 
t      </HTML> 
. 
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Each of the lines beginning with a “t” are straight HTML. Line four begins with a “c” which denotes a script line. 
This will invoke the CGI_Func function in HTTP_CGI.c and pass the characters following the c script character 
as an environment variable ENV.  
 
U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi) { 
   TCP_INFO *tsoc; 
   U32 len = 0; 
   U8 id, *lang; 
 
   switch (env[0]) { 
       
      case 'a' : 
                /* Write the local IP address. The format string is included */ 
               /* in environment string of the script line.                 */ 
               len = sprintf((S8 *)buf,(const S8 *)&env[4],"Hello World"); 
               break; 
          
   } 
   return ((U16)len); 
} 
 
The cgi_func must then parse the environment variable with user-defined rules and output the required string in 
an ASCII buffer. The contents of this buffer replace the %S token in the HTML code. So in the above code we 
will place the string “goodbye” into the buffer so that this greeting appears on the screen. Hence to the browser 
the HTML code will appear as shown below. 
 
<HTML><HEAD><TITLE>Greetings from Trevor</TITLE></HEAD> 
<body text=#000000 BGCOLOR=#ccddff LINK=#0000FF VLINK=#0000FF ALINK=#FF0000> 
<H2 ALIGN=CENTER>Output a Greeting as Dynamic HTML</H2> 
<p>  Goodbye </p>  
</BODY> 
</HTML> 
 
This technique allows us to generate any kind of HTML “on the fly”.  In a more complex application for example 
we can include a javascript library that draws a graph in with our html pages. 
 
 
                     index.html,led.cgi,dot.gif,graph.js to Web.c nopr root Web 
 

Sophisticated embedded webservers may be created by adding jarvascript
libraries to the embedded webcontent. 

 
 
 
 
Then using the CGI interface we can dynamically change the graph coordinates to match the data in our 
underlying C application. So here we have the html code that calls the javascript library and initialises a graph of 
12 points to display the temperature data of a small weather station. Each of the coordinates is defined as a 
scripting line and two characters are passed to the environment variable. 
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t var bg = new Graph(12); 
t 
t bg.parent = document.getElementById('here'); 
t bg.title = 'Annual average temperature by month'; 
t bg.xCaption = 'Month'; 
t bg.yCaption = 'Temperature'; 
t 
c m a        bg.xValues[0] = [%s,'Jan']; 
c m b        bg.xValues[1] = [%s,'Feb']; 
c m c        bg.xValues[2] = [%s,'March']; 
c m d        bg.xValues[3] = [%s ,'April']; 
c m e        bg.xValues[4] = [%s ,'May']; 
c m f        bg.xValues[5] = [%s ,'June']; 
c m g        bg.xValues[6] = [%s ,'July']; 
c m h        bg.xValues[7] = [%s ,'Aug']; 
c m i        bg.xValues[8] = [%s ,'Sept']; 
c m j        bg.xValues[9] = [%s ,'Oct']; 
c m k        bg.xValues[10] = [%s ,'Nov']; 
c m l        bg.xValues[11] = [%s ,'Dec']; 
t bg.showLine = true; 
t bg.showBar = true; 
t bg.orientation = 'horizontal'; // or = 'vertical'; 
t 
t bg.draw(); 
t </script> 
t </body> 
t </html> 
. 
 
In the CGI function we provide the C code that parses these characters and outputs the appropriate data from 
the months array as an ASCII text string. 
 
U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi)  
{ 
   TCP_INFO *tsoc; 
   U32 len = 0; 
   U8 id, *lang; 
   unsigned char months[12] = {10,15,17,20,22,30,33,27,20,18,15,9}; 
   char buffer [4],i; 
    
   switch (env[0])  
 { 
      case 'm' : 
    i = env[2]-0x61; 
       sprintf( buffer, "%1d", months[i]); 
             len = sprintf((S8 *)buf,(const S8 *)&env[4],buffer); 
             break; 
   } 
   return ((U16)len); 
} 
 
So when the page is viewed the HTML is modified with the monthly temperature data and the graph will be 
drawn within the client side browser. 
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The output of the embedded
jarvascript library can be
dynamically updated by the
C application code through
the CGI gateway 
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5.3 USB 2.0 Full Speed Slave Peripheral 
 
The next complex peripheral available on the LPC2300 family is the USB slave peripheral. In order to fully 
understand this peripheral you will also need a clear understanding of how the USB network operates and to 
build a USB based system you will also need to know how to build a PC application that can access the USB 
network. This requires a lot of background knowledge and some skill with PC programming and the Windows 
operating system which is normally beyond the remit of embedded firmware development.   
 

5.3.1 Introduction to USB 
 
Before we look at the USB peripheral, we will give an overview of the complete USB system.  This can be split 
into three parts; USB theory of operation, overview of the LPC2300x peripheral and introduction to the PC 
application requirements. 
 
The USB network was first supported in the Windows operating system by adding additional drivers to Windows 
98. The driver support was added as a standard part of the Windows operating system in Windows 2000. The 
goals of USB were primarily to allow easy expansion of a PC’s peripherals with a “foolproof” plug-and-play 
network. The USB 1.0 standard was released in 1996 and was soon superseded by version 1.1. The current 
revision of the standard is 2.0 and is maintained by the USB Implementers Forum, who host a website at 
www.usb.org. You can download the full specification from this website, along with a number of useful utilities 
which we shall look at later. The USB peripheral on the LPC23xx supports USB2.0 and throughout, this is the 
revision of the specification that we will be working to.  
 

5.3.1.1 USB Physical Network 
 
The USB network supports three communication speeds; low speed which runs at 1.5 Mbits/sec and is primarily 
used for simple devices like keyboards and mice; Full speed which runs at 12 Mbits/sec and is suitable for most 
other PC peripheral and finally High speed, which runs at 480 Mbits/sec and is aimed at video devices which 
require a high bandwidth. 

USB host and peripheral
have standardised plugs and
sockets to ensure easy
installation. 

 
 
The USB specification also defines the physical cabling and connectors. This ensures that any user will put the 
right plug in the right socket.. The two connectors are shown below the appropriate sockets for which details can 
be found at www.usb.com. 
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logic level on the USB network will change state every time it see a logic zero in the data stream. This allows 
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carry 5V, which can deliver 500mA of current. The data wires are called D+ and D-. The maximum length of a 
shielded full speed cable is 5 meters. Since the physical layer transceiver is incorporated into the LPC23xx, the 
hardware design consists of connecting the D+ wire to the D+ pin and the D- wire to the D- pin. As we shall see 
later, only one other external component is required to complete the design. 
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remote nodes to extract the data and a clock signal with which to synchronise themselves. Because the physical 
layer of the USB network is rigorously defined you will not generally need to examine the physical layer signals 
so USB debugging is generally concerned with observing transactions at the data packet level. However there is 
some necessary jargon to be aware of when discussing the bit-level signalling on the USB network. On a full 
speed USB cable a logic one is 5v and is  called a K state and a Logic zero is 0 V and is  called a J state. To 
keep you on your toes, the signalling voltages are inverted for low speed communication are inverted. 
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Standard USB cables carry
four wires. Power as 5V and
Gnd and two data wires
called D+ and D- 

The physical bit stream is uses non return to zero inverted encoding. This transfers the data and
ws a clock source to be reconstructed by the receiver. allo
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The physical USB network is implemented as a tiered star network. The USB root node must be a PC ( or other 
bus master) and this provides one attachment port for an external USB peripheral. If more than one peripheral is 
required you can connect a hub to the root port and the hum will provide additional connection ports. For large 
numbers of USB peripherals further hubs may be added in order to provide additional ports for peripherals. The 
USB network can support up to 127 external nodes ( hubs and devices) and six tiers of hubs and requires one 
bus master. 
 
 
 
 
 

The physical USB network is
a tiered star with up to 127
nodes and six  tiers 

 
 
 
 
 
 
 
 
 
 
 
 

5.3.1.1.1 Logical Network 
 
To the developer the logical USB network appears as a star network. The hub components do not introduce any 
programming complexity and are essentially invisible as far as the programmer is concerned. So if you develop 
a USB device by connecting it to a root port on the PC the same device will work when connected to the PC via 
several intermediate hubs. So to the programmer the USB network appears as a star network with the PC at the 
center and all the USB devices are available as addressable nodes.  

 
 
 
 
 

To the programmer the USB network appears as a
master slave  star network. 

 
 
 
 
 
 
 
 
 

The other key feature of the USB network is that it is a master-slave network. The PC is in control and is the 
only device on the network that can initiate a data transfer. With USB 2.0 peer-to-peer communication is not 
possible and the LPC23xx USB peripheral is a slave device only and cannot act as a master. A version of USB 
called “USB on the go”  is a new addition to the specification and directly supports peer-to-peer communication 
allowing for example, pictures stored on a camera to be transferred directly onto a USB memory stick, without 
the need for a PC or other USB master. 
 

5.3.1.1.2 Signalling Speed 
Since the USB network is designed to be plug-and-play, the PC will have no knowledge of a new device when it 
is first plugged onto the network. The first thing that the PC needs to determine when a new device is added is 
the bit rate required to communicate to the new device. This is done by adding a pull-up resistor to either the D+ 
or D- line. If the D+ line is pulled up, the PC will assume that a full speed device has been added.  If it is D- , it 
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means low speed. High speed devices will first appear as full speed and then negotiate up to high speed, once 
the connection has been established. 
 

5.3.1.1.3 USB Pipes 
Once a device has been connected to the PC and the signalling speed has been determined, the PC can start 
to transfer data to and from the new device. These data packets are transferred over a set of logical 
connections called pipes. A pipe originates from a buffer in the PC and is connected to a remote device with a 
specific device address. The pipe is terminated inside the device at an Endpoint. In microcontroller terms the 
Endpoint may be viewed as a buffer were the data is stored and an interrupt that signals the CPU that a new 
data packet has arrived.  

 
 
 
 
 
 
 
 
 
 
 
These logical pipes are implemented on the serial bus as time 

division multiplexing. Every 1msec the PC sends a Start of Frame (SOF) token to delineate the 12 Mbit/sec bus 
into a series of frames. Each pipe is allocated a slot in each frame so it can transfer data as required. 

Each USB slave is characterised by a local address
and a set of logical endpoint buffers. The Host creates
logical connections called “pipes” to each endpoint
which are  used to transfer packets of information. 

 
 

The USB bu
pipe is alloca

s is split into 1msec frames and each
ted a number of packets per frame. 

 
 
 
 
 
 
 
 
 
USB supports several different types of pipes with different transfer characteristics in order to support different 
types of application. It is possible to design a USB device capable of supporting several different configurations 
which can be dynamically changed to match the running PC application. The types of pipes available are 
control, interrupt, bulk and isochronous. All of these pipes are unidirectional, except the control pipe, which is 
bidirectional. The control pipe is reserved for the PC to send and request configuration information to the device 
and is generally not used by the application software. Every device has a control pipe and it is always 
connected to Endpoint Zero. So when a new device is plugged onto the network, it will always appear as device 
zero and the PC can communicate to it by sending control information to Endpoint Zero. The remaining types of 
pipe are used solely for the user application and in the LPC23xx there are up to 15-user endpoints, which are 
allocated as one of the three remaining pipe types.  
 

5.3.1.1.3.1 Interrupt Pipe 

 
The first of the user pipe types is an interrupt pipe. The key thing about an interrupt pipe is that it isn’t one. Since 
only the PC can initiate a data transfer, no network device can asynchronously communicate to the PC. With an 
interrupt pipe the developer can define how often a data transfer is requested between the PC and the remote 
device. This can be between 1msec and 255msec. So really in USB an interrupt pipe has a defined polling rate. 
In the case of a mouse we can guarantee a data transfer every 10 msec for example. Defining the polling rate 
does not guarantee that data will be transferred every 10 msec,  but rather that the transaction will occur 
somewhere within the tenth frame. So a certain amount of timing jitter is inherent in a USB transaction. 
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5.3.1.1.3.2 Isochronous Pipe 

 
The second type of user pipe is called an isochronous pipe. Isochronous pipes are used for transferring real 
time data such as audio data. Isochronous pipes have no error detection and an isochronous pipe sends a new 
packet of data every frame regardless of the success of the last packet. So in an audio application a lost or 
corrupt packet will sound like noise on the line until the next successful packet arrives. An important feature of 
isochronous data is that it must be transferred at a constant rate. Like an interrupt pipe, an isochronous pipe is 
also subject to the kind of jitter described above. So in the case of isochronous data no interrupt is generated 
when the data arrives in the endpoint buffer. Instead the interrupt is raised on the start of frame token. This 
guarantees a regular 1 msec interrupt on the isochronous endpoint allowing data to be read at a regular rate. 
 

5.3.1.1.3.3 Bulk Pipe 

 
The bulk pipe is for all data that is not control, interrupt or isochronous. Data is transferred in the same manner 
and packet sizes as with an interrupt pipe, but bulk pipes have no defined polling rate. A bulk pipe will take up 
any bandwidth that is left over after the other pipes have finished their transfers. If the bus is very busy, then a 
bulk transfer may be delayed. Conversely, if the bus is idle then multiple bulk transfers can take place in a single 
1 msec frame, where interrupt and isochronous are limited to a maximum of one packet per frame. An example 
of bulk transfers would be sending data to a printer. As long as the data is printed in a reasonable time frame 
the exact transfer rate is not important. 
 

5.3.1.1.4 Bandwidth Allocation 
 
So, in terms of bandwidth allocation, the control pipes are allocated 10% Interrupt, Isochronous is given 90% 
and bulk makes do with any idle periods on the network. These are maximum allocations so on most networks 
there will be plenty of unused bandwidth. The operating system on the PC is responsible for bandwidth 
management and should not let a new device on to the network if the resources are not available to service it. 
 
 

 

5.3.1.1.5 USB Network Transactions 
 
As we have seen, the data transfer over the USB network is time division multiplexing. The bus is delineated 
into frames by sending a start of frame taken every millisecond and the pipes transfer packets of data within 
these frames. Each data transfer is constructed from a three packet transaction. 
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This consists of a token phase that defines what type of transaction is about to take place.  Next comes a data 
hase that transfers the necessary data and finally a handshake phase that establishes that the transfer has 
een successful. Each of these packets is made out of the same basic structure that contains fields for packet 
pe, destination address and endpoint, data field if necessary and error checking. 

vailable in USB 2.0. We have already seen the Start of Frame (SOF) token 

on, or a command to set a particular configuration. 
 to signal the start of a low speed transaction. The PREAMBLE packet 
 ports on HUBS to close and the low speed ports to open. Then a 

ansaction follows and at the end of the low speed transaction the ports revert to their original state.  

n. So, if data from a previous OUT transfer is still in the Endpoint buffer, the USB 
pheral will generate NAK handshakes until the CPU has read the data. If a NAK is generated the PC will 

p
b
ty
 
 
 
 
 
 
 
 
 
 
 

5.3.1.1.5.1 Token Phase 

Each USB transaction consists of three packets which are exchanged between the
master and slave nodes 

Each of the USB packets, token data or handshake has the same physical structure. 

 
There are five tokens that are a
which is used to mark the start of a 1 msec frame. This token does not have an associated data or acknowledge 
packet. The IN token starts a transfer of data into the PC and the OUT starts a transfer of data from the PC to 
the network device. All references to data direction are considered relative to the PC ( i.e. IN to the PC or OUT 
of the PC). The setup packets are exclusive to the control channel and are used to send commands to the USB 
evice. This may be a request for configuration informatid

Finally the PREAMBLE packet is used
causes the full speed and high speed
tr
 

5.3.1.1.5.2  Data Phase 

Once the token has been sent by the PC it will be followed by a data packet. There are two types of data packet 
called DATA0 and DATA1. These data packets perform an identical function and the only difference is one bit in 
the packet header called the data toggle bit which is used for error detection. I will explain this when we look at 
the error containment methods used in the USB protocol.  
 

5.3.1.1.5.3 Handshake Phase 

 
The final phase of a bus transaction is the handshake phase. In this phase there are three handshake packets 
that are used to signal whether a successful transaction has taken place. 
 
The ACK packet is used to acknowledge a successful transfer of data and will end the bus transaction. The PC 
will then start the next token phase. The NAK packet is a not acknowledge. This may signal that the transfer has 
failed because an error checking rule has been violated. A NAK may also be generated if the Endpoint buffer is 
ot ready for the transaction

peri
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attempt to resend the same transaction in the next frame. Remember that for isochronous transfers the 
dshake is ignored. If the Endpoint buffer is full and the CPU never removes the data we will get continuous 

5.3.1.1.6 Error Containment 
 
Within the USB protocol there are six different methods of error containment. There are packet error checks 
which include a CRC, packet ID check and bit stuffing rules. When a packet is transferred the protocol can 
detect a false end of packet, bus time, loss of activity and babble where a node continues to transmit beyond its 
end of packet. The two data packets also support a data toggle error check where a data one packet must 
always follow a data zero packet and vice versa. So if, for example, a data one packet gets lost, the node 
receiving the data will get a data zero packet followed by another data zero packet and an error will be raised. 
All of these error handling methods are handled within the USB peripheral and are essentially transparent to the 
programmer.  

han
NAK exchanges on the pipe every frame. This will start to waste bandwidth. For this reason there is a third form 
of handshake called STALL. A STALL handshake is used to tell the PC that the USB device can no longer 
communicate on this pipe. For example, if a printer ran out of paper and its memory became full, sending further 
documents would cause lots of NAK packets on the bus. In this case, the printer can tell the PC via a stall 
packet that it is not ready to receive any more data and communication will stop over this pipe. The PC could 
then try to find out why the data pipe is stalled by requesting data packets on an IN pipe which could transfer 
diagnostic information. 
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5.3.1.1.7 Device Configuration 
 
When a device is first connected to the PC, its signalling speed is discovered and it will have Endpoint 0 
configured to accept a control pipe. In addition, every new device that is plugged onto the network will be 
assigned address zero. This way the PC knows what bit rate to use and will have one control channel available 
at address zero endpoint zero. This control pipe is then used by the PC to discover the capabilities of the new 
device and to add it to the network. The process the PC uses to gather this information is called “Enumeration”. 
So in addition to configuring the USB peripheral on the LPC2300 you need to provide some firmware that 
responds to the PC enumeration requests.   
 
The data that the PC requests is held in a hierarchy of descriptors. The descriptors are simply arrays of data 
that must be transferred to the PC in response to enumeration requests. As you can see from the picture below 
it is possible to build complex device configurations because the USB network has been designed to be as 
flexible and as future proof as possible. However the minimum number of descriptors required is a device 
descriptor, configuration descriptor, interface descriptor and three endpoint descriptors (one control, one IN and 
one OUT pipe). 

The configuration information for
every USB node is described as a
hierarchy of descriptors which are
transferred to the PC during the
device enumeration procedure. 

 

5.3.1.1.8 Device Descriptor 
 
At the top of the descriptor tree is the device descriptor. This descriptor contains the basic information about the 
device. Included in this descriptor is a vendor ID and product ID field. These are two unique numbers that 
identify what device has been connected. The windows operating system will use these numbers to determine 
what device driver to load. The vendor ID number is the number assigned to each company producing USB-
based devices. The USB implementers’ forum is in charge of administering the assignment of vendor IDs. You 
can purchase a vendor ID from their website (www.usb.org) for $1500 administration charge (they must be very 
heavy) or $2500 if you want to use the USB logo on your product. Either way you must have a vendor ID if you 
want to sell a USB product on the open market. The product ID is a second 16-bit field which contains a number 
assigned by the manufacturer to identify a specific product. The device descriptor also contains a maximum 
packet size field.  
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5.3.1.1.9 Configuration Descriptor 
 
The configuration descriptor contains information about the device’s power requirements and the number of 
interfaces it supports. A device can have multiple configurations and the PC can select the configuration that 
best matches the requirements of the application software it is running. 
 

 
 

5.3.1.1.10 Interface Descriptor 
 
The interface descriptor describes a collection of endpoints. This interface will support a group of pipes which 
are suitable for a particular task. Each configuration can have multiple interfaces and these interfaces may be 
active at the same time or can be dynamically selected by the PC. 
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5.3.1.1.11 Endpoint Descriptor 
 
The endpoint descriptor transfers the configuration details of each endpoint supported in a given interface. The 
descriptor carries details of the transfer type supported, the maximum packet size, the endpoint number and the 
polling rate if it is an interrupt pipe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is not an exhaustive list of all the possible descriptors that can be requested by the PC, but as a minimum 
the USB device must provide the PC with device, configuration interface and endpoint descriptors. 
 

5.3.1.1.12 Enumeration 
 
The enumeration process takes place over the control channel attached to endpoint zero when the device is first 
attached. The PC will send a series control transfers that request the USB device to transfer its descriptors to 
the PC.  
 
 

A typical control transaction recorded and decoded by
a USB bus analyser. 
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The PC sends a setup packet to initiate the control transfer. This is followed by a data packet which contains the 
command codes for the control action that the PC wants to carry out. After a successful handshake packet, the 
PC will send an IN packet and the USB device will return a data packet containing the requested information 
(typically a descriptor.) So as a minimum the enumeration process will make the following requests: 
 
Get the first eight bytes of the device descriptor.  
When the device is first connected, the PC will use the smallest packet size possible to communicate with 
endpoint zero. This will load the vendor and product ID along with the maximum packet size for endpoint zero. 
For all further transfers the PC can now adjust its data packet size to the maximum supported by endpoint zero, 
thus reducing the number of transfers required to complete the enumeration process. 
 
Reset the node.  
Once the connection to endpoint zero has been optimised, the PC will issue a reset command to the new node 
to ensure it is in a known state. 
 
Assign a network address.  
Since all new devices appear on the network as address zero, this address must be kept free. So, after the 
reset command the PC will assign the new device a unique network address for all further communication. 
 
Request the device descriptors.  
Once the new address has been assigned, the PC will request the full device descriptor followed by the 
configuration, interface and endpoint descriptors.  
 
Once the PC has finished the enumeration process it will use the vendor and product IDs to assign a matching 
device driver. It can use further control transfers to select which configuration and interface it wants to use to 
communicate with the new device. Then the device is ready for use. The USB protocol supports eleven different 
control commands as summarised below. If a device does not support a particular command, it should return a 
STALL handshake to cancel the command and the PC will move on to its next control transfer. 
 

 
Operation   Purpose 
Get Status   Requests the status of an interface or endpoint 
Clear Feature   Disables a feature on an interface or endpoint 
Set Feature   Enables a feature on an interface or endpoint 
Set Address   Sets the network address of a new device 
Get Descriptor   Requests a specific descriptor 
Set Descriptor   Adds or updates a specific device descriptor 
Get Configuration   Requests the current device configuration 
Set Configuration   Sets the desired device configuration 
Get Interface   Requests the current device interface 
Set Interface   Sets the desired device interface 
Synch Frame   Returns the frame number from a given endpoint 
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5.3.2 LPC2300 USB Peripheral 
 
Now that we have some understanding of the USB network and its protocols we can have a look at the USB 
peripheral within the LPC2300. Like all the other LPC2300 peripherals the SFR’s of the USB peripheral are 
located on the VLSI peripheral bus. In addition, the peripheral has 16K of RAM located on the AHB bus which is 
linked to the USB peripheral by DMA. If the DMA mode is not being used this 16K of RAM may be used for data 
storage. Inside the USB peripheral is a 4K FIFO which may be partitioned into buffers for each endpoint. The 
USB peripheral also incorporates the physical layer interface so that it can be connected directly to the USB 
network. The only additional component required is the pull up resistor on the D+ line. 
 

 
 
 
All the core user peripherals in the LPC2300 family are clocked by a peripheral clock Pclk, which is derived from 
the CPU clock. However as the USB controller requires an accurate 48MHz clock this cannot be derived from 
the CPU clock or the peripheral clock as this would limit maximum speed of the LPC2300 to 48 MHz. Instead 
the USB controller clock is derived directly from the output of the PLL , which is divided down by a dedicated 
USB prescaler register. 
 
As you might expect for such a complex peripheral, the USB interface has a large number of SFR’s with which 
the programmer can control the device. The table below shows the major register groupings. 
 

The LPC2148 has an
USB peripheral with
physical interface. For
high performance there
is an associated DMA
engine and 8K of
dedicated USB RAM. 

The USB peripheral has a large number of
registers that can be divided into seven
main groups. 

Register
Interface

Serial Interface Engine
(SIE)

Endpoint ram
access control

Receivers

D+

D-
TX D
Force SE0

OE

RX D

ATX
PADSUSB Logic

2K FIFO

8K AHB
Memory

DMA
Engine

AHB Bus

VPB Bus
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The USB peripheral has two operating modes; Slave mode and DMA mode. In slave mode the CPU must 
respond to every USB transaction and since there are 15 endpoints, this could mean 15 interrupts every 
millisecond.  A failure to service the endpoints fast enough would cause a lot of NAK handshakes. Clearly this 
would consume a large percentage of CPU runtime. However in DMA mode it is possible to define a large buffer 
for each endpoint in the USB RAM and the DMA interface will chain together successive data transfers so the 
CPU only needs to manage the USB RAM buffers in order to service the USB network requests. Slave mode is 
used to build a simple easy to implement system or the DMA mode employed for a high performance system.  
 
 
 
 
 

The USB peripheral has two
operating modes. Slave
mode and DMA mode. 

 
 
 
 
 
 
 
 
 
 
 
When the USB peripheral is initialised in either Slave or DMA mode, the CPU must configure the endpoints and 
endpoint FIFO memory. The USB peripheral can support 15 user endpoints plus the required control endpoint 
on endpoint zero. The user endpoints have pre-assigned transfer types, as shown below. Each endpoint may be 
configured as an in or out transfer but not both, hence each endpoint has a pair of physical endpoints, one of 
which must be enabled to support the required logical endpoint. 
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Next, each enabled endpoint must have a buffer assigned in the endpoint FIFO memory. This is done by first 
enabling the necessary endpoints by setting bits in the realize (sic) endpoint register.  Then the FIFO can be 
partitioned by first writing the endpoint number to the endpoint index register then entering the required buffer 
size in the endpoint max packet size register. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since the FIFO has a size of 2K bytes you must calculate the total memory requirement, using the formula 
below, to make sure this is not exceeded. 
 
          N     
Total EP RAM size = 32 + Σ EPramsize(n) 
             N=0 
 
Where: 
 
EPramsize = ((max packet size +3)/4) x db_status 
 
And: 
 
db_status = 1 for a single buffered endpoint and 2 for a double buffered endpoint 
  
Once the USB peripheral is initialised it can be used in Slave or DMA mode. In slave mode every USB 
transaction will generate an interrupt. The USB peripheral has one interrupt channel in the Vector Interrupt 
Controller.  Each endpoint interrupt the DMA interrupt is connected to this channel. Within the endpoint interrupt 
lines it is possible to assign a single endpoint as a high priority endpoint so that it may be served faster than the 

 

other enabled endpoints.  

 the device is being used in slave mode, a USB transaction on an enabled endpoint will cause an interrupt. In 

The USB peripheral has 2K
of RAM which is divided into
buffers for each endpoint. 

The USB peripheral has one
interrupt channel. Internal
interrupt sources are two
levels of priority for
endpoints and a DMA
interrupt. 

 
If
the case of an OUT transfer, the data packet will be transferred to the endpoint buffer where the CPU can read 
it. To do this the CPU must set the read enable bit and endpoint number in the USB control register then read 
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the packet length register to determine the number of bytes transferred.  Then the data may be read from the 
FIFO via the receive data register. During this process the endpoint is disabled and if the USB network sends 
another OUT transaction, it will get a NAK handshake, so forcing it to retry the same transaction in the next 
frame. Once the CPU has read the data from the FIFO it can re-enable the endpoint by sending a CLEAR 
BUFFER command to the USB command register. 
 

 
 
In slave mode an IN transaction follows a similar process where the CPU fills the endpoint buffer with data and 

 the case of control, interrupt and bulk transfers, the endpoint interrupt for an IN or OUT transaction is 

then issues a VALIDATE BUFFER command to the USB command register to enable the endpoint, which then 
waits for the USB network to request the data.  
 
In
generated when the new data is available. However in the case of isochronous transfers we need to guarantee 
a regular interrupt for the application to be able to process the real time data and for example, reconstruct audio 
data. Since the network will only guarantee the delivery of an isochronous data packet within a 1 msec frame 
but more importantly anywhere within that frame, generating the interrupt on the arrival of the data would 
introduce a timing jitter. Hence for isochronous endpoints the interrupt is generated on the arrival of the start of 
frame token. This gives a precise and regular interrupt for the CPU to deliver the real time data to the 
application software. 
 
 
 
 
 
 
 
 
 
 
 
 
For more demanding applications we can configure the USB peripheral in DMA mod
USB transactions to a specific endpoint to be “chained” together and transferred
without any CPU overhead. Like the Endpoint FIFO the USB RAM must be confi
endpoint. This is done by writing a DMA descriptor into the USB RAM. 
 
 
 
 
 
 
 
 
 
 
 
 
 

An OUT packet will be
transferred to the endpoint
buffer. The data can be read
via the endpoint FIFO
registers. 

Like the 
USB RA
buffers. T
by a DMA

© Hitex (UK) Ltd.                                                                                     Page 170 
A USB transaction can
take place in every frame.
However its slot in the
frame may vary. This
introduces a timing jitter
which is not acceptable
for isochronous
transactions. For this
reason isochronous
endooints generate an
interrupt on the SOF
token. 
his allows a number of e.  T
 to or from the USB RAM 
gured into buffers for each 

endpoint FIFO the
M is split into
hese are described
 descriptor. 



Chapter 5: The Complex Peripherals                                                                           

The DMA descriptors for interrupt and bulk pipes are four words long and five words for Isochronous pipes. The 

 addition to understanding the USB network and the LPC2300 USB peripheral, we also need to know how to 

 

control pipe always uses the slave mode as it generally transfers one or two packets. The DMA descriptors may 
be located anywhere in the USB RAM, as long as it starts on a word-aligned boundary. The parameters stored 
in the DMA descriptor include the start address of the Endpoint DMA buffer in the USB RAM, the size of the 
buffer, the start address of the next DMA buffer, a count of the number of bytes transferred, status information 
about the transfer, and control information for the DMA peripheral. For Isochronous endpoints the additional 
word contains a pointer to the current packet size and frame number so the application software can process 
the real time data. The DMA transfers also support an automatic transfer length extraction mode.  In this mode 
several discrete buffers are concatenated together and transferred over a USB pipe and automatically 
reconstructed within the USB RAM. This ensures maximum throughput over the USB network with minimal CPU 
intervention. 
 

 
In
access our USB peripheral from some application software on the PC. The Windows operating system (98, 
2000, Millenium and XP) supports USB with a built-in USB stack and some generic driver support. 
 

The ATLE mode of the
LPC2300 allows a
number of arrays to be
concatenated into a
continuous data stream
which is reconstructed
within the USB RAM. 

The Windows driver
model allows you to use
existing drivers built
into the OS or you can
supply your own
custom driver. 
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The Windows driver model allows your application software to use a class driver.  This is a USB device driver 
written to support a generic class of devices such as audio devices, printers, mass storage devices or you may 
provide your own. If you want to use your own driver this means writing a kernel mode device driver.  If you 
know how to do this fine; if not it would involve learning a lot about the Wndows operating system. There a 
number of ready-made general purpose device drivers that require no development work, other than filling in 
your Vendor and Product ID’s. You can download an evaluation of such a driver from www.thesycon.com.  
 
If your USB peripheral can take advantage of one of the Windows class drivers then you can save yourself the 

ou can make a USB device into a HID class device by setting the class code in the interface descriptor to three 

trouble and expense of developing your own driver. The two most interesting class drivers in Windows are the 
“Human interface device” (HID) class and the “mass storage” class. As its name implies, the HID class is the 
driver used by USB keyboards mice joysticks etc.. However you can also make use of the HID driver to send 
and receive basic IO data such as front panel data (reading switches illuminating LEDs) or communicating with 
remote sensors. The second class is the Mass storage class, which allows the USB device to appear as a 
removable drive. The HID driver gives a basic bidirectional connection between the PC and the USB device and 
the Mass storage driver allows the transfer of large amounts of data. An understanding of both of these drivers 
will cover a large range of applications. 
 
Y
as shown below. 
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Interface Descriptor 
09h  Descriptor length 
04h  Descriptor type 
00  Number of interface 
00  Alternate setting 
01  Number of endpoints 
03  Class code 
00  Subclass code 
00  protocol code 
00  Index of string 
hen the PC discovers a HID device it will start to request a further set of descriptors called report descriptors. 
he report descriptors define the structure of the data that is to be transferred for this HID device. The USB 

mplementers forum maintain a set of HID usage tables that define data structures for a number of common 
evices. However it is possible to define a vendor-specific structure that matches your requirements. 
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The report structure shown below defines a vendor-specific report descriptor which configures the HID driver to 
transfer two 8 bit signed bytes IN to the PC and two 8 bit signed bytes OUT of the PC. The IN transfer must be 
done over an interrupt pipe and the OUT transfer will be made over the control channel by default, or it can use 
an OUT interrupt pipe if one is available. The maximum transfer rate for a HID based device would be that of an 
interrupt pipe or a 64 byte packet every frame or 64Kbytes/sec, roughly five times the speed of a serial port. 
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HID report descriptor table 
 06h A0h FFh  Usage page   (Vendor Defined) 
 09h A5h  Usage    (Vendor Defined) 
 A1h 01h  Collection   (Application) 
 09h 06h  Usage    (Vendor defined) 
Input Report 
 09h A7h  Usage    (Vendor defined) 
 15h 80h  Logical Minimum (-128) 
 25 7F   Logical Maximum ( 127) 
 75 08   Report size  ( 8 bits) 
 95 02   Report Count  ( 2 fields) 
 81 02   Input   (Data variable absolute)
Output report 
 09h A7h  Usage    (Vendor defined) 
 15h 80h  Logical Minimum (-128) 
 25 7F   Logical Maximum ( 127) 
 75 08   Report size  ( 8 bits) 
 95 02   Report Count  ( 2 fields) 
 91 02   Output   (data variable absolute)
 C0h   End Collection 
nce the USB device has enumerated as a HID device, we need to be able to communicate to the USB 
twork from your application software. This is done by the WIN32 API that allows you to access many of the 
nctions within the Windows operating system. It is possible to use any development tool that can access the 
I such as Visual C++ or Visual Basic. If you are using Visual C++ you need to order the Windows Driver 

evelopment Kit (DDK) from the Microsoft website which is free but costs $25 for shipping. The DDK includes 
b and .h files that are necessary for accessing the API functions needed to control the HID driver. 

full HID programming tutorial is given the  book “ USB complete” by Jan Axelson, which is recommended 
ading if you are just starting with USB. As a brief outline, the application software has to find out how many 
ID drivers are active within Windows, then interrogate each one until it discovers the driver associated with 
ur USB peripheral. This is done by locating the driver with your vendor and product ID. Once the driver is 
und we can read its capabilities to give the report structure to the application and then finally we can use read 
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file and write file to transfer our application data. A complete client example is included with the MCB23000 
evaluation software and all the necessary API function calls are encapsulated into six C functions that you may 
easily use in your own application. 
 
The second driver of interest is the Mass Storage Class driver. This allows our USB device to appear as a 
remote drive so we can easily upload and download files to it. The MCB2300 comes with a Mass storage 
example that stores files in a FAT 16 RAM disk within the on-chip RAM of the LPC2300. You do not need to 
modify the Mass storage firmware and it can be treated as a black box but in order make practical use of this 
example, you would need to write the file handling functions to read and write to this RAM disk.  
 

he full version of the Keil RTL-ARM operating system provides a USB stack and FLASH file system that makes 

y 

he LPC2300 has a combination of USB peripheral and DMA peripheral that allows you to make very high 

The Keil RTL-ARM operating system
includes a USB stack and FLASH file
system for rapid development of
complex products. 

 
T
this easy to implement. If you need a large amount of storage you can add a multimedia card to the SPI port, 
which gives you megabytes of FLASH memory for storage. 
 

5.4 Summar
 
T
performance USB based devices. With a bit of background reading and using examples delivered with the 
MCB2300 you can very quickly get an USB system up and running. For comprehensive USB support, the Keil 
RTL-ARM comes with a ready-made USB stack and file system that allows you to make sophisticated USB 
devices without lots of low-level programming. 
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5.5 CAN Controller 
 
The LPC2300 is available with 2 independent CAN controllers on board the chip. The CAN controllers are one 
of the more complicated peripherals on the LPC2300. Although the CAN protocol was developed for automotive 
networking it is now well established a general purpose embedded networking protocol and is widely used for 
distributed control systems. In this section we will have a look at the CAN protocol and the LPC2300 CAN 
peripheral. 
 
The Controller Area Network (CAN) Protocol was developed by Robert Bosch for automotive networking in 
1982. Over the last 22 Years CAN has become a standard for automotive networking and has had a wide 
uptake in non-automotive systems where it is required to network together a few embedded nodes. CAN has 
many attractive features for the embedded developer. It is a low-cost, easy-to-implement, peer-to-peer network 
with powerful error checking and a high transmission rate of up to 1 Mbit/sec. Each CAN packet is quite short 
and may hold a maximum of eight bytes of data. This makes CAN suitable for small embedded networks which 
have to reliably transfer small amounts of critical data between nodes. 
 

5.5.1.1 ISO 7 Layer Model 
 
In the ISO seven layer model the CAN protocol covers the layer two ‘data link layer’, i.e. forming the message 
packet, error containment, acknowledgement and arbitration. 
 

 
 
CAN does not rigidly define the layer 1 ‘Physical layer’ so CAN messages may be run over many different 
physical mediums. However, the most common physical layer is a twisted pair and standard line drivers are 
available. The other layers in the IOS model are effectively empty and the application code directly addresses 
the registers of the CAN peripheral. In effect, the CAN peripheral can be used as a glorified UART without the 
need for an expensive and complex protocol stack. Since CAN is also used in industrial automation there are a 
number of software standards that define how the CAN messages are used to transfer data between different 
manufacturers’ equipment. The most popular of these application layer standards are CANopen and DeviceNet. 
The sole purpose of these standards is to provide interoperability between different OEM equipment. If you are 
developing your own closed system you do not need these application layer protocols and are free to implement 
you own proprietary protocol, which is what most people do. 
 

5.5.2 CAN Node Design 
 
A typical CAN node is shown below. Each node consists of a microcontroller and a separate CAN controller. 
The CAN controller may, as in the case of the LPC2300, be fabricated on the same silicon as the 
microcontroller or it may be a stand-alone controller in a separate chip to the microcontroller. The CAN 
controller is interfaced to the twisted pair by a line driver and the twisted pair is terminated at either end by a 120 
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Ohm resistor. The most common mistake with a first CAN network is to forget the terminating resistors and then 
nothing works. 
 

 
 
One important feature about the CAN node design is that the CAN controller has separate transmit and receive 
paths to and from the physical layer device. So, as the node is writing on to the bus it is also listening back at 
the same time. This is the basis of the message arbitration and for some of the error detection. 
 
The two logic levels are written onto the twisted pair as follows, a logic one is represented by bus idle with both 
wires held half way between 0 and Vcc. A logic Zero is represented by both wires being differentially driven.  

CAN node hardware: A typical CAN node
has a microcontroller, CAN controller,
physical layer and is connected to a
twisted pair terminated by 120 Ohm
resistors. 

CAN Physical layer signals:
On the CAN bus, logic zero is
represented by a maximum voltage
difference called “Dominant” and logic
one by a bus idle state called
“recessive”.  A dominant bit will
overwrite a recessive bit. 
 

 

 
In “CAN speak” a logic one is called a recessive bit and a logic zero is called a dominant bit. In all cases a 
dominant bit will overwrite a recessive bit. So, if ten nodes write recessive and one writes dominant, then each 
node will read back a dominant bit. The CAN bus can achieve bit rates up to a maximum of 1 Mbit/sec. Typically 
this can be achieved over about 40 metres of cable. By dropping the bit rate, longer cable runs may be 
achieved. In practice you can get at least 1500 metres with the standard drivers at 10 Kbit/sec.  
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5.5.3 CAN Message Objects 
 
The CAN bus has two message objects which may be generated by the application software. The message 
object is used to transfer data around the network. The message packet is shown below. 
 

CAN message packet : The message packet is formed by the CAN controller, the application
software provides the data bytes, the message identifier and the RTR bit 

 
The message packet starts with a dominant bit to mark the start of frame. Next comes the message identifier 
which may be up to 29 bits long. The message identifier is used to label  the data being sent in the message 
packet. CAN is a producer / consumer protocol. A given message is produced from one unique node and then 
may be consumed by any number of nodes on the network simultaneously. It is also possible to do point-to-
point communication by making only one node interested in a given identifier. Then a message can be sent from 
the producer node to one given consumer node on the network. In the message packet the RTR bit is always 
set to zero. (This field will be discussed shortly.) The DLC field is the data length code and contains an integer 
between 0 and 8 which indicates the number of data bytes being sent in this message packet.  
 
So, although you can send a maximum of 8 bytes in the message payload it is possible to truncate the message 
packet in order to save bandwidth on the CAN bus. After the 8 bytes of data there is a 15-bit cyclic redundancy 
check. This provides error detection and correction  from the start of frame up to the beginning of the CRC field. 
After the CRC there is an acknowledge slot. The transmitting node expects the receiving nodes to assert an 
acknowledge in this slot within the transmitting CAN packet. In practice the transmitter sends a recessive bit and 
any node which has received the CAN message up to this point will assert a dominant bit on the bus, thus 
generating the acknowledge. This means that the transmitter will be happy if just one node acknowledges its 
message, or if 100 nodes generate the acknowledge. So when developing your application layer care must be 
taken to treat the acknowledge as a weak acknowledge, rather than confirmation that the message has reached 
all its destination nodes. After the acknowledge slot there is an end of frame message delimiter. 
 
It is also possible to operate the CAN bus in a master / slave mode. A CAN node may make a remote request 
onto the network by sending a message packet which contains no data, but has the RTR bit set. The remote 
frame is requesting a message packet to be transmitted with a matching identifier. On receiving a remote frame, 
the node which generates the matching message will transmit the corresponding message frame. 
 

Remote Transmit request: The RTR
frame is used to request message
packets from the network as a
master / slave transaction 
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As previously mentioned, the CAN message identifier can be up to 29 bits long. There are two standards of 
CAN protocol, the only difference being the length of the message identifier. 
 
2.0A   Has an 11-bit identifier 
 
2.0B Passive  Has an 11-bit identifier 
 
2.0B Active  Has a 29-bit identifier 
 
It is possible to mix the two protocol standards on the same bus but you must not send a 29- bit message to an 
2.0A device 

5.5.4 CAN Bus Arbitration 
 
If a message is scheduled to be transmitted on to the bus and the bus is idle, it will be transmitted and may be 
picked up by any interested node. If a message is scheduled and the bus is active, it will have to wait until the 
bus is idle before it can be transmitted. If several messages are scheduled while the bus is active, they will start 
transmission simultaneously once the bus becomes idle, being synchronised by the start of frame bit. When this 
happens, the CAN bus arbitration will take place to determine which message wins the bus and is transmitted. 
 
CAN arbitrates its messages by a method called “non-destructive bit-wise arbitration”. In the diagram above, 
three messages are pending transmission. Once the bus is idle and they are synchronised by the start bit, they 
will start to write their identifiers onto the bus. For the first two bits, all three messages write the same logic and 

hence read back the same logic so each node continues transmission. However on the third bit, node A and C 
write dominant bits and node B writes recessive. At this point, node B wrote recessive but reads back dominant. 
In this case it will back off the bus and start listening. Node A and C will continue transmission until node C write 
recessive and node A writes dominant. Now node C stops transmission and starts listening. Now node A has 

CAN arbitration: 

Message arbitration guarantees
that the most important
message will win the bus and
be sent without any delay.
Stalled messages will then be
sent in order of priority, lowest
value identifier first. 
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won the bus and will send its message. Once A has finished, nodes B and C will transmit and node C will win 
and send its message. Finally node B will send its message. If node A is scheduled again, it will win the bus 
even though the node B and C messages have been waiting. In practice the CAN bus will transmit the message 
with the lowest value identifier. 
 

5.5.5 Bit Timing 
 
Unlike many other serial protocols, the CAN bit rate is not just defined by a Baud rate prescaler. The CAN 
peripheral contains a Baud rate prescaler but it is used to generate a time quanta i.e. a time slice. A number of 
these time quanta are added together to get the overall bit timing. 
 
The bit period is split into three segments. First is the sync segment, which is fixed at one time quanta long. The 
next two segments are Tseg1 and Tseg2 where the user defines the number of time quanta in each region. The 
minimum number of time quanta in a bit period is 8 and the maximum is 25. The receiving sample point is at the 

end of Tseg1 so changing the ratio of Tseg1 to Tseg2 adjusts the sample point. This allows the CAN protocol to 
be tuned to the transmission channel. If you are using long transmission lines, the sample point can be moved 
backwards. If you have drifting oscillators you can bring the sample point forward. In addition, the receivers can 
adjust their bit rate to lock onto the transmitter. This allows the receivers to compensate for small variations in 
the transmitter bit rate. The amount that each bit can be adjusted is called the “synchronous jump width” and 
may be set to between 1 – 4 time quanta and is again user definable. 

CA

prot
period
num
allo

chan

N bit timing: 

Unlike other serial
ocols the CAN bit

 is constructed as a
ber of segments that

w you to tune the CAN
data transmission to the

nel being used. 

 
To calculate the bit timing, the formula is given by 
  
Bit rate = Pclk/(BRP x ( 1 + Tseg1 + Tseg2)) 
 
Where: BRP = Baud rate prescaler 
 
This calculation has a lot of unknowns. If we assume that we want to reach a bit rate of 125K with a 60 MHz 
Pclk and a sample point of about 70%, here is how the BRP calculation is performed. 
 
The total number of time quanta in a bit period is given by (1+Tseg1+Tseg2) . If we call this term QUANTA and 
rearrange the equation in terms of the Baud rate prescaler:  
 
BRP = Pclk/(Bit rate x QUANTA) 
 
Using our known values: 
 
BRP = 60 MHz/(125K x QUANTA) 
 
Now we know that we can have between 8 and 25 time quanta in the bit period, so using a spreadsheet we can 
substitute in integer values between 8 and 25 for QUANTA until we get an integer value for BRP. 
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In this case when QUANTA = 16 BRP = 30; 
 
Then 16 = Quanta = ( 1+Tseg1+Tseg2) 
 
So we can adjust the ratio between Tseg1 and Tseg2 to give us the desired sample point. 
 
Sample point = (QUANTA x 70)/100 
 
Hence 16 *0.7 = 11.2.  This gives Tseg 1 = 10, Tseg2 = 5 and the sample point = 68.8% 
 
The value for the synchronous jump width may be calculated via the following rule of thumb. 
 
Tseg2 >= 5 Tq then program SJW to 4 
Tseg2 < 5 Tq then program SJW to (Tseg2 - 1) Tq 
 
In this case SJW = 4. 
 

5.5.6 CAN Message Transmission 
 
In the LPC2300, each CAN controller has a number of status and control registers plus three transmit buffers 
and a receive buffer. 
 

 
 
In order to configure CAN controller we must program the bit timing register. However the bit timing register is a 
protected register and may only be written to when the CAN controller is in reset. Bit zero of the mode register is 
used to place the CAN controller into reset. 

The CAN bit timing is defined by
5 separate parameters 
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We can use the values calculated above to initialise one of the CAN controllers to 125Kbit/sec. It is important to 
note that the values stored in the register are the calculated values minus 1. This ensures that no timing 
segment is set to zero. Once the CAN controller has been initialised, it is possible to transmit a message by 
writing to a transmit buffer. Each transmit buffer is made up of four words.  

 
Two words are used to hold the 8 bytes of data and one word holds the message identifier. The final register is 
the frame information register.  
 

The parameters of each CAN message
are defined in each message buffer. 

 
This register holds the values of the DLC and the RTR bit. In addition, there is a frame format (FF) bit that 
defines whether the message has an 11-bit or 29-bit identifier. As there are three TX buffers it is possible to 
define an internal priority for each TX buffer. If several buffers are scheduled simultaneously, the CAN controller 
will use internal arbitration to decide which is transmitted first. This can be done in one of two ways; if the TPM 
bit in the MODE register is Zero, the transmit buffer with the lowest value identifier will be sent first. If TPM is 
high, then arbitration will use the values stored in the PRIO field in the TX Frame Information register and the 
buffer with the lowest PRIO value is sent first. Once the buffer has been filled with a message, transmission can 
be started by setting the Transmit request bit (TR) in the COMMAND register. The code below shows some 
code fragments to initialise the CAN peripheral and transmit a message. 
 
 
C2MOD = 0x00000001;   // Set CAN controller into reset 
C2BTR = 0x001C001D;   // Set bit timing to 125k 
C2MOD = 0x00000000;   // Release CAN controller 
 
if(C2SR & 0x00000004) // See if TX Buffer 1 is free 
{ 
 C2TFI1 = 0x00040000;  // Set DLC to 4 bytes   
 C2TID1 = 0x00000022;  // Set address to 0x22 Standard Frame 
 C2TDA1 = NetworkData;  // Copy some data into first four bytes 
 C2CMR  = 0x00000001;  // Transmit the message 
} 
 

 
 Exercise 24 : CAN Transmit 

125K bits\second and repeatedly transmits a
CAN message frame. 
This exercise configures the second CAN channel for 
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5.5.7 CAN Error Containment 
 
The CAN protocol has five methods of error containment built into the silicon. If any error is detected, it will 
cause the transmitter to resend the message so the CPU does not need to intervene unless there is a gross 
error on the bus. There are three error detection methods at the packet level; form check, CRC, and 
acknowledge plus two at the bit level; bit check error and bit stuffing error. Within the CAN message there are a 
number of fields that are added to the basic message. On reception, the message telegram is checked to see if 
all these fields are present.  If not, the message is rejected and an error frame is generated. This ensures that a 
full, correctly formatted message has been received. 
 
 

Frame Check: 

The frame check tests that
a correctly formatted CAN
message has been
received. 

 
Each message must be acknowledged by having a dominant bit inserted in the acknowledge field. If no 
acknowledge is received, the transmitter will continue to send the message until an acknowledge is received.  
 

Acknowledge: 

All CAN frames must be
acknowledged. If there is no
handshake, the message will
be re-sent . 
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The CAN message packet also contains a 15 bit CRC which is automatically generated by the transmitter and 
checked by the receiver. This CRC can detect and correct 4 bits of error in the region from the start-of-frame to 
the beginning of the CRC field. If the CRC fails and the message is rejected, an error frame is placed onto the 
bus. 
 

nce a node has won arbitration it will start to write its message onto the bus. As during arbitration as each bit 

 

his leads to one of the golden rules in developing a CAN network. In a CAN network, every identifier must be 

CRC:  

A 15 bit CRC is automatically
generated which is a
weighted polynomial
checksum that provides
error detection and
correction across the
message packet 

 
 
O
is written onto the bus, the CAN controller is reading back the level written onto the bus. As the node has won 
arbitration nothing else should be transmitting so each bit level written onto the bus must match the level read 
back. If the wrong level is read back, the transmitter generates an error frame and reschedules the message. 
The message is sent in the next message slot but must still go through the arbitration process with any other 
scheduled message.  
 

Bit check error: 

Once the arbitration has
finished the write and read
back mechanism is use for
bitwise error checking 

 
T
uniquely generated. So you must not have the same identifier sent from two different nodes. If this happens, it is 
possible that two messages with the same ID are scheduled together, both messages will fight for arbitration 
and both will win as they have the same ID.  Once they have won arbitration they will both start to write their 
data onto the bus.  At some point this data will be different and this will cause a bit check error. Both messages 
will be rescheduled, win arbitration and go into error again. Potentially this ‘deadly embrace’ can lock up the 
network, so beware! 
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At the bit level, CAN also implements a bit stuffing scheme. For every five dominant bits in a row, a recessive bit 
is inserted.  

 
 
This helps to break up DC levels on the bus and provides plenty of edges in the bit stream which are used for 
resynchronisation. An error frame in the CAN protocol is simply six dominant bits in a row. This allows any CAN 
controller to assert an error onto the bus as soon as the error is detected, without having to wait until the end of 
a message. Internally each CAN controller has two counters.  
 

Bit Stuffing: 

For every five bits of one
logic in a row a stuff bit of
the opposite logic is
inserted. The error frame
breaks this rule by being six
dominant bits in a row 

Error counters:
The CAN controller moves between a
number of error states that allow a node
to fail in an elegant fashion, without
blocking the bus 

These are a receive error counter and a transmit error counter. These counters will count up when receiving or 
transmitting an error frame. If either counter reaches 128, then the CAN controller will enter an ‘error passive’ 
mode. In this mode it still responds to error frames but if it generates an error frame, it writes recessive bits in 
place of dominant bits. If the transmit error counter reaches 255 then the CAN controller will go into a bus-off 
condition and take no further part in CAN communication. To restart communication, the CPU must intervene to 
reinitialise the controller and put it back onto the bus. Both these mechanisms are to ensure that if a node goes 
faulty, it will fail gracefully and not block the bus by continually generating error frames. 
 
The LPC2300 CAN controllers have a number of error detection mechanisms. First of all, the current count of 
the transmit and receive error counters can be read in the Global Status Register.  
 
Also in this register are two error flags, the Bus Status flag will be set when the maximum error count is reached 
and the CAN controller is removed from the bus. The second error flag is the Error Status flag, which is set 
when the CAN error counters reach a warning limit. This warning limit is an arbitrary value that is set by writing a 
value into the Error Warning limit register.  The default value in this register is 96. Like the bit timing registers, 
the EWL register may only be modified when the CAN controller is in reset. In addition, the Interrupt Capture 
Register provides extensive diagnostics for managing events on the CAN bus. 
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The CAN controller has the following interrupt sources, 
 

1. Transmit interrupt (one for each buffer) 
2. Receive interrupt 
3. Error Warning 
4. Data overrun 
5. Wake up 
6. Error Passive 
7. Arbitration lost 
8. Bus error 
9. ID ready  

 

5.5.8 CAN Message Reception 
 
Once initialised, the CAN controller is able to receive messages into its receive buffer. This is similar in layout to 
the transmit buffers 
 

 
 
The RX Frame Status register is analogous to the TX Frame information register.  However it has two additional 
values. These are the ID Index and the BP bit and these will be explained in the next section.   
 
The code below demonstrates how to receive a CAN message:  
 
int main(void) 
{ 
 VPBDIV = 0x00000001;  //Set PClk to 60MHz 
 IODIR1 = 0x00FF0000;  // set all ports to output 
 PINSEL1|= 0x00040000;  //Enable Pin 0.25 as CAN1 RX 
 C1MOD = 0x00000001;  //Set CAN controller into reset 
 C1BTR = 0x001C001D;  //Set bit timing to 125k 
 C1IER =0x00000001;  //Enable the Receive interrupt  
 VICVectCntl0 = 0x0000003A;  //select a priority slot for a given interrupt 
 VICVectAddr0 = (unsigned)CAN1IRQ;  //pass the address of the IRQ  
         //into the VIC slot 
 VICIntEnable = 0x04000000;   //enable interrupt 
 AFMR = 0x00000001;   //Disable the Acceptance filters  
 C1MOD = 0x00000000;   //Release CAN controller 
 
 while(1){;} 
} 
 
void CAN1IRQ (void)   __irq 
{ 
 IOCLR1 = ~C1RDA;  // clear output pins 
 IOSET1 = C1RDA; // set output pins 
 C1CMR = 0x00000004;  // release the receive buffer 
 VICVectAddr = 0x00000000; // Signal the end of interrupt 
} 
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5.5.9 Acceptance Filtering 
While the receive example shown above will work perfectly well, it suffers from two problems. Firstly, it receives 
every message transmitted on the bus. In a fully loaded CAN bus this could mean a message would be received 
every 72us. As the LPC2000 has up to 4 CAN controllers, the CPU would have to spend a lot of time just 
managing the CAN busses. Secondly, once the message has been received the CAN controller would have to 
read and decode the message identifier in order to decide what to do with the message. In order to overcome 
these problems, the LPC2000 CAN controllers have a sophisticated acceptance filtering scheme. The 
acceptance filter is used to screen messages as they come in from the CAN bus. The acceptance filter can be 
programmed to pass or block message identifiers before they enter the CAN controller for processing. This 
prevents unwanted messages entering the CAN receive buffer and consequently greatly reduces the overhead 
on the CPU.  
 
The acceptance filter has 2K of RAM (512 x 32), which may be allocated into tables of identifiers. This allows 
ranges of messages and individual messages to be able to enter into the CAN receive buffer.  
 
As a message passes through the acceptance filter, it is assigned an ID Index.  This is an integer number that 
relates to the message ID’s offset in the acceptance filter table. This number is stored in the RX Frame Status 
register. So rather than decode the raw message ID, it is easier and faster to use the index value to decide what 
message has been received. 
 
The acceptance filter also has a Full CAN mode. In this mode the messages are received and scanned against 
the table of permissible identifiers.  If a match is made, the message is stored not in the CAN controller receive 
buffer but in a dedicated message buffer within the acceptance filter memory. In this mode, each message has 
its own unique message buffer at a fixed location, making all the CAN data easily accessible from the CPU. 
 
 

Acceptance filters: 

 
The CAN modules one 2K
block of RAM which is used
to set up filter tables to
efficiently handle high bus
loadings without overloading
the CPU. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.5.9.1 Configuring The Acceptance Filter 
 
The acceptance filter is configured by seven registers. Control of the filter is via the mode register. The various 
ID tables are configured by the next five registers and the seventh register is an error reporting register. 
 
Before configuration of the acceptance filter can start it must be disabled. This is done by setting the AccOff bit 
and clearing the AccBP bit in the acceptance filter mode register. If the CAN controller is run with this 
configuration, then all messages on the bus will be received.  
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Once the acceptance filter is disabled, each of the four filter tables may be configured. The four tables are as 
follows: 
 
Individual standard identifiers  (11 bit ID) 
Groups of standard identifiers  (11 bit ID) 
Individual Extended identifiers  (29 bit ID) 
Groups of extended identifiers  (29 bit ID) 
 
The acceptance filter RAM starts at 0xE0038000.  Each of the tables must be defined and fixed at absolute 
locations in the filter RAM. The start address of each table should then be written into the relevant acceptance 
filter register. The tables should start at the beginning of RAM and use the memory contiguously.  Finally, the 
address of the last used location of RAM should be written into the End of Table register. To enable the 
Acceptance filter, set the ACCoff bit to logic one and AccBP bits to zero.  
 
Each of the tables is constructed as follows: 
 

 
 
The Individual Standard identifier table allows you to define individual 11-bit identifiers that will pass through the 
acceptance filter. Each definition takes two bytes, the first 11 bits contains the message identifier to be passed. 
This is followed by a bit to dynamically enable or disable this filter entry. Finally, the top three bits associates 
this filter entry with a particular CAN controller. 
 

 
The group standard identifier table uses the same format but two entries are used to define the upper and lower 
identifier address range for messages that are allowed to pass through the acceptance filter 
 

 
The individual extended identifier table uses four bytes per entry, as shown above.  The first 29 bits define the 
message identifier to be passed through the acceptance filter and the top three bits associates the filter entry 
with a particular CAN controller. The group extended identifier table uses two words in the same format as the 
individual extended table to build up a start and end identifier values in the same fashion as the standard 
message group table  
 
The following code shows how the acceptance filters may be configured for the basic CAN mode.  
 
unsigned  int StandardFilter[2]  _at_ 0xE0038000;   //Declare the standard  
                                            //acceptance filter table  
unsigned  int GroupStdFilter[2]  _at_ 0xE0038008;   //Next the standard Group  
               //filter table  
unsigned  int IndividualExtFilter[2] _at_ 0xE0038010; //Now the extended filter  
                                                      //table 
unsigned  int GroupExtFilter[2] _at_ 0xE0038018;  //Finally the Group extended  
          //filter table 
  
 
AFMR = 0x00000001;          // Disable the Acceptance filters 
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StandardFilter[0] = 0x20012002; // Setup the standard filter table 
StandardFilter[1] = 0x20032004; // Allow Ids  1,2,3 & 4 
SFF_sa = 0x00000000; // Set start address of Standard table 
SFF_GRP_sa = 0x00000008; // Set start address of Standard group table 
EFF_sa = 0x00000008;  // Set start address of Extended table 
EFF_GRP_sa = 0x00000008; // Set start address of Extended group table 
ENDofTable = 0x00000008; // Set end of table address 
AFMR = 0x00000000;  // Enable Acceptance filters 
C1MOD = 0x00000000;  // Release CAN controller 
 
 
 Exercise 25 : CAN Receive 

This example configures the CAN peripheral for 125Kbits/sec and sets the acceptance filters to
receive one of three message frames. 

 
 
 
 
 
 

5.5.9.2 Full CAN Mode 
 
The LPC23xx CAN controllers have a more advanced Full CAN mode that uses part of the acceptance filter 
RAM as receive buffers. In this mode an extra filter table called the FullCANID table is created and a region of 
the acceptance filter RAM is converted into individual receive buffers. The FullCANID table is located at the start 
of the acceptance filter RAM and ends at the memory location defined by the Standard frame format register.  
Whenever a CAN message is received which matches an ID stored in the FullCANID table, it will be 
automatically stored in its dedicated receive buffer. In effect you can create an area of ‘virtual’ memory that is 
shared across the network and will be updated in all nodes that are interested in this data whenever the 
matching CAN message is transmitted.  

 
 
 
 
 

Full CAN mode:
In Full CAN mode the
CAN RAM may also be
configured as additional
receive buffers which
store incoming data for
the CPU to read as
required. 

 
 
 
 
 
 

The acceptance filter is configured in the same way as for basic CAN mode and you enable the Full CAN mode 
by setting the eFCAN bit in the acceptance mode filter register. However you must ensure that there is enough 
room in the Acceptence filter RAM for the Full CAN receive buffers. You can ensure this by meeting the 
following criteria: 
 
First we must calculate the storage space required for the Full CAN acceptance table: 
 
SFF_sa  = 2 x number of Full CAN messages  
 
Where SFF_sa is a multiple of four 
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Then we must calculate the space required for the Full CAN receive buffers: 
EoT <= 0x800 – (6 x SFF_Sa)  
 
Now when a message is received with a matching identifier in the Full CAN message table it will be read from 
the CAN controller receive buffer and stored in a 12 byte buffer in the acceptance RAM at a location starting 
given by  
 
Message buffer address = End Of Table address  + (index in Full CAN table x 12) 
 
The message is stored as a 12 byte message buffer which consists of the Receive frame status, semaphore 
field message, identifier and the message data bytes. 
 
 
 
 
 
 
The semaphore field is a 2-bit field which is used to ensure that the CPU does not read from the message buffer 
while the CAN controller is updating the message data. When a new message is received and makes a hit on 
the Full CAN acceptance filter.  The CAN controller will first write the frame status information and will set the 
semaphore field to its updating status (bit pattern 01). The remaining message data is written to the message 
buffer by the CAN controller. When all the message data has been written, the CAN controller will set the 
semaphore field to its finished updating status (bit pattern 11). Before the CPU reads any message data it must 
check the semaphore field. Data may only be read from the message buffer if the CAN controller has finished 
writing a CAN message to the buffer. When the CPU starts to read the Full CAN buffer it should clear both 
semaphore bits then read the new message. Once the data has been read out of the receive buffer the 
semaphore bits should be checked again before passing the new data to the application. If the semaphore bits 
do not read zero, then a new message has been received while the data was being read out of the message 
buffer. This means that the received data may have been corrupted by the new message and should be 
discarded. The message buffer should be re read as described above. 
 
 
 
 
 
 

Exercise 26:  Full CAN Message Filtering 
cise looks at receiving the CAN data using Full CAN mode of the LPC2300 using the filteThis exer r

RAM as additional receive buffers.  
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6 Chapter 6: Using The Keil Real Time Executive 
 
In this chapter we will look at using a typical small footprint RTOS on an ARM based microcontroller. If you are 
used to writing procedural based C code on small microcontrollers such as PIC and 8051, you may be doubtful 
about the need for an operating system. If you are not familiar with using an RTOS in real time embedded 
systems you should read this chapter before dismissing the idea. The use of an RTOS represents a more 
sophisticated design approach that inherently fosters structured code development and allows you to take a 
more object-orientated design approach as the RTOS provides you with multitasking support on a small 
microcontroller. The use of an RTOS also helps improve project management and code reuse. On the downside 
an RTOS has additional memory requirements and increased interrupt latency. Typically a small footprint RTOS 
will require between 500 and 5k bytes of RAM. To put it simply, we now have a generation of small low-cost 
microcontrollers that have enough on-chip memory and processing power to support the use of an RTOS. Why 
use an RTOS - because now you can! 
 

6.1 Features 
The RTOS that we are going to use in this chapter is part of the Keil RTL-ARM (“Run Time Library” for ARM). 
The full run time library includes an extensive set of middleware which features an easy-to-user TCP/IP stack, 
FLASH file system USB and CAN drivers and enhanced debug support, as well as the RTOS kernel. The 
middleware components can be used stand-alone or can be used as services by the RTOS. 
 
 
 
 
 
 
 The Keil RTL-ARM includes an RTOS kernel, FLASH file

system, TCP/IP stack, USB and CAN drivers and enhanced
debug support 

 
 
 
 
 
 
 
 
The RTOS itself consists of a scheduler that supports round-robin, pre-emptive and co-operative multitasking of 
program tasks, as well as time and memory management services. Inter-task communication is supported by 
additional RTOS objects, including event triggering, semaphores, mutex and a mailbox system.  As we will see, 
interrupt handling can also be accomplished by prioritised tasks that are scheduled by the RTOS kernel. 
 

The RTOS kernel contains a scheduler that runs program
code as tasks. Communication between tasks is
accomplished by RTOS objects such as events,
semaphores mutex and mailbox. Additional RTOS
services include time and memory management and
interrupt support. 
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6.2 Setting Up A Project 

ow that we have some idea what a typical RTOS offers to a developer, we can look at how you move from a 

s 

 to the startup code and our C code in MAIN.C, there is an extra file called RTX_Config.c. As its name 

know that we are using the RTOS so that it can link in the correct library. This is 

art of the RTOS runs in the privileged supervisor mode and is called with software interrupts (SWI).  We must 

ult SWI handler must be commented out and the SWI_Handler label must be 

 
N
straight C application to an RTOS-based development. In this case we are going to use the Keil RTL-RTOS 
kernel that is part of the standard RV-MDK-ARM.  The structure of a simple RTOS project is shown below: 
 
 
 
 
 
 
 
Tasks 
 

erviceS
 
n additionI
implies, this file holds the configuration settings for the RTOS. This file is specific to the ARM-based 
microcontroller you are using and its different versions can be found in C:\Keil\ARM\RV30\Startup\. Just select 
the correct version for the microcontroller family you are using and the RTOS will work “out of the box”. We will 
examine this file in more detail later when we have looked closer at the RTOS and understand what needs to be 
configured.  To enable our C code to access the RTOS API, we need to add its include file to all our application 
files, so in MAIN.C you must add the following include file: 
 
include <RTL-RTOS.h> #

 
e must let the MAKE utility W

done by selecting “RTOS support” in the “options for target\target” menu. 
 
 
 
 
 
 
 
 
 
 
P
therefore disable the SWI trap in the startup code.  
 

The RTL-RTOS is configuration is held in the file
RTX_Config.c which must be added to your project 

RTOS kernel library is added to
oject by selecting the

ing system in the project 

The 
the pr

–operat
target-options 

You must disable the default software interrupt handler
and import the swi_handler used by the RTOS 

 
 
 
 
 
 
 
 
 
 
 
 
 
In the vector table the defa
declared as an import. These few steps are all that is required to configure a project to use the RTL-RTOS. 
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6.3 Tasks 
 
The building blocks of a typical C program are functions which we call to perform a specific procedure and 

nt procedure ( void)   void task (void) 

 

an RTOS task must contain a while(1) loop so that it 

S_TID id1,id2,id3; 

 order to make the task-switching process happen, we have the code overhead of the RTOS and we have to 

hus the “context switch time”, that is the time to save the current task state and load up the next task and start 

he Task control block contains information about the status of a task. Part of this information is its run state. In 

which then return to the calling function. In an RTOS the basic unit of execution is a “Task”. A Task is very 
similar to a C procedure but has some very fundamental differences. 
 
I
{       {  
       while(1) 
……       {   
          ……   
return(ch);         } 
}       } 
 

hile we always return from our C function, once started W
never terminates and thus runs forever. You can think of a task as a mini self-contained program that runs 
within the RTOS. An RTOS program is made up of a number of tasks, which are controlled by the RTOS 
scheduler. This scheduler is essentially a timer interrupt that will allot a certain amount of execution time to each 
task. So task1 will run for 100ms then be de-scheduled to allow task2 to run for a similar period; task 2 will give 
way to task3 and finally control passes back to task1. By allocating these slices of runtime to each task in a 
round-robin fashion, we get the appearance of all three tasks running in parallel to each other. So conceptually 
we can think of each task as performing a specific functional unit of our program with all tasks running 
simultaneously.  This leads us to a more object-orientated design, where each functional block can be coded 
and tested in isolation and then integrated into a fully running program. This not only imposes a structure on the 
design of our final application but also aids debugging as a particular bug can be easily isolated to a specific 
task.  It also aids code reuse in later projects. When a task is created, it is also allocated its own task ID. This is 
a variable which acts as a handle for each task and is used when we want to manage the activity of the task. 
 
O
 
In
dedicate a CPU hardware timer to provide the RTOS time reference. In addition, each time we switch running 
tasks, we have to save the state of all the task variables to a task stack.  Also, all the runtime information about 
a task is stored in a task control block, which is managed by the RTOS Kernel.  
 
 
 
 Each task has its own stack for saving its data

during a context switch. The task control block
is used by the Kernel to manage the active
tasks 

 
 
 
 
 
 
T
it running, is a crucial figure and will depend on both the RTOS kernel and the design of the underlying 
hardware.  
 
T
a given system only one task can be running and all the others will be suspended but ready to run.  The RTOS 
has various methods of inter task communication (events, semaphores, messages).  Here a task may be 
suspended to wait to be signalled by another task before it resumes its ready state, whereupon it can be placed 
into running state by the RTOS scheduler. 
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At any given moment a single task
may be running. The remaining
tasks will be ready to run and will
be scheduled by the kernel. Tasks
may also be waiting pending an OS
event. When this occurs they will
return to the ready state and be
scheduled by the kernel  . 
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6.4 Starting The RTOS 
 
To build a simple RTOS program we declare each task as a standard C function and also declare a TASK ID 
variable for each function. 
 
void task1 (void) ;  
void task2 (void) ; 
 
OS_TID tskID1,tskID2; 
 
Next we will enter our application through the main() function where we can execute any initialising C code 
before we call the first RTOS function to start operating system running. 
 
void main (void) 
{ 
 IODIR1 = 0x00FF0000;          // Do any C code you want 
 os_sys_init_prio (task1,0x10);  // Start the RTX call the first task and 

set its priority 
} 
 
The os_sys_init() function launches the RTOS but only starts the first task running. After the operating system 
has been initialised, control will be passed to this task. When the first task is created it is also assigned a 

priority. If there are a number of tasks ready to run and they all have the same priority, they will be allotted run 
time in a round-robin fashion. However if a task with a higher priority becomes ready to run, the RTOS 
scheduler will de-schedule the currently running task and start the high priority task running. This is called Pre-
emptive priority based scheduling. 

Tasks of equal priority will be scheduled in a round-robin
fashion. High priority tasks will pre-empt low priority
tasks and enter the running state ‘on demand’. 

 
When assigning priorities you have to be careful because the high priority task will continue to run until it enters 
a waiting state or a task of equal or higher priority is ready to run. 
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6.5 Creating Tasks 
 
Once the RTOS is running there are a number of system calls that are used to manage and control the active 
tasks. When the first task is launched it is not assigned a task ID so the first RTOS function we must call is 
os_tsk_self()  which returns the task ID number, which is then stored in its ID handle “tsk1”. When we want to 
refer to this task in future OS system calls we use this handle rather than the function name of the task. 
 
void task1 (void) 
{ 
tskID1 = os_tsk_self ();          // Read the Task-ID of the first task 
tskID2 = os_tsk_create(task2,0x10);  // Create the second task  
        // and assign its priority 
while(1) 
{ 
………..              
} 
} 
 
Once we have obtained the task number we can use the first task to create further active tasks with the 
os_tsk_create() function. This launches the task, assigns its task ID number and priority. Now we have two 
running tasks of the same priority which will both be allocated an equal share of CPU runtime. While the 
os_create task() call is suitable for creating most tasks, there are some additional task creation calls for special 
cases. 
 
It is possible to create a task and pass a parameter to the task on startup. Since tasks can be created at any 
time while the RTOS is running, a task can be created in response to a system event and a particular parameter 
can be initialised on startup. 
 
TskID3 = os_tsk_create_ex (Task3,priority,parameter); 
 
When each task is created it is also assigned its own stack for storing data during the context switch. Ideally we 
need to keep this as small as possible to minimise the amount of RAM used by the RTOS. However some 
functions may have a large buffer which requires a much larger stack space than other tasks in the system. For 
these functions we can declare a larger RTOS stack rather than increase the default stack size.  
 
static U64 stk4[400/8]; 
TskID4 = os_tsk_create_user (Task4,priority,&stk4, sizeof(stk2));  
 
Finally there is a combination of both of the above task creating calls where we can create a task with a large 
stack space and pass a parameter on startup. 
 
TskID5 = os_tsk_create_user_ex (task2, 
       1,  
       &stk2[0],  
   sizeof(stk2[0]),  
      Parameter); 
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6.6 Task Management 
 
Once there tasks are running there are a small number of OS system calls used to manage the running tasks.  
Once the tasks are running, it is possible to elevate or lower a task’s priority either from another function or from 
within its own code. 
 
OS_RESULT os_tsk_prio (tskID2,  
                       priority); 
  
 os_tsk_prio_self(priority); 
     
As well as creating task it is also possible for a task to delete itself or another active task from the RTOS. Again 
we use the task ID rather than the function name of the task. 
 
RESULT =  os_tsk_delete (tskID1); 
        os_tsk_delete_self (); 
 
Finally there is a special case of task switching where the running task passes control to the next ready task of 
the same priority. This is used to implement a third form of scheduling called co-operative task switching 
 
Os_tsk_pass();  //switch to next ready to run task 
 
 
 

6.7 Multiple Instances 
 
One of the interesting possibilities of an RTOS is that you can create multiple running instances of the same 
base task code. So for example you could write a task to control a UART and then create two running instances 
of the same task code.  Here each instance of the UART code could manage a different UART. 
 
TskID3_0 = os_tsk_create_ex (UART_Task,priority,UART1); 
TskID3_1 = os_tsk_create_ex (UART_Task,priority,UART2); 
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6.8 Time Management 
 
As well as running your application code as tasks the RTOS also provides some timing services which can be 
accessed through RTOS system calls.  
 

6.8.1 Time Delay 
 
The most basic of these timing services is a simple timer delay function. 
 
void os_dly_wait ( unsigned short delay_time ) 
 
This call will place the calling task into the WAIT_DELAY state for the specified number of system timer ticks. 
The scheduler will pass execution to the next task in the READY state. When the timer expires, the task will 
leave the wait_delay() state and move to the READY state. The task will resume running when the scheduler 
moves it to the running state. This is an easy way of providing timing delays within your application. 
 

6.8.2 Periodic Task Execution 
 
We have seen that the scheduler will run tasks with a round-robin or pre-emptive scheduling scheme. With the 
timing services it is also possible to run a selected task at specific time intervals. Within a task we can define a 
periodic wake-up interval. 
 
void os_itv_set ( unsigned short interval_time) // defines the wake up period 
 
Then we can put the task to sleep and wait for the interval to expire. This places the task into the wait_int state 
 
 
void os_itv_wait ( void )  // execution halts here until the task is scheduled 
 
 
When the interval expires the task moves from the wait_int to the READY state and will be placed into the 
running state by the scheduler. 
 

6.8.3 Virtual Timer 
 
As well as running tasks on a defined periodic basis we can define any number of virtual timers which act as 
count down timers. When they expire they will run a user call-back function to perform a specific action. A virtual 
timer is created with the os_timer_create() function. This system call specifies the number of RTOS system 
timer ticks before it expires and a value “info” which is passed to the call-back function to identify the timer. Each 
virtual timer is also allocated an OS_ID handle so that it can be managed by other RTOS calls. 
 
OS_ID os_tmr_create( unsigned short tcnt, unsigned short info ) 
 
When the timer expires it calls the function os_tmr_call(). The prototype for this function is located in the 
RTX_CONFIG.C file . 
 
void os_tmr_call (U16 info) { 
    
   switch(info) 
 { 
 case 0x01 : 
 
 Break ; 
 
}  
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In this function we need to decide which timer has expired by reading the info parameter and then run the 
appropriate code. 
 

6.8.4 Idle Demon 
 
The final timer service provided by the RTOS isn’t really a timer but this is probably the best place to discuss it. 
If during our RTOS program we have no task running and no task ready to run (e.g. they are all waiting on delay 
functions) then the RTOS will use the spare runtime to call an “Idle Demon”  that is again located in the 
RTX_Config.c file. This Idle code is in effect a low priority task within the RTOS that only runs when nothing else 
is ready. 
 
void os_idle_demon (void)  
 { 
  for (;;)  { 
 /* HERE: include here optional user code to be executed when no task runs. */ 
       } 
 } /* end of os_idle_demon */ 
 
You can add any code you want to this task but it has to obey the same rules as for user tasks.  
 
 
 
 
 
 
 

© Hitex (UK) Ltd.                                                                                     Page 199 



Chapter 6: Using The Keil RTL-ARM Real Time Executive                                        

6.9  Intertask Communication  
 
So far we have seen how our application code can be defined as independent tasks and how we can access the 
timing services provided by the RTOS. In a real application we need to be able to communicate between the 
tasks to make a useful application. To this end, a typical RTOS supports several different communication 
objects which can be used to link the tasks together to form a meaningful program. The Keil RTL-RTOS 
supports inter task communication with events, semaphores, mutex, and mailboxes. 
 

6.9.1 Events 
 
When each task is created it has sixteen event flags associated with it in the task control block. It is possible to 
halt the execution of a task until a particular event flag or group of event flags are set by another task in the 
system.  
 

Each task has 16 event flags. A task may be placed
into a waiting state until a pattern of flags is set by
another task. When this happens it will return the
ready state and wait to be scheduled by the kernel. 

 
The two event wait system calls will suspend execution of the task and place it into the wait_evnt state. By using 
the AND or OR version of the event wait call, we can wait for a group of event flags to be set or until one flag in 
a selected group is set. It is also possible to define a periodic timeout after which the waiting task will move back 
to the ready state so that it can resume execution when selected by the scheduler. A value of 0xFFFF defines 
an infinite timeout period. 
 
OS_RESULT os_evt_wait_and (unsigned short wait_flags, unsigned short timeout); 
OS_RESULT os_evt_wait_or (unsigned short wait_flags, unsigned short timeout); 
 
Any task can set the event flags of any other task in a system with the os_evt_set RTOS call. We use the task 
ID to select the desired task. 
 
void os_evt_set (unsigned short event_flags, OS_TID task) 
 
As well as setting a tas’ks event flags it is also possible to clear selected flags. 
 
void os_evt_clr (U16 clear_flags,OS_TID task); 
 
When a task resumes execution after it has been waiting for an event flag it may need to determine which event 
flag has been set so it know how to proceed.  
 
Which_flag = os_evt_get (); 
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6.9.2 RTOS Interrupt Handling  
 
The use of event flags is a simple and efficient method of triggering actions between tasks running within the 
RTOS.  Event flags are also an important method of triggering RTOS tasks from interrupt sources within the 
ARM microcontroller. While it is possible to run C code in an interrupt service routine (ISR), this is not desirable 
within an RTOS because on an ARM device you will disable further general purpose interrupts until you quit the 
ISR. This delays the timer tick and disrupts the RTOS kernel.  
 
  

Main

ISR
level 0

ISR
level 1

ISR
level 2

Time

 
  
 
 
 
 
Also ARM-based microcontrollers do not easily support nested interrupts without additional software support 
and any system based on nested interrupts will have an unpredictable stack usage. With an RTOS application it 
is best to design the interrupt service code as a task within the RTOS and assign it a high priority. The first line 
of code in the interrupt task should make it wait for an event flag. When an interrupt occurs the ISR simply sets 
the event flag and terminates. This schedules the interrupt task which services the interrupt and then goes back 
to waiting for the next event flag to be set. 

A traditional nested interrupt scheme
supports prioritised interrupt handling
but has unpredictable stack
requirements. 

Within the RTOS, interrupt code is
run as tasks and the interrupt
handlers signal the tasks when an
interrupt occurs. The task priority
level defines which task gets
scheduled by the kernel. 

 
 
 
 
 
 
 
 

 

Tasks
Priority 0

IRQ

FIQ

Tasks
Priority 1

Tasks
Priority 2

Time

 
 
To this end the RTOS has an event set call which is designed for use within an interrupt handler. 
 
Void isr_evt_set ( unsigned short event_flags, OS_TID task) 
 
So a typical interrupt task will have the following structure: 
 
void Task3 (void)  
{ 
 
while(1) 
{ 
os_evt_wait_or(0x0001,0xffff);  // Wait for the ISR to trigger an event 
…..      // Handle the interrupt  
}       // loop round and go back to sleep 
} 
 
The actual interrupt source will contain a minimal amount of code. 
 
 –void FIQ_Handler (void) __fiq 
{ 
isr_evt_set(0x0001,tsk3); // Signal Task 3 with an event 
EXTINT   = 0x00000002; // Clear the peripheral interrupt flag 
} 
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6.9.3 Semaphores 
Semaphores are a method of controlling task access to resources within your application. A semaphore is a 
container that holds a number of tokens. Before a task can continue it must acquire a token to perform its 
procedure and then return the token. If all the tokens have been acquired by other tasks, the requesting task will 
wait until another task places a token back into the semaphore for it to take.  
 

Semaphores are used to control access to program
resources.  Before a task can access a resource it must
acquire a token. If none is available it waits. When it is
finished with the resource it must return the token. 

 
So for example if you have a system with ten buffers that are accessed by different tasks, each time a task 
wants to use a buffer it must acquire a token. If all ten buffers are in use the semaphore will be empty and any 
further tasks that want to use a buffer will wait until one is free and the token has been returned to the 
semaphore. Remember we can think of all our tasks as running in parallel so semaphores provide an elegant 
method of controlling access to chip resources. 
 
To use a semaphore in the RTL-RTOS you must first declare a semaphore container: 
 
OS_SEM  <semaphore>; 
 
Then within a task the semaphore container can be initialised with a number of tokens. 
 
 
void os_sem_init ( OS_ID semaphore, unsigned short token_count); 
 
 
Then in a similar fashion to event flags, any task that is controlled by semaphores can acquire a semaphore or if 
none is available, the task will enter the wait sem state until a token is returned to the semaphore container. Like 
the event wait call the os sem wait call can be specified with a timeout and again 0xFFFF specifies an infinite 
wait.  
 
OS_RESULT os_sem_wait ( OS_ID semaphore, unsigned short timeout) 
 
Once the task has finished using the semaphore resource it ca return its token to the semaphore container. 
xxxxxxxxxxxxx 
 
OS_RESULT os_sem_send ( OS_ID semaphore) 
 
Like events support is also provided for interrupt service routines to send semaphore tokens to a semaphore 
container. This allows interrupt routines to control the execution of tasks dependant on semaphore access. 
 
 
Void isr_sem_send ( OS_ID semaphore) 
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6.9.4 Semaphore Caveats 
Used correctly semaphores are an extremely useful feature of any RTOS. However there are a couple of things 
to be aware of when first starting with Semaphores. Firstly the number of tokens in a semaphore is not fixed. 
Tasks can create additional tokens by sending them to the semaphore container. Similarly tokens can be 
removed by not returning them to the container when the task has finished with the resource controlled by the 
semaphore. These are not bugs but a way to make semaphores a very flexible programming mechanism. For 
example you could have several instances of the same task waiting for a semaphore. Then an interrupt routines 
on a number of uarts could send a semaphore token ( creating a new token) when data becomes available. One 
waiting tasks would acquire the token and start processing the data. Further UART interrupts could create more 
tokens to trigger the other waiting tasks. Once each tsk had finished processing the data it would destroy the 
token by not sendin it back and returning to the os_sem_wait call. 
 

6.9.5 Mutex 
Mutex stands for “Mutual Exclusion”. Really a mutex is a specialised version of a semaphore. A mutex is a 
container for tokens like a semaphore however it can only contain one token that cannot be created or 
destroyed. The principle use of a mutex is to control access to a chip resource such as a peripheral. So a mutex 
token is binary and bounded.  Apart from that it really works the same way as a semaphore. First of all we must 
declare the mutex container and initialise the mutex 
 
Os_mut_init(OS_ID mutex) 
 
Then any task that want to access the peripheral must first acquire the mutex token 
 
Os_mut_wait(OS_ID mutex, U16 timeout) 
 
Finally when we are finished with the peripheral the mutex must be released  
 
Os_mut_release(OS_ID mutex) 
 
So mutex use is much more rigid than semaphores but is a much safer mechanism when controlling absolute 
access to underlying chip registers 
 

6.9.6 Mutex Caveats 
Clearly you must take care to return the mutex token when you are finished with the chip resource or you will 
have effectively locked the other tasks out. However you must also be careful about using the os_task_delete() 
call on functions that control mutex token. The RTL-RTOs is designed to be a small footprint RTOS so it can run 
on even the very small ARM microcontrollers. Consequently there is no task deletion safety. This means that if 
you delete a task that is controlling a mutex token you destroy the mutex token and prevent any further access 
to the guarded peripheral. 
 
 

6.9.7 Mailbox 
So far all of the intertask communication methods are only used to trigger execution of tasks,, they do not 
support the exchange of program data between tasks. Clearly in a real program we will need to move data 
between tasks. This could be done by reading and writing to globally declared variables. In anything but a very 
simple program trying to guarantee data integrity would be extremely difficult and prone to unforeseen errors. 
You need to synchronise communication between tasks that increases the coding overhead and ultimately will 
slow the overall system performance. So the exchange of data between tasks needs a more formal 
asynchronous method of communication. The answer in a small RTOS is message queues, these are both 
buffers for storing the data to be transferred and a FIFO pipeline that allows a receiving task to asynchronously 
read messages sent to in the correct order. The RTL-RTOS provides a mailbox system that efficiently supports 
this kind of message passing. The mailbox object supports transfer of single variable data such as bytes integer 
and word wide data, formatted fixed length messages and variable length messages. We will start by having a 
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look at configuring and using fixed length messaging. For this example we are going to consider transferring a 
message which consists of a four byte array which is nominally ADC results data and a single integer of IO port 
data. 
 
Unsigned char ADresult[4]; 
Unsigned int  PORT0; 
 
To transfer this data between tasks we need to declare a suitable mailbox or this data. A mailbox consists of a 
buffer formatted into a series of mail slots and  an array of pointers to each mail slot.  
 
 

A mailbox consists of a memory
block formatted into message
buffers and a set of pointers to each
buffer . 

 
To configure a mailbox object we must first declare the message pointers. Here we are using 16 mailslots, this 
is an arbitary number and will vary depending on your requirements but 16 is a typical starting point. 
 
os_mbx_declare (MsgBox, 16); 
 
Next we must declare a structure to hold the data to be transferred. This is the format of each message slot 
 
Typedef struct  
{ 
Unsigned char ADresult[4]; 
Unsigned int  PORT0; 
}MESSAGE; 
 
Once we have defined the format of the message slot we must reserve a block of memory large enough to 
accomadate 16 message slots 
 
 
Unsigned int mpool[16*sizeof(MESSAGE)/4 + 3] 
 
 
This block of memory next has to be formatted into the required 16 mail slots with a function provided with the 
RTOS 
 
_init_box (mpool, sizeof(mpool), sizeof(MESSAGE)); 
 
Then the final step in configuring  the mailbox is to initialise the mailbox pointers to their associated mailslot 
 
os_mbx_init (MsgBox, sizeof(MsgBox)); 
 
Now if we want to send a message between tasks we create a pointer of the message structure type and 
allocate it to a mailslot 
 
MESSAGE *mptr; 
Mptr = _allocbox(mpool); 
 
Next we fill this mailslot with the data to be transferred 
 
For(I = 0;I<4;I++) 
{ 
Mptr->adresult[I] = Adresult(I); 
Mptr->PORT0     = IOPIN0; 
} 

© Hitex (UK) Ltd.                                                                                     Page 204 



Chapter 6: Using The Keil RTL-ARM Real Time Executive                                        

 
and then send the message. 
 
os_mbx_send (MsgBox, mptr, 0xffff); 
 
In practice this locks the mailslot protecting the data and the message pointer is transferred to waiting task. 
Further messages can be sent using the same calls, this will cause the next mail slot to be used and the 
messages will form a FIFO queue.  In the receiving task we must declare a receiving pointer with the message 
structure type. And then wait for a message with the  os_mxb_wait() call. This call allows us to nominate the 
mailbox we want to use, provide the pointer to the mailslot buffer and a timeout value. 
 
MESSAGE *rptr; 
os_mbx_wait (MsgBox, &rptr, 0xffff);  
 
when the message is received we can simply access the data in the mailslot and transfer this to variables within 
the receiving task. 
 
pwm_value = *rptr->Adresult[0];  
 
Finally when we have made use of the data within the mailslot it can be released so that it can be reused to 
transfer further messages. 
 
_free_box (mpool, rptr);      
 
The following code shows how to put all this together 
 
First the initialising code, outside of the RTOS. 
 
Typedef struct  
{ 
Unsigned char ADresult[4]; 
 Unsigned int  PORT0; 
}MESSAGE; 
Unsigned int mpool[16*sizeof(MESSAGE)/4 + 3] 
os_mbx_init (MsgBox, sizeof(MsgBox)); 
 
Main() 
{ 
….. 
_init_box (mpool, sizeof(mpool), sizeof(MESSAGE)); 
os_sys_init(); 
} 
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A task sending a message: 
 
Void Send_Task(void)  
{ 
… 
MESSAGE *mptr; 
os_mbx_init (MsgBox, sizeof(MsgBox)); 
While(1) 
{ 
mptr = _alloc_box (mpool);  
 For(I = 0;I<4;I++) 
 { 
 Mptr->adresult[I] = Adresult(I); 
 Mptr->PORT0     = IOPIN0; 
 } 
 os_mbx_send (MsgBox, mptr, 0xffff); 
…. 
} 
} 
 
A task to receive the message 
 
Void Receive_Task(void)  
{ 
… 
MESSAGE *rptr; 
While(1) 
{ 
 os_mbx_wait (MsgBox, &rptr, 0xffff);  
    pwm_value = *rptr->Adresult[0];  
_free_box (mpool, rptr);  
…. 
} 
} 
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6.10  Configuration 
So far we have looked at the RTL-RTOS API, this includes task management functions, time management and 
intertask communication. Now that we have a clear idea of exactly what the RTOS kernel is capable of we can 
take a more detailed look at the configuration file. As we mentioned at the beginning you must select the correct 
RTL_config.c for the microcontroller that you are using. All supported microcontrollers have a pre configured 
configuration file so the RTL-RTOS only needs minimal configuration. 
 
 
 
 
 
 
 
 
 
 
 

An RTX_config.c file is provided for each
supported microcontroller. It contains a number of
definitions that customise the RTOS to your
application 
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7 Chapter 7: Using The FreeRTOS Real Time Executive 
 
In the last chapter we looked at the Keil RTL-ARM RTOS that is included with the MDK-ARM commercial 
compiler toolset. In this chapter I will look at a similar real time executive called FreeRTOS that has been ported 
to the LPC2300/LPC2400 and will compile with the GCC toolchain. As its name implies, this real time executive 
may be freely downloaded from freeRTOS.org. The documentation is online but you can also purchase a 
manual in the form of a windows help file for $35.00. 
 

7.1 Porting FreeRTOS To The LPC2300 
Unlike the Keil RTL-RTOS that we looked at in the last chapter FreeRTOS is a general purpose RTOS that can 
be used with a wide variety of different microcontrollers. In order to use FreeRTOS with the NXP 
microcontrollers you must first port it to work with the ARM7 CPU and the LPC2300/LPC2400 devices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The bulk of the FreeRTOS kernel is held in three files; tasks.c, list.c and queue.c.  An additional file croutine.c is 
optional and adds the co-routines feature, which we will look at later. These files are processor independent and 
can be built without any modification. The microcontroller specific files are held in the port folder and these files 
must be modified to allow FreeRTOS to run on the LPC2300/LPC2400. The port files are heap_2.c, port_ISR 
and port.c. Finally, operation of FreeRTOS can be tailored to your application through the settings in the 
FreeRTOSConfig.h file. In the next section, we will look at the necessary modifications to the port files and then 
have a look at the operation of FreeRTOS and its programming API. 
 

7.1.1 Timer Tick 
In order for FreeRTOS to work, we must run the scheduler kernel at regular intervals. This is done by setting up 
a timer interrupt which calls the FreeRTOS scheduler in its ISR. The port.c file contains a function prototype 
which is called by the FreeRTOS code to setup this timer. 
 
static void prvSetupTimerInterrupt( void ) 
 
Inside this function we must dedicate one of the LPC2300 timers to the RTOS and configure it to provide a 1ms 
tick. In the code shown below, timer 0 is used and a match register is configured to provide the 1ms tick. When 
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the match occurs, an interrupt is generated, the timer is reset to zero and then begins counting until the next 
millisecond interrupt is generated. 
 
 
unsigned portLONG ulCompareMatch; 
/* A 1ms tick does not require the use of the timer prescale.  This is 
defaulted to zero but can be used if necessary. */ 
TIMER0_PR = portPRESCALE_VALUE; 
 
/* Calculate the match value required for our wanted tick rate. */ 
ulCompareMatch = configCPU_CLOCK_HZ / configTICK_RATE_HZ; 
 
TIMER0_MR0 = ulCompareMatch; 
 
/* Generate tick with timer 0 compare match. */ 
TIMER0_MCR = portRESET_COUNT_ON_MATCH | portINTERRUPT_ON_MATCH; 
 
Once the timer is configured, we must also setup the Vector Interrupt Controller (VIC) to generate an IRQ 
interrupt. The Timer0 interrupt channel is connected to slot zero in the VIC. This ensures that the Timer 0 
interrupt has the highest priority among the IRQ interrupts.  
 
/* Setup the VIC for the timer. */ 
VICIntSelect &= ~( portTIMER_VIC_CHANNEL_BIT ); 
VICIntEnable |= portTIMER_VIC_CHANNEL_BIT; 
 
VICVectPriority0 = portTIMER_VIC_CHANNEL | portTIMER_VIC_ENABLE; 
/* Start the timer - interrupts are disabled when this function is called 
so it is okay to do this here. */ 
TIMER0_TCR = portENABLE_TIMER; 
 
FreeRTOS supports both pre-emptive  scheduling and co-operative scheduling. As discussed in the last 
chapter, pre-emptive  scheduling will allocate a specific amount of run time to each task before it is descheduled 
and execution of the next task begins. If a task with a higher priority than the one currently executing becomes 
ready to run, the scheduler will de-schedule its current task and start execution of the high priority task. With co 
-operative scheduling, a task will run until it places itself into a blocked state. Then the RTOS will start the next 
task running. To support these two different scheduling methods, FreeRTOS has two different scheduling 
routines. Depending on the scheduling method selected (in FreeRTOSConfig.h as we will see later), the correct 
scheduling routine must be installed as the Timer ISR. 
 
  
/* The ISR installed depends on whether the pre-emptive  or cooperative 
scheduler is being used. */ 
#if configUSE_PREEMPTION == 1 
{ 
extern void ( vPre-emptive Tick )( void ); 
VICVectAddr4 = ( portLONG ) vPre-emptive Tick; 
} 
#else 
{ 
extern void ( vNonPre-emptive Tick )( void ); 
VICVectAddr0 = ( portLONG ) vNonPre-emptive Tick; 
} 
#endif 
 
} 
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7.1.2 Timer ISR 
 
Once the timer is configured and the RTOS is running it will generate a scheduling interrupt for the RTOS. 
Depending on the scheduling method selected, one of two interrupt handlers will be installed. The pre-emptive 
Timer ISR is defined with the function prototypes shown below. 
 
void vPre-emptive Tick( void ) __attribute__((naked)); 
void vPre-emptive Tick( void ) 
{ 
 ….. 
} 
 
This uses a new attribute in the GCC compiler called ‘naked’. The naked attribute stops the compiler from 
generating any prologue and epilogue code that would normally be included with the function. The prologue and 
epilogue code is the few lines of assembler at the beginning and end of a function which are responsible for the 
stack handling of the CPU registers. This ensures that the interrupt routine does not corrupt registers used by a 
non interrupt task. Since the RTOS is responsible for the context switch between tasks and manages the CPU 
registers this code is redundant and the naked attribute is used to remove it.  This management of the CPU 
registers is performed by two macros portSAVE_CONTEXT() and portRESTORE_CONTEXT(). The macros are 
the first and last calls made by the Timer ISR.  The Timer ISR makes two calls to the FreeRTOS kernel.  The 
first increments the tick counter to provide a time reference to the kernel. The second call checks to see if a 
context switch is pending due to a higher priority task waiting to run, or because the current task has reached 
the end of its time slice. Finally, the Timer ISR clear the timer status buts and make the dummy write to the VIC 
vector address register ready for the next timer interrupt. 
 
void vPre-emptive Tick( void ) 
{ 
portSAVE_CONTEXT();  
vTaskIncrementTick(); 
vTaskSwitchContext(); 
TIMER0_IR = portTIMER_MATCH_ISR_BIT; 
VICVectAddr = portCLEAR_VIC_INTERRUPT; 
portRESTORE_CONTEXT(); 
} 
  
The timer interrupt routine for co-operative scheduling is treated as a normal general purpose interrupt routine 
with the function prototype shown below. 
   
 
void vNonPre-emptive Tick( void ) __attribute__ ((interrupt ("IRQ"))); 
void vNonPre-emptive Tick( void ) 
 
In a co-operative scheduling scheme each task  ‘runs to completion’ before passing control to the next task. 
Therefore the Timer ISR does not need to save and restore the CPU register context and we don’t need to call 
the vTASKSWITCH CONTEXT function. So for co-operative scheduling the timer interrupt needs to simple call 
the vTaskIncrementTick() function and clear the interrupt flags as shown below. 
 
void vNonPre-emptive Tick( void ) 
 
 {   
  vTaskIncrementTick(); 
  T0_IR = portTIMER_MATCH_ISR_BIT; 
  VICVectAddr = portCLEAR_VIC_INTERRUPT; 
 } 
 

7.1.3 Context switching 
 
If you are using pre-emptive scheduling (and this is the most common case), the save and restore context 
macros must be modified to match the CPU  that you are using. The two context switch macros are stored in 
portMacro.h. 
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The portSaveContext macro pushes all the CPU registers, including the SPSR, onto the task stack space and 
stores the new top of stack in the FreeRTOS task control block. 
 
 STMDB SP!, {R0}  /* Push R0 as we are going to use the register. */  
 STMDB SP,{SP}^  /* Set R0 to point to the task stack pointer. */ 
  NOP 
 SUB  SP, SP, #4 /* Push the return address onto the stack. */  
 LDMIA SP!,{R0} 
 STMDB R0!, {LR}         
 MOV  LR, R0  /*Now we have saved LR we can use it instead of R0. */
 LDMIA SP!, {R0} /*Pop R0 so we can save it onto the system mode stack.*/
 STMDB LR,{R0-LR}^ /* Push all the system registers onto the task stack. */ 
 NOP 
 SUB  LR, LR, #60         
 MRS  R0, SPSR /* Push the SPSR onto the task stack. */  
 STMDB LR!, {R0}         
 LDR  R0, =ulCriticalNesting       
 LDR  R0, [R0]         
 STMDB LR!, {R0}         
 LDR  R0, =pxCurrentTCB /* Store the new top of stack for the task. */ 
 LDR  R0, [R0]         
 STR  LR, [R0]         
   
 ( void ) ulCriticalNesting;        
 ( void ) pxCurrentTCB;          
 
 

 

LDR  R0, [R0]        

 /* Load it into the ulCriticalNesting variable. */     

LDMFD      LR!, {R1}    

LDMFD      LR!, {R0} /* Get the SPSR from the stack. */    

NOP             

/* And return - correcting the offset in the LR to obtain the */  

SUBS PC, LR, #4           

Once the scheduler has run, the portRestoreContext will restore the CPU registers for the running task. The 
kernel will place the address for the Top of Stack for the active task in the pxCurrentTCB. This is then used to 
reload the CPU registers and the SPSR. 

LDR  R0, =pxCurrentTCB        

LDR  LR, [R0]         
 /* The critical nesting depth is the first item on the stack. */ \ 

LDR  R0, =ulCriticalNesting       

STR  R1, [R0]          

MSR  SPSR, R0          
LDMFD  LR, {R0-R14}^ /* Restore all system mode registers for the task. */ 

LDR  LR, [LR, #+60] /* Restore the return address. */   

/* correct address. */         

( void ) ulCriticalNesting;         
( void ) pxCurrentTCB;          
 

7.1.4 Initialise Stack 
The final function we need to provide to port FreeRTOS to the LPC2300/LPC2400 is the task stack initialise 
function. This function is called when a task is created and it is used to save an initial context switch to the task 
stack. In this function we push a context switch stack frame onto the task stack so that when the task starts the 
portRestoreContext macro will load the CPU registers with the initial task parameters. The critical values that 
are stored on the stack are the start address of the function which will be loaded into the PC. Here we must 
remembered that we will be returning from an IRQ interrupt, so the code must add four to the address. We must 
also ensure that the stack pointer is loaded with the start address of the task stack and finally any parameter 
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that is passed when the function starts must be loaded into R0. The remaining CPU registers are loaded with 
patterns to aid debugging. 
   
portSTACK_TYPE *pxPortInitialiseStack( portSTACK_TYPE *pxTopOfStack, pdTASK_CODE 
pxCode, void *pvParameters ) 
{ 
portSTACK_TYPE *pxOriginalTOS; 

 pxTopOfStack--;  

/* R10 */ 

 pxTopOfStack--;  

 pxTopOfStack--;  

 #endif 

 pxOriginalTOS = pxTopOfStack; 
 *pxTopOfStack = ( portSTACK_TYPE ) pxCode + portINSTRUCTION_SIZE;   
 pxTopOfStack--; 
 *pxTopOfStack = ( portSTACK_TYPE ) 0xaaaaaaaa; /* R14 */ 

 *pxTopOfStack = ( portSTACK_TYPE ) pxOriginalTOS; 
 pxTopOfStack--; 
 *pxTopOfStack = ( portSTACK_TYPE ) 0x12121212; /* R12 */ 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x11111111; /* R11 */ 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x10101010; 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x09090909; /* R9 */ 

 *pxTopOfStack = ( portSTACK_TYPE ) 0x08080808; /* R8 */ 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x07070707; /* R7 */ 

 *pxTopOfStack = ( portSTACK_TYPE ) 0x06060606; /* R6 */ 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x05050505; /* R5 */ 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x04040404; /* R4 */ 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x03030303; /* R3 */ 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x02020202; /* R2 */ 
 pxTopOfStack--;  
 *pxTopOfStack = ( portSTACK_TYPE ) 0x01010101; /* R1 */ 
 pxTopOfStack--;  
 
 *pxTopOfStack = ( portSTACK_TYPE ) pvParameters; /* R0 */ 
 pxTopOfStack--; 
 
 /* The last thing onto the stack is the status register, which is set for 
 system mode, with interrupts enabled. */ 
 *pxTopOfStack = ( portSTACK_TYPE ) portINITIAL_SPSR; 
 
 #ifdef THUMB_INTERWORK 
 { 
  /* We want the task to start in thumb mode. */ 
  *pxTopOfStack |= portTHUMB_MODE_BIT; 
 } 
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7.1.5 Memory Management 

 

#define configTOTAL_HEAP_SIZE  ((size_t ) ( 23 * 1024 ) ) 

 

 
FreeRTOS can also provide two hook functions that may be run every time the timer tick ISR is called or every 
time the idle task is scheduled. These will be discussed later but these hook functions must be enabled in the 
config header. 

During the operation of FreeRTOS the application code can dynamically create and delete various objects such 
as application tasks, message queues and semaphores. Each of these objects dynamically allocates memory 
resources which must be managed during runtime. The FreeRTOS kernel provides three separate memory 
management modules that implement different memory management schemes.  
 
The first of these modules is called heap_1.c. This uses a single array which is subdivided into small blocks of 
memory. These blocks are allocated to the RTOS objects as requested. However this is a simple memory 
management scheme and once memory has been  allocated it cannot be freed. This method is intended for 
‘simple’ applications where all tasks and queues are created before the RTOS is started. 
 
The second memory management option is provided in the module heap_2.c. This version of the memory 
manager creates a similar array of memory blocks to heap_1.c, but does support the freeing of memory when 
tasks are deleted. The management algorithm used in the heap_2.c module is only designed to support tasks 
which have the same stack size and message queues with the same length.  This provides the minimal memory 
management required for most small embedded systems and is the version used in this tutorial. 
 
The final memory management scheme uses the malloc() and free() functions provided with the compiler which 
you are using. This provides the most efficient use of the microcontroller memory but at the expense of 
increasing the kernel size.  
 
When you define your FreeRTOS project you must select the most appropriate memory management module 
for your application. These files do not need any modification: you just need to define some configuration 
parameters before making the first build. 
 

7.2 Free RTOS Configuration 
Once ported to the microcontroller you are using, FreeRTOS provides an easy to use programming API that 
provides all the common features of a small real time executive. These include tasks and task management 
functions, pre emptive and co-operative scheduling, semaphores, message queues, kernel control and special 
lightweight tasks called “co-routines”.  Aside from adjusting the port files to your microcontroller, the features of 
FreeRTOS are configured in the FreeRTOS.h file. The first group of defines allow you to specify the 
microcontroller parameters such as the CPU clock frequency and the desired tick rate. 
 
#define configCPU_CLOCK_HZ   ((unsigned portLONG ) 60000000 )  
#define configTICK_RATE_HZ   ((portTickType ) 1000 ) 

The next group of defines configures the task parameters. This includes the task scheduling method, the 
number of priority levels, the minimum task stack size, the total heap size (the amount of memory that can be 
dynamically allocated to RTOS objects) and the maximum length of the symbolic task name used for debug. 
 
#define configUSE_PREEMPTION  1 
#define configMAX_PRIORITIES  ((unsigned portBASE_TYPE ) 5 ) 
#define configMINIMAL_STACK_SIZE  ((unsigned portSHORT ) 128 ) 

#define configMAX_TASK_NAME_LEN  (16 ) 

 
#define configUSE_TRACE_FACILITY  0 
#define configUSE_16_BIT_TICKS  0 
#define configIDLE_SHOULD_YIELD  1 

 
#define configUSE_IDLE_HOOK  0 
#define configUSE_TICK_HOOK  0 
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The next group of defines are used to enable various API functions. This gives you the possibility of disabling 
features that you are not planning to use in order to minimise the total size of the kernel. In the examples that 
follow we will try out each of these RTOS features so they will all be set to “enabled” as the default. 
 
#define INCLUDE_vTaskPrioritySet  1 
#define INCLUDE_uxTaskPriorityGet 1 
#define INCLUDE_vTaskDelete  1 
#define INCLUDE_vTaskCleanUpResources 1 

The final group of defines allows you to enable the lightweight tasks feature called co-routines. Co-routines are 
an optional feature of FreeRTOS and can be added to the basic kernel by including the croutines.c file in the 
project and setting the co routines define. 
 
#define configUSE_CO_ROUTINES   0 

7.2.1 Starting FreeRTOS 

void main (void) 

 vTaskStartScheduler(void); 

Normally, once started the RTOS will run forever.  However it is possible to stop the scheduler and return to the 
main function by halting the scheduler. 
 
vTaskEndScheduler(void); 
 
 
 
 

#define INCLUDE_vTaskSuspend  1 
#define INCLUDE_vTaskDelayUntil  1 
#define INCLUDE_vTaskDelay   1 
 
 

#define configMAX_CO_ROUTINE_PRIORITIES ( 2 ) 
 

 
To create a FreeRTOS application we must add the port files and the standard free RTOS files to our project. 
The following include files must be added to our C modules to make the FreeRTOS API available to the 
application code. Once inside main we can start FreeRTOS with the following API call: 
 

{ 

} 
 

Exercise 27: FreeRTOS first project 
This exercise configures the FreeRTOS RTX and starts two tasks running which are used to toggle
the upper and lower nibbles of the LED bank. 
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void vTask1(void); 
void vTask1(void) 
    { 
       while(1) 
            { 
                …………… 

 

#include "task.h" 

xTaskHandle xTask1; 

7.2.2 Tasks 
As we have seen from Chapter 6, the fundamental operating unit in a real time executive is a ‘Task’. In 
FreeRTOS all of our application code must be divided among RTOS tasks. Each of these tasks must be 
structured as a  continuously executing loop. 
 

            } 
    } 

In FreeRTOS we can create and destroy tasks at any point even before the RTOS scheduler has been started. 
The API call to create a task is shown below 
 

 

xTaskCreate( vTask1,"Task1",configMINIMAL_STACK_SIZE,NULL,1,&xTask1); 
 
To create a task we must declare a unique task handle which is used as a reference to the task by subsequent  
API calls. Once the handle is declared, we can use the xTaskCreate call to create an instance of the task. In this 
API call we pass the function name of the task, a symbolic name for debugging, a task stack size, any 
parameters passed that are passed to the task when it starts and the task handle. As well as creating tasks, it is 
possible to destroy a running task with the xTaskDelete function. Here we refer to the task by its handle. 
 
void vTaskDelete(xTask1) 
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7.2.3 Task Management 
FreeRTOS provides a number of task management functions that can control the execution of active tasks. 
These include time management, priority management, execution control and several utility functions.  
 

XLastWakeTime = xTaskGetTickCount()  // Tick count when the task unblocks 

} 

7.2.3.2 Suspend/Resume 

Within FreeRTOS the execution of tasks can be controlled with the suspend and resume API calls. The suspend 
call allows a task to deschedule itself or another task and place the task in a blocked state. Again the task is 
referred to by its task handle. 

vTaskSuspend( xTask1); // suspend Task1 

 

 

 
 
 

7.2.3.1 Time Management 
 
Two time management functions are provided. The first vTaskDelay can be used to block the execution of a 
task for a defined number of timer ticks. 
 
vTaskDelay( (portTickType) 10); //block execution for 10 ticks 
 
The second time management function is used to delay execution of a task until an absolute point in time. This 
allows you to create a task which will run as a cyclical task. The vTaskDelayUntil API call requires you to pass 
two parameters, the time at which the function last woke and the execution cycle period required. The next 
wake up time is calculated as lastWakeTime + period. In order to determine the wake up tick count, a utility 
function xTaskGetTickCount is provided to return the current timer tick value. 
 
Const portTickType xPeriod = 100; 
 
XLastWakeTime = xTaskGetTickCount() // get the tick count on entering the task 
 
While(1) 
{ 
VTaskDelayUntil(xLastWakeTime,xPeriod); // Block the task until the next cycle 

… 

 

 

 

 
Here we refer to the task we want to block by its handle. If a task wishes to suspend itself it should pass a NULL 
value. 

vTaskSuspend(NULL);  // suspend the current task 
 
Once a task is suspended, it can be restarted with a resume API call from another task. When a task resumes it 
will enter the ready state and wait to be scheduled by the kernel before it resumes execution 

 

Exercise 28: Time Management 
This exercise demonstrates the use of the Free RTOS delay and delay until API calls which can
be used to manage the execution rate of running tasks. 

Exercise 29: Suspend/Resume 
This exercise demonstrates the use of the suspend and resume API calls within FreeRTOS to
stop and start execution of running tasks 
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7.2.3.3 Resuming A Task From An ISR 

The resume API call should only be used from another task. If you want to resume execution of a task from 
within an ISR a separate resume API call must be used. 
 

 

 

 

void vInterruptServiceTask(void) 

 

 

VTaskResumeFromISR( xTask1) 

As discussed in Chapter 6, the suspend/resume mechanism can be used to minimise the amount of code in the 
ISR handler by using the ISR handler to cause a task to resume and serve the interrupt source. 

xHandle  ADC_Service; 

void vInterruptServiceTask(void); 

    { 
       while(1) 
            { 
    vTaskSuspend(NULL)  
                ……………  //Interrupt service code for the ADC 
            } 
    } 
 
 
void ADC_ISR (void) __attribute((IRQ)); 
{ 
 
vtaskResume(ADC_Service); 
 
VICVectAddr = 0x0000; 
ADC_ 
 
This places the interrupt service code within a task which can be prioritised. This allows the RTOS kernel  to 
schedule the interrupt service code according to the defined priority hierarchy.  
 

 

Exercise 30: Resume from ISR 
This exercise demonstrates resuming execution of tasks from an interrupt. This allows interrupt
handling to be prioritised by the scheduler. 

7.2.3.4 Changing Priority Levels 
 
The Priority level of a task is determined when a Task is created. However while an application is running it may 
be necessary to change the priority level of a task. The FreeRTOS API provides two calls that can be used to 
control the priority level of a task. The first call is used to get the priority level of a task. 

portBaseType Priority; 
 
Priority = uxTaskPriorityGet(xtask1); // get the priority level of a task 
Priority = uxTaskPriorityGet(NULL );// get the priority level of a this task 
 
The second function call is used to control the priority level of a selected task 
 
vTaskPrioitySet(xTask1,(unsigned portBaseType)2);//set the priority of a task to 2 
vTaskPrioitySet(NULL,(unsigned portBaseType) 2);//set the priority of this task  
 
This allows your code to dynamically raise and lower the priority of individual tasks as the needs of your 
application change. 
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7.2.3.5 Idle Task 
In addition to the user created tasks, FreeRTOS creates an additional task called the idle task when the RTOS 
kernel is started. As its name implies the idle task runs in any CPU time that is not used up by the user tasks or 
the FreeRTOS kernel. The only task that the idle task performs is memory management, where it is used to 
free-up RAM that was used by tasks that have been deleted with vTaskDelete.  
 
It can be useful to run some user application code in the idle task. For example if all the user tasks are in a 
blocked or suspended state, the idle task could be used to place the microcontroller into a low power mode until 
a task resume. This can be done by hooking a function into the idle task. First we have to enable the idle hook 
in the FreeRTOSConfig,h file. 
 
ConfigUSE_IDLE_HOOK 1 
 
Then our hook function must be defined with the following function prototype 

 

} 

 
void vApplicationIdleHook( void); 
void vApplicationIdleHook( void) 
{ 
 
  ……….. 
 
} 
 

7.2.4 Tick Hook 
FreeRTOS also provides a second hook function which can be called each time the timer tick ISR is called. This 
hook function is again enabled by setting the following #define in the FreeRTOSConfig.h file. 
 
#define configUSE_TICK_HOOK   1 

Once enabled you must add a function with the prototype; 
 
VApplicationTickHook (void); 
VApplicationTickHook (void) 
{ 
 
……… 
 

 

Exercise 31: Idle and Tick Hook Functions. 
In this exercise we enable the idle task and use it to simply set the upper nibble of the led bank.
The two user tasks are used to toggle the lower nibble LED’s and also clear the upper nibble. 

 

7.2.5 Semaphores 
To synchronise access to chip resources such as user peripherals Free RTOS implements binary semaphores 
or mutex (mutual exclusion semaphores). Semaphores are used to guarantee that one task at a time has 
exclusive access to a peripheral such as a UART. The semaphore system works by first declaring the 
semaphore container and initialising it with a single token. 
 
#include “semphr.h” 
…. 
xsemaphoreHandle xUart0Sem; 
…. 
vSemaphoreCreateBinary( xUart0Sem); 
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Now when any of our tasks want to access UART0 they must first acquire the xUART0Sem semaphore. If the 
semaphore has already been acquired then the task must wait until the UART0 semaphore is returned. The 
blocked task can then acquire the semaphore token and access the UART. 
 
While(1) 
{ 
If( xUART0Sem != 0) // check that the semaphore has been created 
{ 
 
if(xSemaphoreTake(xUART0,(portTickType) 10) == pdTRUE) 
{ 
 //The semaphore is acquired  
 //The Task can access the UART 
 
 xSemaphoreGive(xUART0Sem) // when you are finished with the UART return the 
semaphore 
 } 
} 
 
Remember that conceptually all our tasks are running in parallel, so the semaphore mechanism is a vital 
method of synchronising access to the chip peripherals.  
 

7.2.5.1.1 Task Deletion Safety 
 
If you are going to delete running tasks it is important to check that the task is not holding a semaphore before it 
is deleted. If you delete a task holding a semaphore you also delete the semaphore thus preventing any other 
task from accessing the peripheral. 

 

Exercise 32: Semaphore 
This exercise demonstrates the use of semaphores in controlling access to a system resource. In
this example two tasks write to the LEDs and a semaphore is used to control which task is
allowed to access the LED port. 

7.2.5.2 Message Queues 
So far we have seen how we can control the execution of a task and also control its access to chip resources. 
To build a real application, it will also be necessary to pass data between tasks. Free RTOS implement a 
message queues which can be used to transfer both simple C data types and formatted messages between 
different tasks. Like the semaphores discussed above, we must first create a message queue and initialise the 
length of the queue and the format of the messages that will be passed through it. 
 
#include “queue.h” 
 
XQueueHandle xSimpleQueue; 
 
// Create a queue 10 items long which passes unsifgned intergers between tasks 
XSimpleQueue = xQueueCreate( 10, sizeof ( unsigned int));  
 
Once the queue is created we can place data into the queue provided there is a slot available. The 
xQueueSend API call places data in the selected queue and a timeout period can be defined which causes the 
task to wait for a queue slot to become available  before execution of the task will continue. 
 
Unsigned int TxData; 
 
If(xQueueSend(xSimpleQueue, (void *)&TxData, (portTickType)10) != pdPass 
{ 
 //Failed to send the message 
} 
A task can receive data from a message queue by using the xQueueReceive API call. 
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If(xSimpleQueue != 0) 
{ 
 
 if( xQueueReceive( xSimpleQueue, &(RxData), (portTickType) 10); 
 { 
  //Message data has been received and can be passed to the application code  
 } 
} 
 
 

 

 

XqueueHandle xFormatedQueue; // create the queue handle 

 

 

 
If ( xFormattedQueue != 0 ) //check that the queue has been created 
{ 
TxLogData = &xLogData;  // set the queue message pointers to the address 
of the logged data 
if ( xQueueSend( xFormattedQueue,(void *) &TxLogdata, (portTickType)10) !=pdTRUE) 
//send the data 
{ 

} 
 
The formatted message is received in a similar fashion 
 

 

} 

Again, like the semaphores, the message queues not only pass data between tasks but act as a synchronising 
mechanism that ensures that the data is transferred between tasks in a coherent fashion. 
 

Exercise: Simple Queue. 
This exercise uses a task to write the result of an ADC conversion to a message queue which is
read by a second task. The second task writes this data to the LED bank. 

 
The queue mechanism also supports passing more complex formatted data between applications. It is possible 
to define a formatted message as a structure. 

Struct LoggedData 
{ 
 unsigned int PORT0 
 unsigned int PORT1 
 unsigned char ADC[4]; 
} xLogData   //create a structure to hold the formatted data 
 
The message queue can then be created to pass this message format 
 

Struct LoggedData *TxLogdata; //Create a structure of pointers in the message 
format 

//Create the message queue ten items deep in the format of the data logging 
structure 
XFormattedQueue = xQueueCreate (10,sizeof(struct LoggedData *));  

Once the queue is created we can pass the formatted structure into the message queue 

 … // message failed to be sent 

Struct LoggedData *RxLogdata 

If ( xFormattedQueue != 0 ) //check that the queue has been created 
{ 
if(xQueueReceive(xFormattedQueue, &(TxLogData), portTickType) 10)); 
{ 
 
//data received into RxFormatdata message structure 
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7.2.6 Kernel Control 

FreeRTOS provides a number of API calls which can directly effect the RTOS kernel. As a minimum, all 
FreeRTOS projects will make a call to the vTaskStartScheduler function.  Use of the remaining kernel control 
functions will largely depend on the requirements of your application 

TaskDISABLE_INTERRUPTS 

 

 

 

7.2.6.1 Critical Code Sections 
 
In some applications, it may be necessary to ensure that some sections of code are executed as an atomic 
block, meaning that no task switching occurs while this section of code is executing.  Two macros are provided 
which are used to disable and enable context switching during run time.  
 
#include “Task.h” 
 
TaskENTER_CRITICAL 
 
…… //context switching disabled 
 
taskEXIT_CRITICAL 
 
The enter and exit critical macros switch off the kernel scheduler. Other interrupts that have been enabled by 
the application will still be running. Two further macros are provided which are used to disable and enable all 
interrupts running within the microcontroller, including the timer usage by the RTOS. 
 

 
…… // All interrupts disabled 
 
taskENABLE_INTERRUPTS 
 
The sections of code that are being run in the critical code sections and the disabled interrupts sections must be 
kept as short as possible, so that we do not disrupt the RTOS by missing lots of interrupts. If you want to 
execute a long section of code, the kernel control API calls provide a pair of functions which may be used to 
suspend and resume all the real time kernel activity, while keeping the timer tick and any other enabled 
interrupts running. 
 
 
VTaskSuspendAll() //Suspend Kernel Activity 
 
…… //Continue with task code here 
 
vTaskResumeAll() //Resume kernel Activity 
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8 Chapter 8: Tutorial Examples 
 

8.1 Introduction  

This chapter provides an introduction to the two toolchains described in chapter two. These are the Hitex 
Tantino JTAG with the GCC compiler, FreeRTOS and the uIP TCP/IP stack. The second toolchain is the Keil 
uVisionIDE with the ARM Real View compiler and the Keil RTL-ARM (RTOS, file system, TCP/IP, CAN and 
USB support). This allows you to evaluate an open source and commercial toolchain before starting a real 
project.  

 

 
Worksheets for all the remaining exercises can be found as PDF files in the directory containing the exercise. It 
is intended that you should read the worksheet and carry out its instructions to quickly understand the purpose 
of the exercise. Once you are familiar with the principle being demonstrated, you can add to and modify the 
base code to carry out your own experiments with the LPC2300/2400. 
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8.2 Exercise 0: Installing The Software 
 
Once you have inserted the starter kit disk, it will AUTORUN and display the installation screen. 
 
From this screen you should install the HiTOP IDE if you intend to use the Tantino JTAG interface and the Keil 
uVision IDE if you intend to use the uLINK JTAG interface. If you are using the HiTOP IDE you should also 
install the GNU compiler. Next install the example set that matches the toolchain you plan to use i.e. either the 
Hitex or Keil examples (or both if you want to try both toolchains). 
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8.3 Setting Up The Hardware 
 
Once the hardware is installed you will need to setup the evaluation board, as illustrated. 
 
 
 
 
 
 
 
 
 
 
 
 

The example programs have been written and tested on the MCB2368. To be able to carry out all the examples 
in this book, the board needs to be configured with a loopback cable between the two CAN peripherals. This 
cable should connect pin 2 of D-type P5 (CAN1) to pin 2 of D-type P6 (CAN2) and pin 7 to pin7. A terminating 
resistor of 120 Ohms must be connected between pin 2 and pin 7 at each D-type. An RS232 cable (without 
crossover) should be connected from D-type P4 (COM0) to a communications port on your PC. Finally an 
Ethernet cable should be connected to the ‘pulsejack’ socket P8. The Ethernet connection should initially be a 
simple crossover cable direct to your PC. This minimises the network traffic and allows us to work directly with 
the LPC2300 Ethernet MAC. 

Assembling board with Hitex TantinoARM7/9 Assembling board with Keil uLINK 

 
 
 
 
 
 
 
 
 

 
Finally the JTAG debugger should be connected to the IDC socket and power applied to the board through the 
USB socket on the evaluation board. 
 
The following rules for powering up the board are not rigid but are generally the most successful way to use the 
development tools. 
 
Power up procedure: 
 

(i) Plug the JTAG into the IDC connector but do not connect the JTAG USB connector. 
 

(ii) Power the evaluation board by connecting the USB socket on the evaluation board. 
 

(iii) Connect a second USB cable to the JTAG debugger 
 

(iv) Start the development IDE, either uVision or HiTOP. 
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8.4 Exercise 1 With The HiTOP Toolchain. 
 
In order to familiarise ourselves with the toolset, we will work through generating a simple “Clock demo” 
program and run this on the evaluation board.  
 

8.4.1 HiTOP Debugger 

 Once you have generated the example project, start HiTOP by double-clicking on the HiTOP icon: 
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When the HiTOP program has launched, select “project\open project” and select the HiTOP project in the 
Examples\Hitex\clock project directory. The project file extension is “.HTP”. When you do this, make sure the 
evaluation board and the Tantino7-9 are connected. 
 

 

 

 

 
 
 

 
Once you have passed the reminder screen, HiTOP will 
start and ask if you want to download your application to 
the LPC2300 FLASH memory. Click OK to begin the 
FLASH download. If an error occurs at this point it will 
most likely be that the boot jumpers are incorrectly set 
on the evaluation board. 
 

 

 
 

 

 
 
 
 
 

 

 

 
 

When you open the project, a reminder screen will be displayed.  Click the “I want to continue evaluation” 
button. You also have the option to purchase a full licence or get a 30 day trial licence that has no code 
limitations. 
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After the FLASH download has finished, your project will be fully loaded and ready for a debug session. The 
debugger and its main windows are shown below: 
 

 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 
 
 

 
 
 

 
 
 
 
 
 

If you close a HiTOP window, it can be quickly reopened by moving the mouse cursor onto an unused section of 
the toolbar, right-clicking the mouse and then selecting the window you wish to reopen. This menu also allows 
you to enable and disable the various toolbars. 
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8.4.2 Getting To Main() 
 
In order to reset the LPC2300 and run the startup code to main() there is a script button provided on the toolbar.  

 

 

To edit the code in your project, do the following: 

 

 

 

 

 

 

 

 
 
 
 
Press the RESET_&_GO_MAIN button to reach the start of the C code. 

The next sections are a tutorial on how to use the basic features of HiTOP to debug and edit your project. 

8.4.3 Editing Your Project 

 
1. Select the “main” tab in the source window to display the code in this module.  
 
2. Next right-click and select “Switch to edit mode”. 

 
3. So that we can vary the update rate of the flashing LEDs, edit the loop count in the simple delay loop: 

 
 

 

 
 
 
 
 
 

4. To rebuild the code, select project\build on the main toolbar. 

 
 
 
 
 

 

 

 
 
 
 
 
 
 

 
Reporting of the build progress is shown in the output\build window. If there are errors when you build the 
project you can click on the error report and the offending line of code will be displayed in the source window. 
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After the build has finished, the new code will be downloaded into the evaluation board. 
 
Once this has finished, right-click again in the source window and switch back into debug mode. Now you are 
ready to use HiTOP in its debugging mode. 

 

 

These functions can also be accessed via the debug menu, which also displays the keyboard shortcuts. It is 
worth learning the keyboard shortcuts as these are the fastest way to control the execution of your code. 

 

 

 
 
 

 

 

8.4.4 Run Control 
Once the project is loaded, the LPC2300 is reset and the program counter is forced to the reset vector. From 
here it is possible to execute code at full speed or single-step line-by-line. The debug toolbar has specific 
buttons to control execution of code on the ARM7 CPU. 
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The source window allows you to browse your C code for any module in the project. There is also a 
disassembly window that will show you the actual contents of the program memory. 
 

 

 

 

 

 

The Project Window allows you to browse your project. Double-clicking on a module or function name will open 

 

 

 

 

 

 
 
 

 
 
 
 
 

 
 

 

 
 
 
 

 
 
 
 

the selected file in the source code window. 
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The current location of the program counter is shown as a yellow arrow in the source window: 
 
 
 
 
 
 
 
 

 

 

 

 
 

 
 

 
 

 
The blue squares at the edge of the source window 
indicate an executable line of code. If there is no blue 
square, there is no code at this location. If you place 
the mouse icon over a blue square, a pair of braces 
is displayed. 
 
 
 
 
 
 
 
 
 
 
 
If you now left-click, the code will be executed until it 
reaches this point. If you move the mouse pointer 
further to the left, the braces are replaced by a circle. 
If you left-click again, a breakpoint will be set and will 
be shown graphically as a red bar across the source 
code and a red circle in the margin. 
 
 
 
 
 
 
 
The ARM7 TDMI JTAG module supports two hardware breakpoints. When you are debugging from FLASH, this 
requires careful management. However the TantinoARM also supports software breakpoints so building your 
application to run from RAM will allow additional breakpoints to be set. 
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It is also possible to set breakpoints on data variables. This allows you to halt code when a variable is read or 
written too. Open the breakpoint menu under debug\breakpoint and select the data tab: 
 

 
 
Now locate the variable you want to break on, either in the source window or the project browser, then drag-
and-drop it to the breakpoint window. By default, the break condition is on a write to the variable. If you select 
the local options, this can be changed to read or read/write. The change option gives you full access to 
programming the breakpoint condition 

You may also position the program counter on any line of code. Locate the line of code 
were you want to place the program counter with the mouse pointer and left-click to 
locate the cursor. Next right-click and select “set new program counter”. This will force 
the Program Counter to this location.  No other registers are affected so you must use 
this option with care. 

 

 
 

 

 
 
 

 
 

 

 
There are some more advanced breakpoint settings that allow the setting of breakpoints 
“on-the-fly” and conditional breakpoints and these are discussed in the “HiTOP project 
settings” section at the end of this first tutorial. 
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The Call Stack window displays the calling hierarchy of the functions pushed onto the stack. If you double-click 
on a function name, the source will be displayed at the point that the program will return to. The local options 
displayed by a right-click also allow you to run the program up to a selected return point. 
 

 

 

 
 
Take some time to become proficient with running the code! You should be able to reset the target, run until 
main(), single-step the code, set breakpoints and reposition the program counter. 
 

8.4.5 Viewing Data 
As well as controlling the program execution, it is also possible to view the contents of any memory location 
within ARM7 address range. The memory window is the most basic method of viewing and changing the 
contents of any memory location. 
 

 

 
 
 
 
 
 
 
 

You can set the address range of the window by double-clicking on an entry in the address column and entering 
an absolute address or a symbolic name. The contents of memory locations can be changed by overtyping the 
values in the data or ASCII window. The more advanced options are available by right-clicking the mouse. 
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The register window gives you access to the active register bank along with 
the CPSR and SPSR. In this window you can modify the register contents 
and change the state of the CPSR/SPSR flags. 
  
 
 
 
 
 
 

 

 

You can drag-and-drop variables into this window from the source code and from the project explorer, or use 
the right mouse button and select “Add Watch”. 

 

 
 
 
 
 
 

 
The Watch window supports all C and C++ data types including complex objects such as classes, arrays, 
structures and unions. 
 
There are also dedicated windows for each of the LPC2300 peripherals. These can be accessed with the 
view\SFR window on the main toolbar 

 

 
 
 
 
 
The watch window allows you to view program variables. You can edit the current value contained in the 
variable by simply double-clicking on the current value and entering a new value. 
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The SFR windows show you the configuration of all the LPC2300 special function registers in the data book 
format. This allows you to quickly confirm that a given peripheral is correctly setup. In addition, these windows 
allow you to manually control an on-chip peripheral  

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 
 

8.4.5.1 HiTOP Project Settings 
 
Once you are familiar with the basic features of  HiTOP, you may want to modify the project settings to begin 
work on your own project.  
 
You can change the project settings within HiTOP via the Project\settings menu. 
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The applications menu allows you to select the compiler toolchain you are using. The default is the GCC 
compiler but a wide range of commercial compilers is also supported. Then you can select the application you 
want to debug. Here you select the .ELF file that is output from the compiler linker that you are using. 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Once you have selected the project file and compiler tool, the FLASH programming section allows you to select 
the programming algorithm for the FLASH device you are using. This supports the LPC2300 on-chip  FLASH 
memory and a wide range of FLASH memory chips, if you are using external FLASH memory. In this menu you 
must specify an area of RAM that the debugger can use for the programming algorithm during download. If you 
check the “save and restore RAM contents” box, the contents of this region will be preserved. If you uncheck it 
you must perform a target reset after download to restart the application. However the download process will be 
faster. 
 

8.4.6 Advanced Breakpoints 
In the emulator settings menu, the “TAP clock” is configured for the ARM7 microcontroller you are using and 
does not need to be changed. However the breakpoint settings menu does have several important options. First 
it is possible to force the JTAG to use software or hardware breakpoints. If you are debugging from RAM a 
software breakpoint will replace the application opcode with a breakpoint instruction, although this is hidden 
from the user.  
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This does not use the hardware breakpoint registers and enables you to set more than two breakpoints. Setting 
the “while running” option allows you to set and clear a breakpoint without halting the code. This can be 
extremely useful when you are debugging a complex real-time application. The condition-sensitive breakpoint 
option allows you to set a breakpoint on an ARM instruction that is conditionally executed. If this option is 
enabled, the code will only halt when the instruction’s condition codes match the CPSR.  Again this is extremely 
useful when debugging real ARM code. The JTAG hardware is limited to two hardware breakpoints. If you are 
debugging from RAM you can set multiple breakpoints and the HiTOP will use software breakpoints. This 
technique can be extended to code which is being debugged out of FLASH by enabling the “ Breakpoints in 
FLASH” option. This will reprogram the FLASH with software breakpoints prior to starting the code running. This 
is slower but allows you to set as many breakpoints as you want. The remaining processor and target options 
are specific to the LPC2300 and will not generally need to be changed. 
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8.4.7 Exception Assistant 
 
The TantinoARM has an useful “Exception Assistant” feature which allows you to trace the point in the 
background code were an exception occurred. If for example you are getting a data abort exception the 
exception assistant can help you to quickly track down the line of code which is causing the exception.  We will 
look at this feature in more detail in the interrupt exercises but it can be enabled in the project settings dialog 
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8.4.8  HiSCRIPT Script Language 
The LPC2300 has a complex reset process were it will automatically enter a bootloader mode before your 
application code starts to run. To make debugging easy a script file can be used to reset the chip and control its 
execution mode. This script is provided with the examples and is called reset_go_main.scr. This script should 
be added to your projects. 
 
//Hitex/Lue/02.02.2004 
// How to debug a flash application ? 
// Target: Keil MCB2300 (NXP LPC2368) 
// Script: reset_go_main.scr 
 
// The apparent reset value that the user will see will be altered by the Boot 

// 00: Boot Loader Mode. Interrupt vectors are re-mapped from Boot Block. 

GO UNTIL main 

wait 

The HiSCRIPT file can be added to the toolbar by highlighting the script toolbar, right-clicking and selecting 
change settings. 

 

 

 

 

 

Loader code,  
// which always runs initially at reset. User documentation will reflect this 
difference. 

// 01: User Flash Mode.  Interrupt vectors are executed from User Flash. 
// 02: User Ram Mode.  Interrupt vectors are re-mapped from User Ram. 
 
// The boot loader code mapped at 0 
RESET TARGET 
 
// Script command sets processor in User Flash mode for debugging 
// User code validation by bootloader is skipped - the flash application 
// may be debugged at 0 regardless the user code at 0x00000014 is valid or not   
// finally the next line can be commented out to check the valid user code   
OUTPUT DWORD TO 0xE01FC040 = 0x01 
 
// disable ints 
Register cpsr=0xd3 
 
%pc = _app_entry 
 
// Start program ecxecution till main  

 

 

 
 

 
 

 

 

 
 
Then in the change settings dialog, enter a 
symbolic name for the script and the filename of 
the HiSCRIPT file. 
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The script can then be executed from the toolbar: 
 

 
 

 
 
This is an important tutorial. You should explore all the features of HiTOP so 
that you can easily define, edit and debug an application program before 
proceeding to the next sections! 
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8.5 Exercise 2:  Startup Code 
 
In this exercise we will configure the compiler startup code to configure the stack for each operating mode of the 
ARM7.  We will also ensure that the interrupts are switched on and that our program is correctly located on the 
interrupt vector. 

1. Open the project in MDK-ARM\startup\ and download the code to the evaluation board. 

2. Press the Reset_ button to get to the startup code. 

 
 

 

 

 

 

 

 

 

 

 

 

 
3. Find the equates at the top of the startupo.s file that define the ARM7 operating modes and their stack 
sizes. 
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4. Next locate the section of assembly code that switches through each operating mode and configures 
the stacks. Notice that User mode is configured last and when this mode is entered the interrupts are 
enabled. 
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5. Next  press the RESET & GO MAIN button. Open the View\SFR\ARM Processor register window to 
confirm the stack settings and the CPU state. 
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6. Finally locate the interrupt table and see how the default  vector table is defined. We will look more 
closely at this in the examples dealing with the interrupt structure of the LPC2300. 
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8.6 Exercise 3: Interworking ARM & THUMB Instruction Sets 
In this example we will build a very simple program to run in the ARM 32-bit instruction set and call a 16-bit 
THUMB function and then return to the 32 bit ARM mode. The code in example.c will be built as ARM32 bit 
code and the function in thumb.c will be built as thumb 16 bit code. 
 

 

 

 

 

 

 

 

 

4. Close the setting dialogue and press F7 to build the code and download it to the evaluation board 

6. In the source window select the disassembly window and check that the instructions are compiler 
as ARM 32 bit instructions. You can also check that the T bit in the CPSR is set to zero for ARM 
execution. 

 

Open the HiTOP project in C:\ISGLPC2300\Hitex\Interwork. 

1. In the project window select the thumb.c file 

2. Click the right mouse button and select settings 
 
 
 

 
 
 
 

 

 

 

3. In the compiler options dialog make sure the –mthumb switch is included 
 
 
 
 
 
 
 

 

 
5. Press the reset_&go_main button to get to the start of the C code 
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7. Run the code up to the call to the THUMB function, open the disassembly window and single step 
into this function to observe the switch from ARM to THUMB code. 

 
 
 
 
 
 

 

 

 

 

 
 

 
 
 
 
 
 
 
 

 

8. Observe the switch from 32-bit to 16-bit code and the THUMB flag in the CPSR. 

 
 
 
 
 
 
 

 
7. Note the contents of the link register, single step (F11) until you return to the ARM code. Check the 
return address matched the value stored in the link register.   Note: the actual return address in your 
program might not be identical to that shown here! 
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In this exercise we will define an inline assembler function to call a software interrupt and place the value 0x01 
in the calling instruction. In the Software Interrupt SWI, we will decode the instruction to see which SWI function 
has been called and then use a case statement to run the appropriate code. 
 

 

 

 

 

4. Step the software interrupt instruction (F11) and see the jump to the SWI interrupt vector. 

 
6. Run the code to the switch statement. 

7. Observe the contents of the link_ptr This should be the SWI instruction address + 4 
 

 

 

 

8.7 Exercise 4: Software Interrupt 

1. Open the project in c:\ISGLPC2300\Hitex\SWI and download the code into the evaluation board 

2. Execute the program up to the first  software interrupt call. 
 

 
 

3. Switch to disassembler mode and examine the SWI opcode and note the address of the 
instruction. 

 

 
 

 
 

 

5. Continue single stepping to enter the SWI interrupt handler. 

 

 

 

8. Observe the contents of the temp variable. This should be the value of the ordinal encoded into 
the SWI instruction. 

 
9. Run the code to the closing brace of the SWI interrupt handler and observe the ISR exit code. 

 
 

10. Finally run the program at full speed to see the LEDs FLASH in a new and interesting way 
Note: The C source for the SWI interrupt handler is in the module Interrupt.c 
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8.8 Exercise 5: System Clock 
 
In this exercise we will look at selecting the system oscillator. The Clock source selection register can be used 
to select between the external RTC watch crystal, the internal RC oscillator and the main external oscillator. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\Clock and download the code. 
 

2. The code will startup and run on the internal  4Mhz oscillator. Each time you press the INT0 button a 
different oscillator source  will be selected and the update rate on the LED bank will change. 

 
3. If you halt the code and open the View\SFR\Clocking and power control\PLL config window you can 
see the state of the Clock module. 

 
 

 

 
 
 

4. Examine the code used to select the system oscillator. 
 

                  vLCDPuts("RTC" ); 
                  CLKSRCSEL = 0x00000002;      //Select 32Khz             

                  vLCDCls (); 

                { 
                  vLCDCls (); 
                  vLCDPuts("Internal" ); 
                  CLKSRCSEL = 0x00000000; //Select 12Mhz 

                } 
 
 
Note: Halting the program when the RTC oscillator may cause HiTOP to display a warning because of 
the low frequency of the JTAG clock .  

 

 

 

if(CLKSRCSEL == 0x00000001) 
                { 
                  vLCDCls (); 

                } 
else if (CLKSRCSEL == 0x00000000) 
                { 

                  vLCDPuts("Main" ); 
                  CLKSRCSEL = 0x00000001; //Select 12Mhz 
                } 
else if (CLKSRCSEL == 0x00000002) 
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To the CPU clock divider CPUSEL must be set to divide by 2 

 

 

PLLFEED = 0x000000AA;      

 

2. Press the Reset_&_GO_Main button. 
 

3. Run the code to the line shown below. 

 

8.9  Exercise 6: Phase Locked Loop 
 
In this exercise, we will configure the operation of the PLL to give maximum speed of operation for the ARM7 
core for a 12.00MHz oscillator. We will also configure the APB bus to run at half the speed of the ARM7 core. 
 
Using PLLoutput  = (2 x M x Fosc)/N,  
 
The maximum CPU frequency is 72Mhz and we also need 48 Mhz if the USB is to be used. For an external 
oscillator of 12Mhz we can generate an output PLL frequency that can be divided down by the CPU clock 
divider registers to get 72Mhz. We must also use the USB clock divider to divide the PLLoutput to get 48 Mhz 
 
PLLoutput = 144Mhz = ( 2xMx12Mhz)/N 
 
Then if N = 1 M = 6 
 

The USB Clock divider must be set to divide by 3 

With all the divider registers the value stored in the register is the calculated value minus one 

PLLCFG = 0x0000005; 
 
CPUSEL = 0x00000001 
 
USBSEL = 0x00000002 
 
When you update the PLL registers you must write the following sequence to the feed registers for the value to 
take effect. 
 

PLLFEED = 0x00000055; 

1. Open the project in C;\mdk-arm\PLL and download the code. 
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4. Open the View\SFR\Clocking and power control\PLLControl\config window and examine the status of 
the PLL. 

 

 
 

 

 
 

 
 

 

 

6. Check this in the SFR window. Next run the code at full speed. Pressing the INT0 button connects and 
disconnects the PLL. The difference in performance can be observed in the LED update rate. 

 

 

 

 

 

 
 

5. Next run the code to configure the CPUsel register and connect the PLL. 
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8.10  Exercise 7: Memory Accelerator Module 
 
This exercise demonstrates the importance of the Memory Accelerator Module (MAM). Initially the PLL is set to 
72MHz operation, but the MAM is disabled. A simple LED flashing routine is used to illuminate the LEDs on the 
target board in sequence. This shows the sort of performance you can expect from an ARM7 running directly 
from on-chip FLASH memory. When the INT0 button on the development board is pressed MAM is enabled and 
the code will run faster, making the LEDs flash faster. Pressing the INT0 button a second time will disable the 
MAM. The increase in performance is caused solely by the MAM, which is why it is so important to this kind of 
small, single chip microcontroller. In this example, we will use the bootloader to load the code into the FLASH in 
place of the JTAG. For this project you will need the Philips bootloader installed. This is on the CD or can be 
found on the Philips website.  
 

 

MAMCR   = 0x00000002;                   // Fully enable the MAM 

{ 
MAMCR   = 0x00000000;                   //Disable the MAM 

} 
 

3. Each time the INT0 button is pressed the MAM state of the MAM is switched on or off. 
 
4. The resulting update rate of the LED demonstrates the hardware acceleration provided by the MAM. 

 
5. You can download and run the MAM program in HiTOP or you can download the code using the 
bootloader 

 

1. Open the project in C:\ISG_LPC2300\Hitex\MAM. 

2. Examine the code in  main.c  to see how the MAM is controlled. 
 
if (MAMTIM == 0x00000007)                   //Check the state of the MAM 
{ 
MAMCR   = 0x00000000;                   //Disable the MAM 
MAMTIM  = 0x00000004;              //Set the access time to four clocks  

} 
else 

MAMTIM  = 0x00000007;                   //Set the access time to seven clocks 
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8.11  Exercise 8: Using The NXP Bootloader 
 

To use the NXP bootloader tool, perform the following actions: 
 

 

3. From the CD install the NXP Flash utility and start this software running so you get the screen shown 
below: 

 
 

 

 

 

4. 

6. 
the T

1. Exit HiTOP and disconnect the JTAG. 

2. Connect Com0 on the evaluation board to a serial port on your PC and power the evaluation bard 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 

 

 
5. 
vers

 

 
7. 

© Hitex (UK
Make sure the “Use DTR/RTS” box is ticked. 

Next select the MAM.hex file from the “Project” directory and press “Upload to Flash”. This will program 
arget LPC2300. 

Press the “Read Device ID” button. If the board is connected OK, the part ID number and bootloader 
ion will be displayed. 

You can also use the “Compare” button to verify that the FLASH has programmed correctly. 
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8. If you select the “Buffer” option the same operations can be performed, along with calculation of the 
program signature and limited debugging options. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

9. Once the Target LPC2300 has been programmed, the chip will automatically be rebooted and start to 
run your code.  

10. Reset the code and the LEDs will start to sequence. 

11. If you press the INT0 button, the MAM will be enabled and you will see the LPC2300 “turbo” kick in. 

 

 

 
 
 
 

 
 
 

 

 

 

 
 

 

 

 

 

 

 
12. In the ISP utility under the “Buffer” option, you can view a HEX dump of your program. In this view the 
calculated program signature is also shown. 

 
13. If you reconnect the JTAG and start the debugger without downloading the program, you can examine 
the interrupt vector table. As we have programmed the FLASH with the NXP ISP tool, the program 
signature has been added in location 0x00000014, which exists as a NOP in the startup code. 
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8.12   Exercise 9: Fast Interrupt 
 
In this exercise we will configure an external interrupt to be handled as an FIQ. This code was used in exercise 
5 to show the C handling of an interrupt function. This time, we will see how to configure the hardware for an 
FIQ interrupt. 

1. Open the project in MDK-ARM\EX12 InterruptFIQ\ and download the code to the evaluation board. 

 

 

 

5. Also check that the F bit in the CPSR is set to O ( FIQ interrupts enabled). This can be seen in the 
register window or the View\SFR\ARM Processor registers Window. 

 

 

 

 
 

 

 
2. Press the Reset_&GO_Main button to get to the start of the C code. 

 
3. Now run the code until it enters the while loop. 

 
 
 
 
 
 
 
 
 
 

4. Using the View\SFR\VIC window examine the configuration of the slot 14 interrupt channel. 

 

 

 
 

 

 

 
 

 
 
 
 
 

6. Now start the code running and press the INT0 button on the evaluation board. The “Exception 
Assistant” in HiTOP will halt the code at the FIQ vector and display the following dialog. This shows you 
what exception occurred and the line of code that was interrupted. 
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7. The FIQ interrupt vector will load the address of the iSR routine from the constants table as shown 
below. The symbol FIQ_Handler must be the name of the C function which will handle the ISR and this 
symbol must be imported into the assembler file.  

 
 
 
 
 

 

 

 
 
 
 
 
 

8. Find the value of this symbol from the disassembly window. Next single step the code any you will 
jump to the entry point of the interrupt routine at this address. 

 
 

 
 
 

9. In the interrupt routine the lower nibble of the led bank is switched on. Also the interrupt flag in the 
peripheral is cleared failure to do this will result in continuous interrupts. 

 
10. Next  find the return statement in the closing brace of the interrupt and step this instruction and check 
that you return to the address given by the exception assistant. 
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8.13  Exercise 10: Vectored Interrupt 
 
In this exercise we will configure an IRQ source to be handled as a vectored interrupt by the VIC. We will use 
the same external interrupt as exercise 9, but this time we will use the general purpose interrupt and the 
vectored interrupts within the Vector interrupt controller. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\IRQ and download the code into the evaluation board. 
 

2. Press the Reset_&GO_Main button. 
 

3. Now run the code so it initialises the interrupt and enters the while loop 
 

  
 
 
 
 
 
 
 
 

 
4. Open the View\SFR\VIC window and check the settings of the slot 14 vectored interrupt. 

 
 

 
 
 

5. Also check that the I bit in the CPSR is set to O ( IRQ interrupts enabled). This can be seen in the 
register window or the View\SFR\ARM Processor registers Window. 
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6. Now start the code running and press the INT0 button on the evaluation board. The “exception 
Assistant” in HiTOP will halt the code at the IRQ vector and display the following dialog. This shows you 
what exception occurred and the line of code that was interrupted. 

 
 
 
 
 
 
 
 
 
 
 
 

7. The Vector interrupt controller will load 
the contents of Vector Address 14  ( 0x000002D0 )into the Vector Address register. Next single step the 
line of assembler on the IRQ vector . 

 
 
 
 
 
 
 

8. This will load the contents of the VicVector Address register into the PC forcing a jump to the entry of 
the interrupt routine. View the disassembly to confirm the correct address is reached. 

 
 
 
 
 
 
 

9. In the interrupt routine the lower nibble of the led bank is switched on. Also the interrupt flag in the 
peripheral is cleared and a dummy write the VICVector address is made. 

 
 
 
 
 

10. Next find the closing brace of the interrupt routine and check that the correct return statement is used 
to exit the interrupt routine 
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8.14  Exercise 11: Memory to Memory DMA Transfer 
 
This exercise demonstrates configuration of the DMA unit to perform a memory to memory DMA transfer. Timer 
zero is set running when the transfer starts and halted when it ends. A second transfer is made using the CPU 
rather than the DMA unit again the time taken is recorded in timer1 so you can make a comparison.  
 

1. Open the project in C:\ISG_LPC2300\Hitex\DMA_M2M and download the code to the evaluation 
board. 

 
2. Press the Reset_&_GO_main button. 

 
3. Set a breakpoint as shown below and run to this location. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Examine the contents of the two buffers at locations 0x7FD00000 and 0x7FD00500. 
 
 
 
 
 
 
 
 
 
 
 

5. The next section of code starts the DMA transfer and uses timer 0 to count the cycles taken by the 
transfer. 
 
6. Set another breakpoint as shown below and start the code running. 
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7. Run the code and when the breakpoint is reached examine the contents of buffer2 at 0x7FD00500, it 
should contain a copy of buffer1 

 
 
 
 
 
 
 
 
 
 
 

8. Open the view\sfr \timer 0 window to see the number of cycles required for the DMA transfer. 
 
 
 
 

 
9. The next section of code will do the same copy but this time the CPU will move the data. Again Timer0 
will be used to count the cycles required for the transfer.  Start the code running and then halt it after a few 
seconds. Now you can read the number of cycles taken for the transfer in the timer0 count register. 
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8.15  Exercise 12: Scatter-Gather DMA Transfer 
In this exercise the DMA unit is configured with a linked list of transfers. The linked list caused the DMA unit to 
gather several regions of memory into one block of contiguous data. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\ScatterGatherDMA and download the code to the 
evaluation board. 

 
2. Press the Reset_&_GO_main button. 

 
The code is basically the same as for the Memory to Memory example. However in the control register the 
Terminal count interrupt  is disabled  linked list register is loaded with the start address of a DMA Item. 

 

 
 
 
 
 

The DMA items are defined in two arrays which hold the source address, destination address, control word 
and next linked list address. 

 
  
 
 

The first DMA transfer copies 0x100 bytes from 0x7FD00100 to 0x7FD00500 and then loads the next DMA 
transfer contained in the Item1 array.  This copies the same 0x100 bytes to 0x7FD00600 and then loads 
the final DMA transfer held in Item2.  The Item 2 transfer copies the 0x100 bytes to 0x7FD00700 and 
enables the terminal count interrupt.  Item2 the link list register, is set to 0x00000000 which ends the 
transfer 

 
3. Set a breakpoint as shown below. 

 
 
 
 
 
 
 
 
 

4. Check that the DMA transfers have been successful by using the memory window 
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8.16  Exercise 13: GPIO 
 
This exercise demonstrates the use of the GPIO lines to drive the LEDs attached to port 2 by the fast IO 
registers. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\GPIO and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

3. Run the code up to the main while loop so that the port pins are configured. 
 
 
 
 
 
 
 
 
 
 
 

4. Open the view\sfr\GPIO\Fast Port DIR control window and check the configuration of the Port 2 pins. 
 
 
 
 
 
 
 
 
 
 

5. Now run the code at full speed and check that the LEDs are updated. 
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8.17  Exercise 14: GPIO Port Interrupt 
 
This exercise uses the code from the previous exercise and  enables a port wide interrupt  on port 2 which can 
be triggered by the INT0 button. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\GPIOInterrupt and download the code to the evaluation 
board. 

 
2. Press the Reset_&_GO_main button. 

 
3. Run the code up to the main while loop so that the port pins are configured. Here we are enabling the 
rising edge port pin interrupt lines. As a precaution the interrupt status register is cleared to prevent any 
spurious interrupts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Now open the view\sfr\gpio\Int enable for rising falling edge and check to configuration for port 2 
 
 
 
 
 
 
 
 
 
 

5. Next set a breakpoint in the interrupt service routine 
 
 
 
 
 
 
 
 
 
 
 
 

6. Run the code at full speed and press the INT0 button on the evaluation board This will generate the 
interrupt and hit the breakpoint. 
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7. Examine the GPIO status register in View\sfr\gpio\Int Status rising\falling edge. 

 
 
 
 
 
 
 
 

Note: The interrupt must clear the status register by writing logic 1  each status bit in the IO2_INT_CLR 
register. 
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8.18  Exercise 15: Timer Match 
 
In this exercise the Timer0 is enabled and a match interrupt is generated every half second. In the interrupt 
routine a character is written to the LCD. Timer2 is also enabled and match registers 0 and 1 are used to control 
the match pin1 via the EMR register. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\TimerMatch and download the code to the evaluation 
board. 

 
2. Press the Reset_&_GO_main button. 

 
3. Run the code so that timer0 is configured. 

 
 
 
 
 
 
 
 
 

4. Open the View\SFR\TC0 window and examine the configuration of the timer. 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

5. Next run the code to configure timer2 
 
 
 
 

 
 
 
 
 

6. Use the  View\SFR\TC2 window to examine the configuration of timer2 .Particularly the EMR register 
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7. Set breakpoints in the interrupts  

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8. Run the code and check that both interrupt routines are called. 

9. Examine the output of port 0 pin 6 with an oscilloscope to observe the square wave produced. 
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8.19  Exercise 16: Timer Capture 
 
In this  example  we will use the square wave generated in the timer match example as an input  to  the timer 3 
capture pin. This will allow us to measure the period of the square wave produced by timer 2 
 

2. Press the Reset_&_GO_main button. 

3. Run the code so that timer0 is configured. 

1. Open the project in C:\ISG_LPC2300\Hitex\TimerMatch and download the code to the evaluation 
board. 
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8.20  Exercise 17: PWM 
 
This exercise configures the PWM unit to generate six channels of single edge PWM which are connected to 
the LED’s on the evaluation board. In this example generation of the PWM signals is done by the hardware with 
zero CPU overhead. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\PWM and download the code to the evaluation board. 
 

 

 

 

 

 

 

2. Press the Reset_&_GO_main button. 
 

3. From main run the  program up to the while loop. 
 
 
 
 
 
 
 
 
 
 
 

4. Open the View\SFR\PWM1 window and examine the configuration of the PWM unit. 

 

 

 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

5. Start the code running and the PWM output will flash the first six LEDs on the board 
 

© Hitex (UK) Ltd.                                                                                     Page 268 



Chapter 8: Tutorial Exercises & Worksheets                                                               

 

 

8.21  Exercise 18: RTC 
This exercise enables the Real Time Clock  (RTC) and sets an alarm interrupt for three seconds and the 
seconds increment interrupt. In this example the external 32kHz watch crystal is used to provide the clock 
source for the RTC. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\RTC and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

3. From main run the  program up to the while() loop. 
 
 
 
 
 
 

 

 
 
 
 

4. Open the View\SFR\RTC window and examine the configuration of the real time clock. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5. Next set a breakpoint in the interrupt and start the code running.  
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6. When the breakpoint is reached check the contents of the Interrupt location register to determine if the 
interrupt was caused by an alarm or seconds increment. 
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8.22  Exercise 19: UART 
 
This exercise configures UART0 to 9600 baud rate and echos characters sent to the evaluation board by 
Hyperterminal. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\UART and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

3. Connect an RS232 cable to Dytpe P3 ( Uart1) on the evaluation board and a Comm port on your PC. 
 

4. Start Hyperterminal and establish a serial connection or 9600 Baud 8 bits one stop bit no Parity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Start the code running and any characters typed into Hyperterminal will be echoed back by the 
evaluation board 
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8.23  Exercise 20: ADC 
 
This exercise demonstrates configuring the ADC for a 10-bit conversion on channel zero. When the conversion 
is finished the result will be copied to the LEDs. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\ADC and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

3. Run the code  to the start of the main while loop. 
 
 
 
 
 
 

 

 

 
 

 
4. Look at the configuration of the ADC in the view\sfr\ADC window  

 

 
 

 
 
 
 
 

5. Run the code at full speed  and observe the ADC data modulate the LED bank. 
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8.24  Exercise 21: DAC 
 
In this exercise a sawtooth wave is generated by the DAC to create a really annoying tone out of the speaker. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\DAC and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

3. Run the code at full speed to hear the audio output from the DAC. 
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8.25  Exercise 22: Ethernet Driver 
This exercise demonstrates the use of the low level Ethernet packet driver to send user defined Ethernet 
frames. For this exercise you will need an Ethernet packet analyzer. An open source analyzer called “Ethereal” 
can be downloaded from www.ethereal.com also an evaluation version of a commercial analyser “CommView” 
may de downloaded from http://www.tamos.com/products/commview/. 
 
For this exercise you will need the MAC address of the Ethernet card in your PC. This can be found in the LAN 
status\support\details dialog and is called the Physical Address. 
  
 
 
 
 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 
1. Open the project in C:\ISG_LPC2300\Hitex\DAC and download the code to the evaluation board. 

 
1. Press the Reset_&_GO_main button. 

 
2. Locate the MAC address of the Evaluation board. This is held in the Peripherals Config.h file and is 
defined as a six byte station address. 

 
 
 
 
 

 
 
 
 
 
 

 
3. Start Your Ethernet Packet analyzer  generate and define a packet to be sent from the PC 
4. The destination address should be the evaluation board MAC address and the source address should 
be your PC. The length is not important  but should be greater than 64 bytes. In the data payload you can 
enter some text such as the traditional Hello world 
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5. Start the code running on the evaluation board and send the message packet 

 
6. The Ethernet packet will be received. The MAC addresses will be reversed and the packet will be sent 
back to the PC. 

 
7. Once you have this working examine the initialisation code and the send and receive code in the 
HiTOP project. 
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8.26  Exercise 23: uIP TCP/IP Stack 
 
Now we have the Ethernet driver working this exercise adds the uIP TCP/IP stack and places the evaluation 
board on a local network. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\DAC and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

3. Right click and select Edit mode. 
 

4. In Main(), change the station address, gateway address and subnet mask to match your network. 
 
 
 

5. Now rebuild and download the code to the evaluation board. 
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6. Start the code running and connect the board to your LAN. 

 
7. Open a command window on your PC and use the ping command to check that the node is running 
.correctly 
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8. Use the packet analyzer to observe the ICMP transaction 

 

9. Add the uip_buffer array to the watch window and place a breakpoint at the end 

 

 

 

 

 
11. Run the “ping” command again in the DOS box. When the LPC2300 hits the breakpoint check the 

 

 
 
 
 
 
 
 
 
 
 

of the eEthernetSendFrame function. 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 

10. Reset the code and start it running 

contents of the UIP buffer against the last packet received by the protocol analyzer. 
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8.27  Exercise 24: CAN TX 

 

 

 

 

 
In this exercise the output pins of the CAN controllers are connected together to form a loopback on the 
evaluation board. The exercise details configuration of the CAN controller and how to transmit CAN message 
frames. 
 
To loopback the two  CAN controllers you must connect  CAN1 Dtype PIN 2 to CAN2 Dtype pin2 and the same 
for Pin seven. In addition a 120Ohm resistor must be connected between pin 2 and pin 7 on each dtype 9 
without the CAN bus will not work without the resistor). 
 

1. Open the project in C:\ISG_LPC2300\Hitex\CAN_Basic and download the code to the evaluation 
board. 

2. Press the Reset_&_GO_main button. 

Although the CAN controller is a complex peripheral it needs very few lines to configure. 
 
 
 
 
 
 
 

The key register is the Bit Timing register 
 
The bit rate =  Pclk/ (Baud rate prescaler x (1+ Tseg1 + Tseg2)) 
 
For BRP = 12 Tseg1 = 6  Tseg2 = 3 Pclk = 15Mhz 
 
Bit rate = 125K 
 
( Important :The values stored in the registers equal the calculated values –1) 

3. Step the initilisation code and check the configuration in the view\sfr\ windows. 

4. Next look at the remaining code in the while() loop. 
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This code initializes a transmit buffer with a data length code of four ( to send a four byte packet).  It  then loops 
round the flasher loop used in the GPIO exercise. The flasher variable is used to set the message ID and is also 
copied into the first four bytes of the message data buffer. 
 
If you start the code running the CAN1 peripheral will receive all the messages and write the data to the LED 
port. 
 
If you have a CAN analyzer you can connect CAN2 to the analyzer and view the message packets. 
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8.28  Exercise 25: CAN RX 
    

 

3. This time check that the initializing code for CAN 1 sets the same bit rate as CAN2. 
 
 

 
 

 

 

 

 

This code also initializes the CAN interrupt and disables and bypasses the acceptance filters so that all can 
messages are received by CAN1. 

 

 

 
 

 

This exercise uses the same configuration as the CAN TX exercise but this time it demonstrates configuration of 
the acceptance filters for reception. 

1. Open the project in C:\ISG_LPC2300\Hitex\CAN_Basic and download the code to the evaluation 
board. 

 
2. Press the Reset_&_GO_main button. 

 

 

 

 
 

 

 
 
 
 

 

 
4. Set a breakpoint tin the CAN1IRQ routine and start the code running. 

 
 
 
 

 

 
This is the minimum code required to receive a message and read the receive buffer  (well half of the 
possible eight bytes). 

 
5. Next go back to the CAN1_Config routine and un-comment the acceptance filter configuration code. 
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7. Reset the board and start the code running. 

 

 
 

 

 
 
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

This code first disables the acceptance filters, then writes the filter table values into the dedicated filter RAM 
starting at 0xE003800. Finally it sets the pointers to the start of each filter table  then enables the 
acceptance filters. 

 
6. Build the code and download it to the evaluation board. 
 

 
8. The LED pattern displayed as the code runs will change as certain CAN messages are not accepted 
by the CAN controller. 

 
The use of these acceptance filters is very important. They can ensure that the CPU is only interrupted by 
CAN messages that are of interest to the application running on the LPC2300. This prevents the CPU 
having to respond to every event on the bus and so drastically reduces the CPU load when the CAN bus is 
heavily loaded. 
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8.29  Exercise 26: Full CAN Reception 
 
This exercise uses the same code as the CAN TX exercise but this time we will look at receiving the CAN data, 
this time using Full CAN mode of the LPC2300. Remember “Full CAN” means using the filter RAM as additional 
receive buffers. This method only works for 11 bit identifiers. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\CAN_Full and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

 

This time  the CAN_SFF_SA table pointer is set to 0xE0038010 which means the fullcan buffer runs from 
0xE0038000 to 0xE0038000.  

Because we have an odd number of fullCAN messages there must be an extra unused entry to make an even 
number of entries. In this case the first entry is not used.  

 

 

 

 

3. Run the code and configure the arbitration filter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
We are not using any of the other tables so their pointers are set to the end address of the full can table. 
 
4. Set a breakpoint in the CAN interrupt and start the code running. 
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5. Examine the code in the interrupt and use the memory window to look at the Full CAN data buffers 
starting from 0xE0038010 memory location. 

 The interrupt routine scans the FCANIC0 register to see which message has been received . it then calculates 
the offset to the buffer and clears the SEM flags before reading the message data. Finally the interrupt flag is 
cleared . 

The filter table and message buffers can be seen in the memory window. 
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8.30  Exercise 27: 2 Tasks 

1. Open the project in C:\ISG_LPC2300\Hitex\2Task and download the code to the evaluation board. 

2. Press the Reset_&_GO_main button. 

3. Near the top of main.c locate the two tasks and set breakpoints  inside their while() loops. 

 

 

 

 

 

4. In main(), look at the code that creates the two tasks and starts freeRTOS running. 

 

 

This exercise configures the FreeRTOS RTX and starts two tasks running which are used to toggle the upper 
and lower nibbles of the LED bank. 
 

 

 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

5. Run this code to start  the operating system .  
 

6. Once freeRTOS is running, the scheduler will pass control between the two tasks. Keep running the 
code to observe the task switching 
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7. In PortISR.c Set a breakpoint in the preemptive scheduler routine. 
 
 
 
 
 

 

 

 

 

 
 
 
 

8. Run the code until the breakpoint is reached and then observe the operation to the scheduler. 
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8.31  Exercise 28: Time Management 
This exercise demonstrates the use of the Free RTOS delay and delay until API calls which can be used to 
manage the execution rate of running tasks.  
 

1. Open the project in C:\ISG_LPC2300\Hitex\Time and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

3. Locate the two tasks near  the top of main.c.  
 

4. This program is a modified version of the 2task  code. The delay until API call is used to block each 
task  for a finite amount of time. 

 

 

 

 

5. Set a breakpoint in Task1 as shown below: 
 

 

6. Run the code and check that the upper nibble of LED’s are flashing. This shows task 2 is running but 
Task1 is blocked and will only run every 2000 ticks. 

7. Remove the breakpoint and run the code full speed. 
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8.32  Exercise 29: Suspend 
 
This exercise demonstrates the use of the suspend and resume API calls within FreeRTOS to stop and start 
execution of running tasks. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\Suspend and download the code to the evaluation board. 
 

 

6. Run the program so that it executes between the breakpoints and observe the action of the 
suspend/resume API calls. 

 

 

 
 
 
 

 

 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

2. Press the Reset_&_GO_main button. 

3. This exercise is similar to the 2Task exercise. Two tasks are used to control the LED bank.  
 

4. In this exercise Task 2 suspends itself and is triggered by task 1 each time it goes round its while() 
loop. 

 
5. Locate the two task at the top of main.c and set a group of breakpoints as shown. 

 

 

 
 
 

 

 
 
 

 

 

 
 

7. Remove all the breakpoints and execute the code at full speed. 
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8.33  Exercise 30: Resume ISR 

 

2. Press the Reset_&_GO_main button. 

3. Locate the interrupt function and the two user tasks near the top of main.c. 

 

6. Next set a breakpoint in the FIQ interrupt routine. 

 

 

 

 

7. Now run the code at full speed  and press the INT0 button on the evaluation board. 

 

This exercise demonstrates resuming execution of tasks from an interrupt. This allows interrupt handling to be 
prioratised by the scheduler. 

1. Open the project in C:\ISG_LPC2300\Hitex\Resume and download the code to the evaluation board. 
 

 

 
4. Set a breakpoint in task 2 as shown below. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

5. When task two runs for the first time it will initilise the  FIQ interrupt and then suspend itself  leaving 
task 1 running. 

 

 

 

 

 

 

 
8. This will trigger the interrupt  which in turn causes Task2 too enter the ready state and be scheduled by 
the RTOS kernel. 

In a real project you can adjust the task priorites  to structure the servicing of the interrupt sources within  your 
application. 
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8.34  Exercise 31: Idle Task 

 
1. Open the project in C:\ISG_LPC2300\Hitex\Idle and download the code to the evaluation board. 

 
2. Press the Reset_&_GO_main button. 

3. Open freeRTOSConfiguration.h and check that the idle task is enabled. 
 

 

 

4. Near the top of main.c  find the  idle task hook  function and set a breakpoint inside as shown below. 

 

In this exercise we enable the idle task and use it to simply set the upper nibble of the led bank. The two user 
tasks are used to toggle the lower nibble LED’s and also clear the upper nibble. 

 

 

 

 

 

 
 
 
 
 
 
 

5. Run the code  and check  that the idle task is reached. 
 

6. Remove the breakpoint and run the code at full speed.  
 

7. The upper nibble will appear to be  permanently on, even though the two user tasks  are clearing the 
GPIO port. 
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8.35  Exercise 32: Semaphore 
This exercise demonstrates the use of semaphores in controlling access to a system resource. In this example 
two tasks write to the LEDs and a semaphore is used to control which task is allowed to access the LED port. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\Suspend and download the code to the evaluation board. 
 

2. Press the Reset_&_GO_main button. 
 

3. Locate the two tasks at the top  of main.c and set the breakpoints as shown below. 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

4. Now run the code between the breakpoints and observe how the semaphore is used to control access 
to the  LED port. 
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8.36  Exercise 33: Queue 
This exercise uses a task to write the result of an ADC conversion to a message queue, which is read by a 
second task. The second task writes this data to the LED bank. 
 

1. Open the project in C:\ISG_LPC2300\Hitex\Queue and download the code to the evaluation board. 

3. Locate the two tasks at the top  of main.c and set a breakpoint as shown below. 

 

 

 
2. Press the Reset_&_GO_main button. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4. Run the code so that it enters task2 configures the message queue and starts to write values into the 
Queue. 

5. When the kernel starts task 1 running it will read data from the message queue and then write it to the 
LEDs. 
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9 Appendices 
9.1  Appendix A 
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9.1.2.1 Reference Sites 
 
http://www.arm.com
 
http://www.nxp.com
 
http://www.lpc2000.com
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