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Foreword

 

For some reason, the foreword is often one of the last parts of a book to be written. This
book is no exception. Shouldn’t a 

 

fore

 

word be written first, 

 

before

 

 the book? In that case,
I should have written this in 1988, when my supervisor, Prof. Danielsson, suggested a
possible variation on the Euclidean Distance Transform (EDT). But instead, I write this
after the rest of the thesis, so it is rather my 

 

after

 

word.
What most of this thesis is about is fast computation of distances in digital images,

i.e. the EDT, either as a separate operation or as part of other operations, and either on
conventional computers or multi-processor computers.

This book is a continuation of my licentiate thesis, which consists of the three first
papers in this thesis. To that I have added seven more, two of these written in cooperation
with others. While the first papers cover only the EDT operation, the new papers widen
the scope somewhat, applying the EDT to other problems: erosion and dilation, edge
smoothing, shape representation and thinning.

Since all papers are written as stand-alone papers, there is often a significant overlap,
especially in the introductions, and some are written in UK english while others are writ-
ten in US english, depending on my publishing intentions. The advantage with this solu-
tion is that the published papers are reprinted in versions identical or very close to the
published versions (though with a common formatting). After all, the published papers,
especially the journal papers, are more widely available references than a PhD thesis.

In addition to the ten papers, there is also an introductory chapter, surveying the de-
velopment, algorithms and applications of the EDT and related operations.
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Ten little papers

 

Ten little papers, my thesis would be fine,
but one was too hard to do, so I'll make do with nine.
Nine little papers, now had I made - but wait!
That is nothing new, he said and they were eight.
Eight little papers, I thought I'd make eleven.
Then I found an article that voided one, left seven.
Seven little papers were full of all my tricks.
One was way too clear, so it must go and they were six.
Six little papers, I still had left alive.
One is just an intro, so let us call them five.
Five little papers, I tried to make one more
but that linked together two old, and they were four
Four little papers, were all 'bout EDT
but then there was a hardware error, they were only three
Three little papers are left, what shall I do?
On one I'm just third author, and they were two.
Two little papers, look now, I said, I'm done.
This one isn't interesting, he said, and I had one.
One little paper was all that was left for me,
but that is most definitely not a PhD.

 

Written late one night in 1992 when this book felt very far away.
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The Euclidean Distance Transform

 

Euclid

 

 (in Greek 

 

Eukleides

 

, in Swedish 

 

Euklides

 

) was a greek mathematician, born
about 300 B.C. He probably received his early training from the pupils of Plato, and later
founded a school in Alexandria during the reign of Ptolemy I, who reigned from 306 to
283 B.C. Euclid’s greatest work is the 

 

Elements

 

 (

 

Elementa

 

), 13 books covering all the
known mathematical knowledge of the time [29].

In the Elements, we find Euclid’s famous postulate 5, the parallel postulate:

 

If a straight line falling on two straight lines makes interior angles on the same side
with a sum less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which the angle sum is less than two right angles

 

 

 

[41]

 

.
This postulate can not be proven. Rather, it is valid in, and defines, the 

 

Euclidean
space

 

, which is not the only space that can be described mathematically. The Euclidean
space is a space consisting of all ordered sets (x

 

1

 

,…, x

 

n

 

) of n numbers with the distance
between (x

 

1

 

,…, x

 

n

 

) and (y

 

1

 

,…, y

 

n

 

) being given by

The number n is called the dimension of the space [27]. This distance is what we in the
following call the 

 

Euclidean distance

 

.

 

1. Introduction

 

In the (at least seemingly) continuous physical world, we generally use the 

 

Euclidean
distance

 

 metric when measuring distance. The Euclidean distance is the rotation invari-
ant measure that we generally would consider the “real” distance.

In image processing, however, our images consist of arrays of discrete pixels. In this
discrete world, the Euclidean distance is much less practical. As a simple example, take
the game of chess. The chessboard, with its squares, is like the discrete image. The dis-
tance from one corner to any other corner is 7 steps for a king, even though the Euclidean
distance along a side is much shorter than over the diagonal. This is because the chess
king uses the 

 

Chessboard

 

 

 

distance

 

.

xi yi–( )2

i 1=

n

∑
1
2
---
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Figure 1. For the king, the distance along the side is the same as along the diagonal.

 

For the designer of image processing algorithms, the discrete image is somewhat like a
chessboard but with a lot more squares, and for him it is much easier to use a simple met-
ric like Chessboard distance for many tasks. Another equally simple metric is the City
Block distance, which is the distance we get if we are only allowed to travel horizontally
or vertically, like a chess rook.

Let us take a simple example. Suppose that we have a binary (black-and-white) im-
age. Then, for some reason, we want to expand (dilate) the black objects, make them
larger. Let us say, we want expansion with 4 pixel distances. A simple way to do that is
to change all white pixels that have a black neighbour to black, and repeat that operation
4 times. If we consider all pixel positions in a 3·3 square to be neighbours, then this pro-
cedure will expand the shapes by 4 Chessboard distances, as illustrated by Figure 2.

 

Figure 2. Some shapes being expanded 4 pixel distances.

 

Another way to do it, using the Euclidean distance, is the following. For each white pixel,
test all pixels within the chosen distance, measured as the crow flies. If any of these pix-
els is black, the white pixel is set to black. The result is shown in Figure 3.

Unfortunately, this is a brute force solution of the problem, which is computationally
very inefficient. Imagine that the expansion distance is large, of the same order as the N
pixel units along one side of the whole image. Then, this test requires that we examine
O(N

 

2

 

) pixels for each pixel which is a candidate for change. Since there are O(N

 

2

 

) such
candidates, the procedure has a complexity in O(N

 

4

 

). The procedure illustrated in Figure
2 is more efficient. To expand O(N) steps requires O(N) scans of the image. Thus, the
complexity of that operation is O(N

 

3

 

).
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Figure 3. Expansion by finding all pixels within a certain distance from each and every 
black pixel.

 

What this thesis will be about is to solve both these problems at once, to design algo-
rithms that combine high precision with speed. Actually, we will see that rotation invari-
ant expansion, i.e. with Euclidean metric, is possible to obtain with algorithms that have
complexity in O(N

 

2

 

). The expansion problem above is just one out of many image pro-
cessing tasks that can be addressed with the algorithms presented.
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2. The Distance Transform

 

2.1 Definition

 

In image processing, we usually deal with discrete images, images that are sampled into
discrete pixels. A 

 

binary

 

 image is an image where the pixels can only have two values,
0 or 1, black or white, true or false, foreground or background, feature or non-feature. A
binary image is generally the result of a thresholding operation, classifying all pixels in
the image into these two classes.

Then, if we are interested in analyzing shape properties of a binary image, a useful
tool is the 

 

Distance Transform

 

 (DT). The operation takes a binary image as input and
generates a greyscale image as output, the 

 

Distance Map

 

 (DM), in which each pixel
holds the distance to the closest pixel in a chosen domain. See Figure 4. In the Figure, all
pixels in the resulting distance map holds the distance (in the City Block distance metric)
to the closest black pixel in the input image.

The Euclidean Distance Transform (EDT), producing Euclidean distance maps, is a
special case that we will return to in Section 3.3.

 

Figure 4. A binary image and its distance map (City Block distance).

 

Throughout this thesis, we will generate distance maps sometimes in the 

 

background

 

 and
sometimes in the 

 

foreground

 

. The algorithms are the same, simply swapping the two do-
mains, so we make no effort to keep them apart. In the following, we will generally con-
sider the distance maps to hold distances to 

 

feature pixels

 

, which may be foreground or
background as appropriate.

It should also be noted that the terms 

 

distance transform

 

 and 

 

distance transformation

 

are often used for the output as well as the operation. I have chosen to, as far as possible,
use the term 

 

distance map

 

 for the output, in order to make the distinction more clear. A
common synonym for distance map, most common in older papers, is 

 

distance function

 

.
We sometimes also find the term 

 

distance mapping

 

 as a synonym for distance transform.

 

2.2 Variations on the Distance Transform

 

There are some important variations on the distance transform concept, which I will
briefly introduce in this section.

0 00

0

1 1 1

1

1

1

1

1

2 2 2

2

2

2

2

2

2

2

2

2

3 3 3

3

3

3

3

3

3

3

3

3

3

3

4 4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6



 

The Distance Transform 11

 

An important special case of the DT is the 

 

constrained distance transform

 

 (CDT),
where the source image consists not only of feature and non-feature pixels, but also of

 

obstacles

 

. A distance value in a constrained distance map shows the distance to the clos-
est object pixel, not along a straight line, but along a path that does not pass through any
obstacle pixels. This kind of DT is useful for path planning problems, e.g. in robot ap-
plications. A simple example is shown in Figure 5.

There is an even more special case of the CTD, namely the 

 

distance transformation
of line patterns

 

 (DTLP), useful for certain line pattern analysis tasks. This is essentially
a CDT where all paths must have 1-pixel width.

 

Figure 5. Constrained distance transformation.

 

Another variation on the DT concept is 

 

labelled

 

 distance transforms, producing labelled
distance maps. In this case, the distance map does not only hold a distance value, but also
information about the originating pixel, either denoting a subclass of the feature pixels
or a specific feature pixel. The Signed Euclidean Distance transform (see further below)
is a labelled distance transform since it, for each pixel, holds a pointer to the originating
feature pixel.
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3. The development of distance transformation algorithms

 

3.1 Reducing computation time

 

If we disregard the computation time, the problem of generating distance maps is trivial.
In such a case, we can use a brute force algorithm that for every pixel in the binary image
searches all the feature pixels in order to find the closest one, and this thesis would end
right here.

However, such an algorithm is extremely inefficient. For a 2-dimensional image
with n·n pixels, the processing time would be in O(n

 

4

 

), assuming the number of feature
pixels grow with the image size. With current computers, it would take minutes or even
hours to process an ordinary image, for a problem that, as we shall see, can be solved in
less than a second!

If computation time is of any importance at all (which it usually is), the problem of
generating a distance map, that is, to design a distance transform, becomes much harder.
All fast algorithms have one thing in common: for each pixel processed, we do opera-
tions involving only very few other pixels, generally in some neighbourhood of the pixel
being processed.

The first distance transforms using neighbourhood operations were parallel algo-
rithms. With parallel, we mean that the same operation is applied to all pixels in the im-
age at once, producing a new image. What is calculated in one position in the image can
not affect any other parts until the next iteration. Such algorithms are very suitable for
parallel computers, but less so for ordinary sequential (single processor) computers.

According to the references of Rosenfeld and Pfalz [62], the first papers about DTs
discussed parallel DTs. Unfortunately, these papers are from the early 60’s and are hard
to acquire today. A parallel DT, producing a City Block distance map (and that is prob-
ably similar to the early parallel DTs) works as follows:

*

Let d(x,y) be the distance value at location (x,y). Initialize the distance map to 0 for all
feature pixels and to N in all non-feature pixels (where N is a value that is bigger than
the largest possible distance value).

In each iteration, do the following operation for every pixel in the image. Let the pix-
el being processed (the 

 

center pixel

 

) be located at coordinates (x, y). For each 4-neigh-
bour (the north, east, west and south neighbouring pixels), get the distance values and
add 1. Assign the center pixel the minimum value of these four values and the distance
value of the center pixel itself. This can be written:

d(x,y) := min{ d(x,y), d(x+1,y)+1, d(x-1,y)+1, d(x,y+1)+1, d(x,y-1)+1 }

Let the algorithm iterate until there are no changes in the image during one iteration.

*
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This algorithm is much faster than the brute force algorithm. Instead of, for every pixel
in the image, visiting all pixels or at least all feature pixels, we only have to visit the 4-
neigbors a number of times proportional to the largest distance in the distance map. This
distance can be expected to be proportional to the image size, which means that the re-
sulting computational complexity is in O(n

 

3

 

) for a 2-dimensional image with n·n pixels.
In most recent papers, and throughout this thesis, it is common to visualize DTs with

a set of masks, illustrating what neighbourhoods that are used in each stage, and showing
what distance offset is used for each neighbour. For the parallel algorithm just described,
the mask, in this case the 

 

4-neighbourhood

 

, is shown in Figure 6.

 

Figure 6. The mask for a parallel DT.

 

Still, it is possible to make even faster algorithms. The first DT that was suitable for se-
quential (single processor) computers was proposed by Rosenfeld and Pfalz [62] in 1966,
and has been the model for a lot of later work, including several of the papers in this the-
sis. This DT scans the image twice, row by row, once from top to bottom and once from
bottom to top. For each pixel visited, its distance value is compared to the distance value
plus 1 of each of two neighbours, and the lowest value is written in the pixel being pro-
cessed. Rosenfeld’s algorithm can be written in pseudo code as follows (adapted from
[62]). The image is initialized as the parallel algorithm above.

 

for y:=0 to N do
for x:=0 to N do

d(x,y) := min{ d(x,y), d(x-1,y)+1, d(x,y-1)+1 }
for y:=N downto 0 do

for x:=N downto 0 do
d(x,y) := min{ d(x,y), d(x+1,y)+1, d(x,y+1)+1 }

This is a recursive, raster scanning algorithm. We can also illustrate it with a set of
masks, see Figure 7. Compare these masks with the algorithm written above. Note that
what has happened is essentially that we have cut the mask for the parallel algorithm
(Figure 6) in half, and apply one half in the first scan and the other half in the second
scan.

1

1

1

10
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Figure 7. The masks for a 2-scan DT.

3.2 Improving precision

Both the two algorithms described above have a common drawback. They produce DMs
with the City Block distance metric. This metric gives us highly rotation dependent re-
sults. For example, the two shapes in Figure 8 have approximately the same shape and
size (squares), but one is rotated 45˚. The distance values are far from equal in corre-
sponding positions, e.g. the center.

Figure 8. Distance maps in two squares with City Block distance .

Another way to demonstrate the precision, or lack thereof, of a metric is to study its equi-
distance curve. Such a curve consists of all points on a given distance from a point. For
Euclidean distance, the equidistance curve is a circle. For the City Block distance, it is a
square. See Figure 9.
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Figure 9. The shape of equidistance curves for Euclidean versus City Block distance (i.e. 
disks of radius d).

Hence, there was an urge to find alternative neighbourhoods that could create DMs with
higher precision. One solution is to abandon the normal Cartesian, rectangular grid and
switch to the hexagonal grid (see Figure 10). This will not only give us better approxi-
mations of the Euclidean distance, but also solve the connectivity problem, the problem
that the foreground and background must have different connectivity when using d8 or
d4 connectivity in the Cartesian grid (the question whether the diagonal neighbours are
considered neighbours). In the hexagonal grid, this problem disappears. However, there
are other problems, especially the lack of input and output devices for images with this
kind of sampling.

Figure 10. A hexagonally sampled image.

In the hexagonal grid, the simplest metric is the hexagonal distance, also known as hon-
eycomb distance, using a 6-pixel neighbourhood with offset 1 to every pixel. Luczak and
Rosenfeld did early work with this metric [39]. The complete mask is shown in Figure
11. Borgefors [17] has investigated the possibilities for further improvements of DTs in
hexagonally sampled images.

d d
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Figure 11. Complete mask for honeycomb distance.

Another method that has often been used to get higher precision with simple algorithms
is to use the octagonal metric. The idea is simple. If we use City Block distance, as
above, we get correct distances in horizontal and vertical directions from the feature pix-
els, but too small distance values in diagonal directions.

The Chessboard metric, however, uses a full 3·3 neighbourhood, with distance 1 in
all directions. See Figure 12, which shows the parallel mask (left) and the raster scanning
masks (right). With this metric, we get too large distance values in diagonal directions
rather than too small.

Figure 12. The masks for Chessboard distance DT, parallel and raster scanning.

By alternating these two, we get a much better approximation to Euclidean distance,
comparable to the 3·3 weighted DTs (see below), but using only integers with offsets of
1. Alternating them using one step City Block for each step of Chessboard has been quite
popular. I call this Octagonal 1:1 distance. More recently, other combinations have been
proposed [25,26], e.g. using one step of Chessboard for each two steps City Block, which
I choose to call Octagonal 2:1 distance.

However, it is far from trivial to make a sequential octagonal DT algorithm. The
simple splitting into two masks, as is done for other DTs above, is not possible. This
problem was addressed by Danielsson [22], but he also suggested a much better solution,
namely the Euclidean Distance Transform, which we will describe in Section 3.3.

Very early, Montanari [43] gave us another, very flexible solution, namely weighted
distance transforms, using Quasi-Euclidean metrics. He proposed that rather than using
the distance 1 for all neighbours, we could use different values in different directions.
The most obvious mask is probably the one shown in Figure 13, with distance 1 in hor-
izontal and vertical directions, and  in diagonal directions.
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Figure 13. Masks for a weighted DT, parallel and raster scanning.

Figure 13 shows the parallel mask and the two sequential masks we get by splitting the
parallel one into two scans, like we did for the City Block distance DT described above.
The masks should obviously give perfect results in the eight basic directions, but the dis-
tances in other directions will not be exact. The equidistance curves will be polygons, as
illustrated in Figure 14.

Figure 14. The equidistance curve in a weighted DT is a polygon.

If we allow scaling, as proposed by Vossepoel [72], the DT in Figure 13 is the optimal
3·3 mask for a weighted DT. This is fairly obvious since its equidistance curve is a sym-
metric octagon and therefore the optimal approximation of a circle with an 8-sided poly-
gon. Vossepoel uses the name quasi-Euclidean distance for this optimal case. The main
drawback with this solution is that it uses real numbers rather than integers. This draw-
back caused the weighted DT technique to be less useful until the development of inte-
ger-based algorithms, as proposed by Barrow et. al. [7] and developed further by
Borgefors [14,21], Vossepoel [72] and Beckers and Smeulders [9]. 3-D versions have
been proposed by Borgefors [16] and more recently by Beckers and Smeulders [8].

With integer-based weighted DTs, we use masks like in Figure 13, but using integer
numbers larger than the actual distance. This means that the distance values generated
are scaled up, but can be scaled down after the distance transform has been completed.
In the 3·3 neighbourhood, the 2-3 Chamfer DT [72] and the 3-4 Chamfer DT [14,16] are
popular choices. For the 5·5 neighbourhood, Borgefors [14] recommends the Chamfer
5-7-11 DT. The complete masks for these DTs are shown in Figure 15. Each mask can
be split in two in order to get a raster-scanning algorithm.
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Figure 15. Masks for Chamfer 3-4, Chamfer 2-3 and Chamfer 5-7-11 DTs (parallel 
masks).

With bigger neighbourhoods, we can get higher precision. This is simply because the
equidistance curves are now polygons of higher order (in the 5·5 case, a 16-sided poly-
gon) which can approximate a circle better than an 8-sided polygon. Figure 16 shows the
equidistance contours of some weighted DTs (including the non-integer one from Figure
13) as well as a number of other DTs.

Figure 16. The equidistance contours for 9 different metrics.

As we can see in Figure 16, the 5-7-11 DT approximate the Euclidean DT very well.
However, this is at the expense of a considerably slower algorithm.

Let us make a note about the neighbourhoods used for weighted DTs. With bigger
neighbourhoods, masks consisting of the complete neighbourhoods (e.g. 5·5 or 7·7, see
Figure 17) are no longer necessarily the best choice. We can weed out some pixels, there-
by making the algorithm run faster.
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Figure 17. Complete 5·5 and 7·7 neighbourhoods. Center pixels are shaded.

We now define the concept of prime vectors, which has some importance for the follow-
ing discussions. This concept was introduced in my licentiate thesis [50].

Definition: A prime vector is a vector with integer components whose components have
a largest common divisor of 1.
Definition: A non-prime vector is any vector with integer components that is not a prime
vector, that is, a vector whose components have a largest common divisor larger than 1.

This means that any non-prime vector can be expressed as some prime vector multiplied
by an integer, and no prime vector can be expressed in such a way other than as itself
times 1. Thus, in a weighted DT, a mask member on non-prime vector from the center
pixel will not be necessary for the propagation since any propagation it produces can al-
ways be produced as several steps of propagation with the mask member that is on the
corresponding prime vector. Hence, we can remove all non-prime vectors from the mask
and still produce the same distance map.

This assumes that the distance values on the non-prime vector positions are scaled
from the distance value of the prime vector. If this is not true, one of these mask members
will not contribute at all, which makes it meaningless to include anyway.

When making weighted DTs with larger masks than 3·3, it is common practice to
use this result, thereby using sparse masks, using only the prime vectors. For 5·5 and 7·7
neighbourhoods, this results in the masks in Figure 18.

Figure 18. A 5·5 and a 7·7 neighbourhood with unnecessary mask members removed, 
that is, sparse masks. The picture has 3D-perspective to make holes in the masks visible.

It is theoretically interesting to investigate how many pixels can be removed for each
mask size for larger masks. This is illustrated by Figure 19, which shows the prime vec-
tors for masks up to a radius of 10.
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Figure 19. The shortest prime vectors, shown as a grid of pixels. The black pixel is 
origin, grey pixels are on prime vector positions and white are on non-prime vector 

positions.

By simply counting the pixels, we get the following table, where n is the side of the mask
and p is the number of prime vectors in the mask, center pixel not counted. (p+1)/n2 is
the ratio of all vs. necessary mask members.

n p (p+1)/n2

3 8 1.00
5 16 0.68
7 32 0.67
9 48 0.60
11 80 0.67
13 96 0.57
15 144 0.64
17 176 0.61
19 224 0.62
21 256 0.58

This table goes far beyond realistic mask sizes. We may conclude that we get a reduction
of the computation for each mask by 30-40% for realistic mask sizes.

For parallel algorithms, there is another option that is more interesting, namely shell
masks. With shell masks, parallel algorithms can be several times faster than using sparse
masks.

For sparse masks, we removed all non-prime vectors. This causes different propa-
gation speed in different directions, and most notably reduces parallel propagation to 1
pixel distance per iteration. This is because the propagation speed in some direction is
proportional to the length of the prime vector in that direction.

We may use the following masks instead: for each set of vectors a·v, a = 1, 2, 3...k
within the mask, keep only the vector k·v. All others are removed. This mask, the shell
mask, is then used in all iterations except the first one, where a complete mask is used.
A shell mask for a 7·7 neighbourhood is shown in Figure 20.
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Figure 20. 7·7 shell mask. The shaded pixels are included in the mask.

For the 7·7 neighbourhood, this improves the speed by a factor of 3, performing 3 steps
of propagation per iteration rather than one, with the same processing time per iteration
(slightly more in the first iteration).

In my licentiate thesis [50], several other variants on DT masks were outlined. How-
ever, for raster scanning algorithms, the sparse masks are all we need for a weighted DT.

3.3 The Euclidean Distance Transform

Danielsson [22,24] proposed that rather than propagating scalar values, be it integers or
real values, we could use vectors. If each pixel is assigned a vector referring to the closest
feature pixel, it is possible to generate distance maps where prefect results are achieved
in all directions. This was the first published Euclidean Distance Transform (EDT).

Danielsson proposed three different EDT algorithms, the 4SED (4-point Sequential
Euclidean Distance mapping), 8SED (8-point Sequential Euclidean Distance mapping)
and PED (Parallel Euclidean Distance mapping).

8SED works as follows:
We use an image where each pixel holds a 2-component vector vij = (vx, vy). Vectors

in feature pixels are initiated to (0,0), while vectors in non-feature pixels are initiated to
(Z,Z), where Z is a sufficiently big number.

Then each line from top to bottom is scanned back and forth, and each pixel visited
is tested against a set of neighbours:

for j := 1 to N do
begin

for i := 1 to N do
for i := N downto 1 do

end

vij:=min
vij

vi 1.j+ 1.0( )+





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The min operation selects the vector with the smallest length. Also note that all image
border checks are omitted in order to make the description simpler. Then, all rows are
scanned back and forth again, this time from bottom to top:

for j := N downto 1 do
begin

for i := 1 to N do

for i := N downto 1 do

end

vij:=min

vij

vi 1.j– 1.0( )+

vi 1.j– 1– 1.1( )+

vi j, 1– 0.1( )+

vi 1 j, 1–+ 1.1( )+












vij:=min

vij

vi 1.j+ 1.0( )+

vi 1.j– 1+ 1.1( )+

vi j, 1+ 0.1( )+

vi 1 j, 1+ + 1.1( )+












vij:=min
vij

vi 1.– j 1.0( )+





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We can express this with masks as shown in Figure 21. The numbers in the figure show
the vector to be added to the center pixel.

Figure 21. Masks for 8SED, an unsigned Euclidean distance transform.

The PED algorithm is a parallel EDT that uses four simple propagation primitives,
shown in Figure 22. Each of the four masks is applied for all pixels at once (in parallel),.
After applying all four, one step of propagation corresponding to applying a complete
3·3 mask is done.

Figure 22. The four masks for PED, a parallel EDT.

In these suggested forms of EDT, only positive vector components were used, though
the possibility of using signed vectors was also pointed out. Ye [75] developed the signed
EDT further, with signed versions of the above algorithms. The most interesting version
is probably the 8-pixel version, the 8SSED (8-pixel Signed Sequential Euclidean Dis-
tance mapping). Its masks are shown in Figure 23. Note that the only difference to 8SED
is that we can have negative signs on components in the offset vectors.
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Figure 23. Masks for 8SSED, a signed Euclidean distance transform.

Ye [75] demonstrates several applications for the signed EDT. Earlier, the same year as
Danielssons first papers, Fischler and Barrett [30] had presented applications for a sim-
ilar algorithm, using signed vectors. These two papers demonstrate how powerful the
new technique is. The usefulness of the signed version is so much bigger that we will
hardly consider the unsigned version through the rest of this thesis. It is no more complex
than the unsigned version, adding only a sign bit per vector component.

As pointed out already by Danielsson [22], the 4SED and 8SED, as well as their
signed versions 4SSED and 8SSED, are not totally error-free. This will be discussed in
more depth in Section 4.

Finally, let us note that the vector-based approach to EDT is useful even in the hex-
agonal grid (in the case where we use hexagonal grid for avoiding the problem with con-
nectivity, as noted in Section 3.2, rather than for using honeycomb distance). Luczak and
Rosenfeld [39] use a coordinate system with three non-orthogonal coordinate axes in the
2D plane. Let us use only two axes, x and w. Any vector in the plane can still be repre-
sented with components along these axes, like . See Figure 24.

Figure 24. The vector  expressed in the components x and w.

The base vector  can be expressed in the common, orthogonal Cartesian coordinates as
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Thus,  in Cartesian coordinates is:

This gives us the length of the vector in Euclidean distance:

Thus, it is very simple to calculate the Euclidean distance from the (x,w)-coordinates.
Moreover, the squared distance is, just like in the Cartesian grid, always integer. This al-
lows us to use exclusively integer arithmetics through the calculation of the distance
map, only using square roots in a final step, where we can use lookup tables. Vincent [70]
has proposed an EDT on the hexagonal grid, using the equation above to calculate dis-
tance.

ŵ wxx̂ wyŷ+ π
3
---cos x̂ π

3
---sin ŷ+= =

L

L xx̂ yŷ+ x w
2
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4. Precision

In this section, I will discuss the precision of various DTs, i.e. how well they approximate
the Euclidean distance. Especially, I will discuss how well various versions of EDT per-
form in this respect.

As pointed out by Danielsson [22], the first EDTs were not totally error-free. To un-
derstand why this is the case, the reader should be familiar with the concept of Voronoi
Diagrams [31]. For each feature pixel in the image, we can find a polygon that encloses
all the pixels that are closer to that feature pixel than to any other feature pixel. In a cor-
rect distance map, the pixels inside the polygon should hold the distance to that feature
pixel.

Such a polygon is a Voronoi polygon, and the union of all Voronoi polygons form
the Voronoi Diagram of the image. See Figure 25.

Figure 25. A Voronoi diagram from four points.

For some arrangements of feature pixels, the corner of a Voronoi polygon can have a
very acute angle. That can give us a corner that is so narrow that the propagation in the
distance transform can not be guaranteed to reach the outmost pixels. In such a case,
these pixels can get a value that does not refer to the closest feature pixel, but to one
slightly farther away. See Figure 26.

Figure 26. A feature pixel configuration where the pixel in the corner is not guaranteed 
to be reached by the propagation from the middle feature pixel.

In the EDT algorithms, errors occur only in this kind of corners with acute angles, which
are uncommon in most types of images. Also, when the errors occur, they are very small.
Danielsson [22] reports the maximum error in 8SED to be 0.090 pixel distances, and for
4SED a maximum error of 0.29 pixel distances. For practical problems, these small, in-
frequent deviations are without any significance.
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It should be stressed that these errors only occur in sequential algorithms. Yamada
[74] has proven that a parallel EDT with 3·3 neighbourhood is error-free. 

Since the original EDT algorithms, 4SED and 8SED, are not completely error-free,
some authors have lumped these algorithms together with non-Euclidean algorithms us-
ing City Block, Chessboard, octagonal and weighted metrics. Here, I would like to make
a distinction between errors of different types.

With a non-Euclidean DT, we refer to a metric where the distance value assigned to
each pixel is generally not a Euclidean distance value. This is true for all the simple or
weighted metrics. Second, the maximum error, the maximum deviation from the Euclid-
ean distance, has no upper bound for these DTs, but grows linearly with increasing dis-
tance.

In what we call a Euclidean DT, every pixel has a vector and thereby a distance val-
ue that gives the exact Euclidean distance to some feature pixel. Even if this is not in ev-
ery case the closest feature pixel, the distance is still Euclidean and rotation invariant. In
the following, we will call all algorithms EDTs if this condition is fulfilled. Admittedly,
it is a weak condition, and not sufficient to make any EDT interesting.

Most EDTs, however, also have an absolute upper bound on the error. For 8SED, it
is as small as 0.09 pixel distances, as mentioned previously. Taking sampling noise into
account (from which an error of at least 0.5 pixel distances should be expected), it is in-
appropriate to put the 8SED in the same bag as the truly non-Euclidean City Block,
Chessboard and weighted DT algorithms, that have no upper bound on the error.

More specifically, I propose the following classification by precision of Distance
Transforms:

A: Error-free DTs.

In this group, we find the trivial but impractical brute force algorithms, most parallel
EDT’s and some sequential EDT algorithms. However, as noted in the next section, no
sequential error-free algorithm proposed so far can quite match the algorithms in class B
in computational speed (including the one I propose in paper #2). One algorithm, due to
Rutowitz [63], runs in O(N2) for any image, while the other algorithms all have worst
cases where they are slower.

B: DTs with an absolute upper bound on errors.

All DTs in this group are Euclidean, including Danielsson’s 4SED and 8SED, Ye’s
8SSED, 3-dimensional raster scanning algorithms proposed by Borgefors [16] and Mohr
and Bajcsy [42] and some new algorithms proposed in this thesis (papers #1,2,7). If the
Euclidean distances in an EDM are rounded to integers, preferably up, as proposed by
Rhodes [60], the result is also an EDM in this class.

C: No absolute upper bound on errors.

This group range from the poor City Block and Chessboard DTs to the very good weight-
ed DTs. It also includes some rather odd EDTs, where the upper bound on errors has been
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sacrificed for speed. It is generally possible to find an upper bound for the relative error
for any DT in this group.

Disregarding brute force algorithms, the first EDT that was shown to be error-free was
Yamada’s parallel EDT [74], in 1984.

In 1987, in a paper mainly concerned with thinning, Klein and Kübler [33] briefly
outlined an EDT that is claimed to be error-free, but that is very computationally inten-
sive. Their description is very brief, but the algorithm appears to be nothing but an opti-
mized brute force algorithm.

In 1989, two much faster algorithms were presented. Rutowitz [63] proposed an al-
gorithm for generating Voronoi diagrams as well as the EDT. The algorithm scans the
image from top to bottom and then from bottom to top. For each row, a list, the active
set, holds references to all feature pixels whose Voronoi polygons reach that row. This
list is updated each time a new feature pixel is found during the scanning process. The
algorithm can be proven to run in O(N2) for an N·N image, though this is with a relatively
high constant due to calculations of Voronoi polygon corners [64]. This does not neces-
sarily make it the fastest error-free EDT, but the most robust one concerning speed.

At the very same conference [52], I presented my error-free EDT (paper #2) based
on Yamada’s results. It uses ordered propagation (called contour processing in my ear-
lier papers) which emulates the propagation process of the parallel algorithm, but pro-
cessing only the propagation front in each iteration. It buffers all updates in order to
perfectly emulate the updating process in a parallel EDT. Hence, Yamada’s proof [74] is
valid for this algorithm as well, which proves this new algorithm to be error-free.

For the hexagonal grid, Vincent [70] proposed an EDT in 1991 that uses chain prop-
agation, that is, ordered propagation using a chain-coded propagation front. By allowing
several propagation fronts to exist on top of each other, queues can exist that give the
same effect as the ones appearing when using Yamada’s [74] and my own algorithms
[52]. Note that in the Cartesian grid this queuing process can take place in the image,
while in the hexagonal grid, where Yamada’s proof is not valid, it must be explicitly sup-
ported by the structures representing the propagation front.

More recently, in 1992, Paglieroni [48] has proposed a so called unified DT. By uni-
fied, he refers to that the DTs produced are labelled (see page 11), and can therefore use
any metric desired, a general property of all vector-based DTs like the Signed EDT that
was recognized much earlier by Fischler and Barrett [30]. Paglieroni’s algorithm sepa-
rates horizontal and vertical scanning, which has some advantage for parallel implemen-
tations. First, a horizontal labelled DT is done on each row, a trivial operation.
Unfortunately, the column processing involves testing an unknown number of pixels for
each pixel, which makes it easy to find worst cases for this algorithm where it is substan-
tially slower than conventional EDTs.

Also in 1992, Mullikin [44] proposed yet another error-free EDT that works in 3D
as well as 2D. In this case, a scheme is set up to collect all ties and near-ties, which occurs
on and near the borders of the Voronoi polygons. This is done on a pixel by pixel basis.
Mullikin shows that by only collecting the ties, where two feature pixels are on exactly
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the same distance to a pixel, the number of errors is reduced substantially for a not too
big computational cost. By collecting and processing near-ties up to a difference of 1 pix-
el distance, a completely error-free EDT is achieved, but for a significant computational
cost. Thus, while this algorithm is of limited interest in its error-free form, the version
collecting ties has interest both as a near error-free EDT and, more importantly, for use
in algorithms where arbitrary assignment of ties is not acceptable.

Finally, to illustrate the multitude of solutions to this problem, I will suggest yet an-
other method, a post-processing step for the EDT. As noted above, the errors of a raster
scanning EDT will only occur in corners of Voronoi polygons with acute angles. It is
possible to find these corners, thereby finding pixels that have not been reached by the
propagation from the appropriate pixel. This can be done with the following procedure:

Using an appropriate neighbourhood for detecting corners (e.g. a mask pair with 1·3
and 3·1), search for pixels with two neighbours in other Voronoi polygons, that is, with
vectors pointing to two feature pixels different from the center pixel. In Figure 27, an ex-
ample with a 1·3 detector mask is shown.

Figure 27. Shooting Stars - an outline for yet another error-free EDT.

Since the detector can give us vectors to all the three feature pixels (to the left in Figure
27), we can calculate the point where the Voronoi edges meet. If there are any pixels that
should refer to the center feature pixel that have not been reached by EDT, they will be
located between the detected pixel and the corner. We can then search the pixels between
the detected pixel and the corner, choosing pixels with an ordinary line drawing algo-
rithm (along the arrow in Figure 27).

This outline is obviously too simple to make a useful algorithm. Most of all, the de-
tection of starting points for the checking must be made in a way that will not give as
many false alarms. I will make no attempts to optimize the algorithm, since it will in any
event be too computationally expensive to be useful in practice compared to the better
algorithms above. Considering the way this algorithm works, and the insignificance of
the errors it is correcting, I call it Shooting Stars.

Out of all the error-free algorithms listed above, Rutowitz’ algorithm [63] appears
to be the most attractive one, being relatively simple and not too dependent on the image
data (the only error-free one always having computation cost in O(N2)). My own algo-
rithm [paper #2, 52,53] accesses fewer neighbours per pixel than any of the others, mak-
ing it fast in normal cases (O(N2)) but with worst cases where it gets noticeably slower.
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Let us now leave the error-free algorithms and look at the other end of the precision
space. As proposed in my licentiate thesis [50] and in the appendix to paper #1, we can
sacrifice the inherent precision in EDT for speed, i.e. we can design a Quick-And-Dirty
SSED. In paper #1, I state that a raster scanning EDT must support propagation in all pos-
sible directions in order to produce a correct EDT, which guarantees that the EDT will
be at least in group B. If we use Quick-And-Dirty SSED, we choose not to include all
directions, but instead reducing the number of scans and the number of pixels in each
mask in order to improve speed. Such an algorithm will then belong to group C.
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5. Computational complexity

In this section, I will return to the question of computational complexity. Since the whole
distance transform problem is a question of processing speed, the computational com-
plexity of the different algorithms is obviously of critical importance. In addition to the
complexity, speed is also dependent on the optimization of the inner loops of the algo-
rithms, a subject discussed for the EDT by Leymarie and Levine [37] and in paper #2 of
this thesis [53].

In order to be able to compare parallel and sequential algorithms, we use the com-
putational cost [2], which is the computation time times the number of processors being
used.

We must also make some assumptions concerning the contents of the images being
processed, since many algorithms have data-dependent processing time. We assume the
following:

• The number of feature pixels is proportional to the number of pixels in the image.
• The largest distance in the resulting distance map is proportional to the side of the

image.
• The length of all edges (number of black pixels with white neighbours or vice ver-

sa) is proportional to the perimeter of the image.
Thus, for a 2-dimensional image with N·N pixels, we expect the number of feature

pixels to be in O(N2) and the largest distance as well as edge length in O(N).
For a 3-dimensional image, size N·N·N, we expect a number of feature pixels in

O(N3) but a largest distance in O(N). In 3D, we should consider surfaces rather than edg-
es, which are 2-dimensional, so we can expect the number of surface pixels to be in
O(N2).

The assumptions made about the image data may, of course, be different if we are
working with some specific application where we have more a priori knowledge. Mul-
likin [44] works with microscopy images where there are reasons to assume thin objects.
In that case, the number of feature pixels will be of the same order as the number of edge
pixels. However, I believe that the assumptions made above are appropriate when no a
priori knowledge exists.

I propose the following main classes of algorithms according to their computational
complexity (ordered in decreasing complexity):

A: Brute force

2D: O(N4) 
3D: O(N6)
The class of brute force algorithms include the most trivial brute force algorithm, where
for all feature pixels, all pixels are tested, as well as some better ones where all feature
pixels are tested for every pixel, and some even more elaborate methods. Generally
speaking, algorithms in this class are not interesting for practical use.
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B: Parallel

2D: O(N3)
3D: O(N4)
With a parallel algorithm, we do not necessarily refer to an algorithm that is executed on
a parallel architecture. Rather, we refer to algorithms that are computed in a manner com-
parable to a parallel algorithm, typically where we process all pixels in one iteration in
order to get a fixed number of propagation steps (typically one).

As discussed in paper #1, normal parallel algorithms are not cost effective compared
with sequential algorithms implemented in a parallel architecture. Sequential, raster
scanning algorithms can be implemented in parallel, offering an optimal computational
cost (class D below). However, such an algorithm can not use more than a limited num-
ber of processors, so if a massively parallel architecture (i.e. one processor per pixel) is
available, parallel algorithms in group B will produce a DT in shortest time.

C: Near optimal

2D: O(N2·ε(I))
3D: O(N3·ε(I))
In this group, we have all algorithms that in the worst case (certain pixel configurations
in the image) run slower than optimal, but, at least for normal cases, faster than the par-
allel algorithms in class B. The computational cost is in O(N2·ε(I)), where ε(I) is a func-
tion that depends on the image data, implicitly dependent on and growing with N.

C1: Error free sequential EDTs

Most of the error free sequential EDTs described in Section 4 are in this class. The nor-
mally perform close to optimal, but have worst cases where sorting or queuing of many
pixels give a higher computational complexity. Thus, ε(I) can be strongly data depen-
dent, approaching N for some kinds of images.

C2: Pyramid DTs

When computing DTs on parallel pyramid machines [65], an approximative DT can be
computed in O(log(N)) iterations, which implies a computational cost in O(N2log(N)),
i.e. ε(I) = log(N).

As a side note, Borgefors et. al. [18] also use a pyramid structure, but choose to use

it differently, computing the DT in parallel as usual (class B, in O(N3)), using the pyra-
mid for memory-efficient storage only.

C3: Sub-optimal ordered propagation DTs

Though ordered propagation DTs perform extremely well, some unexpected worst cases
appear due to not processing the pixels in order of increasing distance. The early ordered
propagation DTs by Piper and Granum [49] have such a worst case when using weighted
metrics. The Constrained EDT, paper #3, also has such a worst case. See also class D2,
below.
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D: Optimal

2D: O(N2)
3D: O(N3)
The DTs in this class must have an upper limit on how many times any pixel can be ac-
cessed. If so, the time consumption will always be proportional to the image size (e.g.
O(N2) for an N·N image). Two addressing mechanisms can be used, namely raster scan-
ning or ordered propagation.

D1: Raster-scanning

The classical kind of raster scanning DTs, as proposed by Rosenfeld, are computation-
ally optimal. It uses two image scans for all non-Euclidean DTs. Euclidean DTs use 3 or
4 scans. Rutowitz error-free EDT [63] is also in this class, using only 2 scans but with
more arithmetic operations.

D2: Ordered propagation

Some, but not all ordered propagation DTs are computationally optimal. For an ordered
propagation DT to be computationally optimal, it must access the pixels in order of in-
creasing distance. If that is not fulfilled, we can find worst cases as discussed in paper
#2, where some areas can be visited many times, where the upper bound depends on the
image size.

The ordered propagation algorithm proposed by Verwer [68,69] is, however, opti-
mal, since it accesses the pixels in perfect order of increasing distance. Paper #4 [54,54]
discusses how to include this in an EDT algorithm. Another optimal algorithm, where
optimality is less obvious, is the simpler ordered propagation EDT in paper #2 [52,53],
which uses a distance threshold. It can not guarantee that every pixel is visited only once,
but there is still an upper bound on the number of times a pixel can be accessed.
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6. Going 3D

The task of making distance transformations in 3 or higher dimensions has been ad-
dressed in several papers. Mohr and Bajcsy [42] and Borgefors [16] proposed early gen-
eralizations of Danielsson’s algorithm. Borgefors [16] also discussed other metrics
extensively. Recently, Danielsson [25] proposed algorithms for octagonal distance in 3
dimensions.

In this thesis, I generally work in the 2-dimensional space, except for paper #7,
which generalizes the results in paper #1 for use in 3 and arbitrary dimensions. The re-
sults in many of the other papers are more or less straight-forward to do in higher dimen-
sions too. I will here briefly mention the situation for each paper, and then show how the
less trivial extension of paper #2 can be done.

• Paper #1 is generalized to 3D in paper #7.
• For paper #2, some generalizations are given below.
• Extending paper #3 to higher dimensions is far from trivial, and I will make no at-

tempt here to do that. It will not only require handling of direction intervals like in paper
#7, but has to handle more complex direction intervals, i.e. polygons in the direction
space.

• The shape editing operations in papers #4 and #5 are trivial to extend to 3D. As
written, they may use the full 3·3 (in 3D 3·3·3) neighbourhood or directed masks, which
I will describe how to do in 3D below.

• The local maxima extraction algorithm, paper #6, is somewhat harder to extend. In
such a case, all the tables must be recalculated in order to give information about what
spheres that overlap rather than disks.

• Paper #7 is in itself a discussion in 3D and higher dimensions.
• The skeletonizing algorithm in paper #8 is in itself easy to generalize to 3D, given

a connectivity preserving test for 3-dimensional objects. An early method was proposed
by Lobregt et. al. [38].

• The algorithm in paper #9 can be extended to 3D by replacing disks with spheres,
but becomes even slower and thereby even less interesting for practical use. However,
the more important question of the difference in generated data size between the simpler
algorithms and an optimized one would be interesting to investigate in 3D.

• 3D is not relevant for paper #10, except possibly for the parallel algorithms.

The generalization of paper #2 is not quite as obvious as some of the others, and may
deserve some comments. The paper describes an ordered propagation EDT with directed
masks, that is, small, direction-dependent masks. In 2D, the direction space is divided in
8 parts. In 3D, it must be divided into more parts. Using the unfolded cube graph (intro-
duced in paper #7), we can find a suitable division.

A mask with only 1 neighbour will only support propagation along a line. A mask
with 2 neighbours can, as long as the two pixels are not located on a line from the center
pixel, support propagation in a plane. A mask with 3 neighbours can support propagation
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in a volume, a part of the 2-dimensional direction space that we have in 3D, granted that
the three pixels and the center pixel are not all in the same plane. Thus, we need masks
with at least 3 neighbours, and if possible we should not have more.

We get the simplest solution when using a 6-neighbour EDT. Then, we can use the
same masks as in the Corner EDT (paper #7), but this time using an ordered propagation
algorithm. See Figure 28. Each one of the eight masks is used in a direction interval like
the shaded area in the Unfolded Cube Graph to the left in the Figure. The shaded area
corresponds to the directions where the mask in the middle, the farthest bottom left one,
should be used.

Figure 28. The eight masks in Corner EDT and the Unfolded Cube graph for one mask.

Just like in the 2D algorithm, we can apply one of these masks depending on what direc-
tion the current center pixel is in from its originating pixel. The directly supported direc-
tions are still a special case and requires special masks.

For no extra expense in computation speed, we can move up to the full 26-neigh-
bourhood. See Figure 29. The Unfolded Cube graph in the figure is divided into trian-
gles. Every corner of a triangle corresponds to one of the 26 neighbours. The mask
corresponding to the direction space covered by the shaded triangle is shown to the right.

Figure 29. One possible division of the Unfolded Cube graph for an ordered propaga-
tion 3D EDT with 26-neighbourhood. 
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We can make the division of the direction space into triangles in different ways, i.e. split-
ting the squares the other direction, but the result will be the same. We may also divide
it into squares, which gives us only half as many intervals, but that would imply four
neighbours per mask rather than three.

Since we are still using only three neighbours per mask, and every pixel is processed
only once due to the ordered propagation, this methods is just as fast as the 6-neighbour
one. Of course, it takes a lot more work to implement.

We can conclude that it is possible to generalize the ordered propagation algorithm
in paper #2 with directed masks to 3 and even higher dimensions, in 3D yielding algo-
rithms visiting only 3 neighbours per pixel.
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7. Applications

7.1 About this chapter

The distance transform is a tool that is applicable to a wide range of image processing
problems. In this section, I will review a number of applications where the DT is a more
or less central part of the solution. In Section 7.2, applications for the general distance
transform, with only distance values, are reviewed. In Section 7.3, applications for la-
belled distance transform, producing distance maps with reference to the originating pix-
el or class of pixels, are reviewed.

7.2 Applications of distance maps in general

This section discusses applications of distance maps in general. Euclidean distance
maps, both signed and unsigned, may be used as well as others. The applications does
not explicitly demand labelled distance maps, but we will find a number of cases where
such distance maps give better results.

Medial axis transform

The two following issues, data compression and skeletonization, are both based on the
concept of the medial axis transform (MAT) also known as medial axis function (MAF)
as suggested by Blum [11]. The MAT is defined for objects in the continuous space. The
discrete skeleton (see below) is an approximation of the continuous MAT. Figure 30
shows the MAT of a few sample objects.

Figure 30. The Medial Axis transform of some sample objects.

Thus, MAT is in itself not a DT application, but a concept on which the following appli-
cations is based.

Data Compression

From a distance map over an object, it is possible to find a number of pixels who together
with the corresponding distance values can uniquely represent the shape. Each such pixel
corresponds to a (more or less) circular disk in the image. The shape can be reconstructed
from it, according to the reconstruction theorem [61]. This is a compact representation
of a shape.

In early papers, this shape representation was called skeleton or distance skeleton.
Since the set of pixels needed for representing a shape is generally not connected, this
was an unfortunate term, and the term skeleton is rather used for the connected skeleton
today. Later, the term local maxima was used, referring to the fact that when using City
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Block or Chessboard distance, all pixels needed for reconstruction are local maxima in
the distance map. However, this was not a very good name either, since the necessary
pixels are not local maxima in weighted DTs or Euclidean DTs. In paper #9 of this thesis,
we propose the name necessary maximal disks (NMD).

The NMD set is a rather robust representation of a shape, except for very small
shapes, where one pixel makes a big difference, as illustrated in Figure 31. Of course, the
case where a single pixel is removed in the middle is a topology change and should make
a big difference.

Figure 31. Some examples of maximal disk representations (skeletons) of some similar 
shapes (from Rosenfeld [61]) using the Chessboard distance metric.

Algorithms for generation of the NMD has been presented for City Block distance maps
by Rosenfeld and Pfalz [62], for weighted metrics by Montanari [43] and Arcelli and
Sanniti di Baja [4]. For Euclidean distance maps, algorithms have been proposed by
Danielsson [22] and Borgefors et. al. [19,20] (paper #6). Mohr et. al. [42] use related
ideas to represent 3-dimensional shapes with spheres, using a 3-dimensional version of
the Euclidean distance transform. In paper #9 in this thesis we discuss the optimization
of the NMD in order to get a minimal representation.

Skeletonization (thinning)

A topic related to the previous one is the connected skeleton. A connected skeleton is a
topology-preserving representation of a shape in the form of one pixel wide curves along
the medial axis of the shape. For some compact objects, the minimal representation as
mentioned above is identical to the connected skeleton, but in the general case, neither
connectedness nor single pixel width is guaranteed above, as exemplified by Figure 31.
Connected skeletons are useful for shape analysis rather than data compression.

If connected skeletons are extracted by the NMD using metrics far from Euclidean,
i.e. City Block or Chessboard distance, or an algorithm that operates by iterative topolo-
gy preserving erosion [61], the skeletons generated are highly sensitive to both rotation
of the represented object and to edge noise (See Figure 32 and Figure 33).
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Figure 32. An example of the rotation dependency displayed by the skeletons generated 
by some thinning algorithms. The metric used is the City Block metric. The skeleton rep-

resentation of the two squares are totally different.

Rotation invariance can be obtained by using the Euclidean metric or a close approxi-
mation of it. The sensitivity to edge noise can be suppressed by deleting short branches,
but this is a heuristic solution that does not necessarily delete the right branches.

Figure 33. An example of the noise sensitivity of many thinning algorithms. A single pixel 
at the border adds a new branch in the skeleton, a considerable change of the represen-

tation of the shape.

We can reduce the rotation dependency by using better metrics, like the weighted met-
rics. Several such algorithms have been suggested [45,68]. For minimizing the rotation
dependency, the Euclidean distance transform can be used. Fischler et. al. [30] and Ar-
celli et. al. [5] generate skeletons by filling in the NMD. In paper #8 [59], I propose an
algorithm that accomplishes this task by connectivity preserving erosion on the EDM.
Leymarie et. al. [36] use snakes along with Euclidean distance maps for extracting skel-
etons of similar high quality. The skeletons generated by this algorithm are both rotation
invariant and noise insensitive.

There are also some algorithms that are rather approximations of a skeleton, where
topology preserving is not guaranteed. Kruse [35] suggests the α-skeleton, where skele-
ton points must have neighbour pixels that hold vectors with an angle between them that
is above a certain threshold α. Wright [73] uses a convolution kernel, the Marr Hidreth
operator, to detect ridge points in a grey-level EDM.

Erosion or dilation in constant time

Erosion and dilation can be performed by iteratively changing border pixels of the ob-
jects in the processed image. However, since this is a parallel operation, it can be rather
slow if we need to shrink or expand many steps.

If we generate a distance map over the suitable part of the image (objects or back-
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ground), we may perform the erosion or dilation with a simple thresholding operation.
The computation time will be far lower in many cases, since the distance map can be gen-
erated with a recursive (scanning or contour processed) DT. It will also allow us to use
Euclidean or Quasi-Euclidean metrics.

Contour processed erosion and dilation

Another approach for fast erosion or dilation is contour processing binary operations (not
DTs as above). The algorithms in [71] are fast even for erosion or dilation in many steps.
However, unless we use very large structural elements, they bring us back to the crude
City Block or Chessboard metrics again.

An alternative that gives high speed combined with Euclidean or Quasi-Euclidean
metric is to use an ordered propagation (contour processed) DT that is halted after a spec-
ified distance. A Euclidean one is suggested in this thesis (Paper #2). With such an algo-
rithm, we only need to process a small part of the image, corresponding to the area that
should be influenced by the erosion or dilation.

PCB inspection

A practical application for erosion and dilation as well as skeletonization is automatic in-
spection of printed circuit boards (PCB). See for example [76]. However, the demand for
speed in such applications is very large, so it is questionable whether distance transforms
are fast enough compared to morphological operators implemented in hardware.

Shape factors

Danielsson [23] notes that shape factors based on the object border length are ill defined,
because of the fractal behavior of object borders. It is not possible to make any unique
measure of border length other than the convex hull. Danielsson suggests a new shape
factor where the distance map of the object is used.

Edge matching

Distance maps can be used for efficient matching in binary images, as proposed by Bar-
row et. al. [7]. Borgefors [12,13] suggested an efficient algorithm using pyramid struc-
tures. Orbert [47] proposed some variations and reported that the choice of metric is of
relatively small importance for this application.

The general technique is that we have a template, a shape defined as a set of pixels,
and we want to find any positions in a binary image that matches the template. This can
be done with correlation over the entire image (or GHT, generalized Hough transform,
which is essentially the same thing), but this is a brute force solution, far too slow for
real-time applications.

Instead, we make a distance map of the image. Then, we can try matching the tem-
plate in some arbitrary position. The match is no longer just the sum of template pixels
that end up on a feature pixel in the image, but rather an average of the distance values
found. The smoothness of a distance map makes hill-climbing search for the optimal
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match a reasonable approach that is likely to find the global optimum for a modest set of
starting positions.

This method is very fast and fairly robust compared to correlation, though there are
shapes where the global optimum is hard to find.

Path analysis

Distance maps can be used for path analysis, especially for finding the shortest path
through an image with obstacles, using a constrained distance transform (Figure 34).
Such algorithms are applicable to for example robot movement planning and PCB
layout. The classical approach is described in the last part of this thesis. More recently,
algorithms for path analysis with more accurate metrics have been presented [28,69].
However, the algorithms presented in the last part of this thesis are the first image-based
algorithms known to the author that use the Euclidean metric, resulting in a path
consisting of arbitrarily long straight lines.

Figure 34. The result produced by a constrained distance transform, the shortest path 
through an image with obstacles (grey).

Skeletonization and dilation, which can be generated by distance transformations, are
also useful for path planning. The skeleton of the background (non-obstacle areas) can
be used for finding the safest path (the path that passes farthest from the obstacles). Di-
lation can be used for expanding the obstacles according to the size of the object that is
to be moved through the area, reducing the problem to moving a point-shaped object
through the area with the enlarged obstacles. If several different objects of different size
should be used, we may keep the distance map instead of thresholding it, and use diffe-
rent thresholds depending on the object used. Andersen [6] suggests that the speed of the
moving object could be dependent on such a distance map. When the object is close to
obstacles, it should move slowly, in order to avoid collisions at high speed.

Textures, skeleton analysis

Toriwaki et. al. [67] use distance transformations of line patterns (DTLP) for texture
analysis. This is a special kind of distance transformation, where each pixel in a line pat-
tern receives the distance value to the closest or farthest end point (two different ver-
sions). See Figure 35. The transformation can be used for extracting information from
connected skeletons.
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Figure 35. The distance transformation of line patterns.

It is possible to use weighted metrics like Chamfer 3-4 for the DTLP, but only as long as
they are restricted to a 3·3 neighbourhood. More accurate distance measures like the Eu-
clidean metric are not applicable on this kind of transformation without altering it com-
pletely.

The original DTLP was proposed as a parallel operation. It can also be computed se-
quentially [58], but in such a case, other methods appear more attractive.

Editing, smoothing

By erosion and dilation, edge noise can be removed from binary images. This can also
be done using distance transformations, as suggested by Borgefors [15]. Arcelli and San-
niti di Baja [3] proposed a smoothing operation that uses a distance transformation of
both object and background. In a related paper, Ablameyko et. al. [1] use distance maps
for smoothing as well as topology changes. Ye [75] suggests a smoothing algorithm us-
ing the Euclidean metric.

In paper #5 in this thesis, I propose an improved version of the smoothing algorithm
by Arcelli and Sanniti di Baja [3], using ordered propagation and Euclidean metric.

7.3 Applications of Euclidean distance maps and other labelled distance maps

The applications discussed in this section demand that the distance map holds informa-
tion about where the distance values have propagated from. This is true for signed Eucli-
dean distance maps, but also for other labelled distance maps. Note that non-Euclidean
labelled distance maps have hardly any advantage over signed Euclidean distance maps,
since the computation time and memory requirement are similar, but Euclidean distance
maps have far better precision.

Voronoi diagrams

The Voronoi Diagram [31] is easily extracted from a labelled distance map. See Figure
25 for an example. Using distance transformations, Voronoi diagrams in the form of
sampled images can be generated in constant time, regardless of the number of object
points. This is done for non-Euclidean metrics by Borgefors [14] and for the Euclidean
metric by Ye [75]. A large number of applications of Voronoi diagrams exist.
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Shape analysis

Distance transformations can be used for other kinds of shape representation and shape
analysis than the skeleton. Ito et. al. [32] present an algorithm to decompose shapes into
significant, possibly overlapping substructures. Similar ideas are suggested by Mauer et.
al. [40].

Sketch completion

In image analysis concerned with real images, parts of objects can be undetectable. Ob-
jects may overlap each other and edges can be too blurred to detect. Fischler et. al. [30]
suggest that we may use sketch completion to reconstruct the shapes. They suggest a
method using labelled distance maps. If only parts of the edges of an object is detectable,
the outer and inner sides of the edges are labelled with two different labels. A distance
map from these two regions and the following segmentation of the distance map accord-
ing to the labels give a completed object. See Figure 36.

Figure 36. Sketch completion.

The left part of the figure shows the edges, the outer parts of which are labelled with one
label (grey) and the inner parts with another label (white). Note that the edge segments
are “notched” in the ends. The propagation from the white labelled parts of the edges will
cover the striped area shown in the right figure.

In order to get good results, high precision metrics like the Euclidean metric is de-
sirable, but it is also important to preprocess the ends of the edge segments, or artifacts
will appear.

Curvature measurement

Ye [75] uses signed Euclidean distance maps for measuring curvature. From the distance
map, we can find how many pixels in a certain distance interval that points to each object
pixel. See Figure 37.
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Figure 37. Labelled distance maps used for curvature measurement.

The figure shows a part of an object (grey). Each pixel in the area closest to the object
has been labelled, showing for each edge pixel the background pixels for which that edge
pixel is the closest one. Basically, this is a sampled Voronoi diagram. The larger the
number of background pixels in a region, the higher the curvature.

This is done by scanning the image while accumulating values in a curvature image.
This operation can be speeded up significantly by using the contour processed Euclidean
distance transform, executing only a few iterations. Fischler et. al. [30] suggests a similar
method, where the count of each pixel is weighted by the inverse of the distance.

Restitution

Blom [10] uses labelled distance maps for restitution, where the image of a face is dis-
torted to simulate the result of facial surgery.

The input to the restitution algorithm is the face contours before and after surgery
and the complete greyscale image of the face before surgery. The result is a greyscale
image predicting the result of the surgery. Each contour pixel of any of the two face con-
tours is given a label, that is, the contour pixels are used as object pixels in a distance
transformation. Through a labelled distance map, the closest contour pixel is found for
each pixel in the face area.

The restitution is done depending on the distance and direction to the contour for
each pixel and the distance between two corresponding pixel in each contour. The farther
the contours are, and the closer a pixel is to the contour, the larger displacement should
be used. Hence, the displacement is depending on distance to the contour, the distance
between the corresponding contour pixels and the direction of the contour displacement. 

 The output image is generated by, for each pixel in the output image, finding a dis-
placement from the distance map and the contour data, which gives a pointer to the pixel
whose value should be used.
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Figure 38. Surgery planning by restitution using labelled DT.

Figure 38 illustrates the process. The chin is to be shortened to the shaded curve. Blom's
restitution algorithm introduces displacement of the pixels in different parts of the face
image depending on the distance to the face contour and the relative position of corre-
sponding contour pixels. Some hypothetical displacements are shown in the enlarged
figure, right.

Blom notes that the number of edge pixels are limited by the word length of the la-
bels, typically 8 bits, implying a maximum of 256 edge pixels. Using an Euclidean dis-
tance map, however, the memory requirement would be the same but there would not be
any practical limit for the number of edge (object) pixels. The same holds for many other
applications of labelled distance maps.

7.4 Summary of application areas

Distance maps in general and Euclidean distance maps in particular are extremely useful
tools in image analysis and can be used for solving a broad variety of problems, includ-
ing but not limited to the following list:

• Data compression
• Skeletonization
• Fast Erosion or dilation
• Form factors
• Chamfer matching
• Path analysis
• Textures
• Voronoi diagrams
• Region organization
• Sketch completion
• Curvature measurement
• Restitution
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8. What is in this thesis?

Disregarding this introductory part, this thesis consists of ten technical papers, three of 

which were also in my licentiate thesis. They are listed in chronological order according 

to the first complete version of each paper. Some papers have been extensively revised 

since the first version, often shortened.

Paper #1

The Euclidean Distance Transformation and its implementation on SIMD architec-
tures

A previous, longer version was included in my licentiate thesis [50].
A short version was presented at the 6th Scandinavian Conf. on Image Analysis [51].
This paper explains why the original EDT needs 4 scans while pseudo-Euclidean DTs
generally only need two. I use the results to make a 3-scan EDT algorithm and EDT al-
gorithms that are useable on 1-dimensional SIMD architectures.

Paper #2

Neighbourhoods for Distance Transformations using Ordered Propagation

A previous, longer version was included in my licentiate thesis [50].
A short version was presented at the 5th Int. Conf. on Image Analysis and Processing
[52].
The present version has been published in CVGIP: Image Understanding [53].
In this paper, I investigate methods for optimizing the computation of EDT and pseudo-
Euclidean DT on sequential computers, using ordered propagation while accessing only
1-3 neighbours for each pixel. In theory, this would give us a 3-4 times speed-up, though
the complexity of the algorithm reduces the speed-up to about 2, which still is a consid-
erable improvement.

Paper #3

The Constrained Euclidean Distance Transform

This paper was included in my licentiate thesis [50] in a form very close to the present
paper.
A short version was presented at the SSAB symposium 1990.
In constrained DTs, obstacles are allowed. Adapting the EDT for this problem is a rather
hard task, which is addressed in this paper. The solution is not exactly simple, but the
algorithm produces an output that is much more compact than conventional grid-based
methods.
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Paper #4

Fast erosion and dilation by contour processing and thresholding of distance maps

Presented at the 7th Scandinavian. Conf. on Image Analysis [54].
Published in Pattern Recognition Letters [54].
Here, the EDT is applied to the erosion and dilation problem. Rather than just running
DTs over a binary image and then applying a threshold, I have made an integrated algo-
rithm that doesn’t even use a real distance map, but holds the information implicitly
stored in the propagation front.

Paper #5

Fast edge smoothing in binary images using Euclidean metric

Presented at the 6th Int. Conf. on Image Analysis and Processing [56].
This paper is closely related to the previous paper, but adapts the techniques used there
for improving an edge smoothing algorithm (one that is not based on opening and clos-
ing).

Paper #6

The Euclidean Distance Transform: Finding the Local Maxima and Reconstruct-
ing the Shape

Written in cooperation with Gunilla Borgefors and Gabriella Sanniti di Baja.
Presented at the 7th Scandinavian Conf. on Image Analysis [19].
We present methods for finding local maxima (named Necessary Maximal Disks in pa-
per #9), that is, the minimal set of disks from which the shape can be reconstructed, by
using EDT, and also propose a fast reconstruction method.

Paper #7

The Euclidean Distance Transform in arbitrary dimensions

Presented at the 4th Int. Conf. on Image Processing and its Applications [57].
Accepted for publication in Pattern Recognition Letters.
The results in paper #1 are here generalized to 3 and higher dimensions. The solution in
3 dimensions turns out to be a 4-scan algorithm, which is found to be the minimal num-
ber of scans for 3D.
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Paper #8

Rotation invariant skeletonization by thinning using anchor points

Accepted for the 8th Scandinavian Conf. on Image Analysis [59].
The possibility of using the set of local maxima (see also papers #6 and #9) and Kruse’s
α-skeleton [35] for topology preserving skeletonizing is investigated. The result is a
grid-based skeleton, connectivity preserving and rotation invariant within the limits im-
posed by the discrete grid. The algorithm always runs in a time proportional to the num-
ber of pixels in the image. An integrated 1-pass algorithm is outlined.

Paper #9

Towards a minimal shape representation using maximal disks

Written in cooperation with Gunilla Borgefors.
Not yet published.
The number of Necessary Maximal Disks (local maxima) extracted by methods pro-
posed so far is much larger than the true minimum. By using an optimizing algorithm,
we show that the minimal number of necessary maximal disks is generally substantially
lower than what is usually extracted.

Paper #10

A note on “Optimization on Euclidean Distance Transformation Using Grayscale 
Morphology”

Submitted to Journal of Visual Communication and Image Representation.
This paper describes errors in a supposedly error-free Euclidean DT that was recently
published. The algorithm turns out to be subject to errors from a number of sources,
which makes the analysis of these errors an exercise with tutorial value.
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ABSTRACT:
The recursive versions of the Signed Euclidean Distance Transform can not
be implemented on parallel architectures with any speed improvement. This
paper describes new versions of the algorithm that can be implemented on
a 1-dimensional SIMD architecture, taking advantage of the parallelism.
The algorithms promise to give a much better price to performance ratio
compared to parallel distance transformation algorithms. The paper also
contains a discussion about the propagation of distance values in distance
transforms, especially Euclidean ones, stating a sufficient condition for Eu-
clidean distance transforms to work properly.
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1. Introduction

1.1 Parallel and sequential algorithms.

Distance transforms are useful tools in image processing concerned with binary images.
The operation creates a distance map which for each reset pixel holds a distance value to
the closest set pixel (henceforth referred to as object pixel).

The simplest way to compute distance transforms is by using global operations,
where for every pixel, the distances to all object pixels are calculated in order to find the
closest one. Such an operation would take a time ∈  O(N4) for a N2 image with O(N2)
object pixels. However, in order to reduce computational complexity the distance maps
are usually created by iterative algorithms where the distance values propagate in small
steps using neighborhood operations. Such algorithms may be either parallel or sequen-
tial.

In parallel algorithms, neighborhood operations are applied simultaneously on all
pixels, while in sequential algorithms only one operation on one pixel and its neighbor-
hood at a time is executed. A parallel algorithm may be implemented sequentially, using
only one processor. Conversely, but less obviously, some sequential algorithms may be
implemented on parallel architectures, employing several processors. This is the subject
of the current paper.

In parallel algorithms, the distance value of each pixel is compared to values from
neighbors in all directions, and the lowest value is written to the pixel. Hence the opera-
tion gives propagation in all directions, as illustrated by Figure 1. The operation is re-
peated until no changes has occurred during an iteration. Assuming the maximum
distance to grow with image size, this takes a number of iterations ∈  O(N), which implies
a computational complexity of O(N3).

Figure 1. In parallel algorithms, the distance values propagate in all directions simulta-
neously.

Sequential algorithms scan the picture pixel by pixel and makes comparisons with some
neighbors. After a limited number of scans (typically 2), the distance map is complete.
Hence, the computation time is ∈  O(N2). The scanning procedure is illustrated in Figure
2. In Figure 2a, the forward scan is illustrated, scanning each row from right to left, start-
ing with the uppermost row. This will give all pixels within a 90˚ arc from the object pix-
el their correct distance values (right part of the Figure). The backwards scan, Figure 2b,
will propagate to other areas.
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Figure 2a. First scan of a raster scanning DT.

                    

Figure 2b. Second scan of a raster scanning DT.

In both parallel and sequential algorithms the actual neighborhood operation is per-
formed as follows. The values to which we compare the distance value of the center pixel
are the distance values of the neighbors, modified to get the distance from the center pix-
el to the object pixel instead of to the neighbors. In its simplest form, the neighbor value
is increased by one. The comparison may then be written as (1), where the distance value
of pixel 1 is set to the minimum of a) its own present value and b) the value of the neigh-
bor, pixel 2, increased by one. Throughout this text, propagation of distances is always
supposed to include this kind of elementary operation in some form or another.

Dpixel1 = Min (Dpixel1 , Dpixel2 +1)(1)

Figure 2 suggests that the algorithm makes comparisons with the neighbors one step
down and one step to the right in the first scan, and up and left in the second scan. We
may represent the neighborhoods involved with the two masks shown in Figure 3. The
1's correspond directly to the +1 increment in (1).

Figure 3. Masks for a simple distance transform algorithm, using City Block distance. 0 
is the center pixel, the one we seek a better (lower) value for. Dotted arrows show the 

direction of the outer loop, that is, we will scan across the picture once in the direction 
of the solid arrows for each step along a dotted arrow.

The algorithm of Figure 3 uses the City Block distance metric. In pseudo code, this can
be expressed as shown below.

1

1 1

10

0

Mask 1 Mask 2



58 EDT on SIMD architectures

Example of a simple sequential algorithm (City Block distance)

[First picture scan]
for row=1..R-1
for column=1..K-1

  dist(row, column)
dist(row, column)=min   dist(row-1,column)+1

dist(row,column-1)+1

[Second picture scan]
for row=R..2
for column=K..2

  dist(row, column)
dist(row, column)=min   dist(row+1,column)+1

dist(row,column+1)+1

For a small picture with only one object pixel, the two picture scans will give the results
shown in Figure 4.

- - - - - 4 3 2 3 4
- - - - - 3 2 1 2 3
- - 0 1 2 2 1 0 1 2
- - 1 2 3 3 2 1 2 3
- - 2 3 4 4 3 2 3 4

Figure 4. The distance map after the first scan will cover only a part of the picture. The 
second one will fill out the rest of the picture with correct City Block distance values.

This algorithm is essentially the same as the sequential distance transformation algo-
rithm, presented by Rosenfeld [9] in 1966.

Let us make a short parenthesis: when we process a pixel, we have got the choice
between “propagating out from the pixel” and “propagating into the pixel”. In the first
case, we compute distance values for each member of the mask from the value of the cen-
ter pixel, and update any of them except the center pixel. In the second case a distance
value for the center pixel is computed from the distance value of each member, and up-
date only the center pixel. The second method has some advantage in causing less unnec-
essary updates, and is probably the most commonly used.

Figure 5. Distance values may either propagate from the neighbors to the center pixel 
or from the center pixel to its neighbors (The figure illustrates a sequential case.)

Verwer names these two methods “write formalism” and “read formalism”, respectively
[12].



1. Introduction 59

1.2 Euclidean distance transforms

The simplest of all distance transforms are the transforms based on the City Block dis-
tance metric. One such algorithm was described in the previous section. A number of dif-
ferent metrics are illustrated in Figure 5 a-e, showing distance maps from a single object
pixel. The greyscale shows the distance value in a modulo fashion (a number of the high-
est bits set to zero) in order to make the accuracy more visible. The stripes in the figures
(the equidistance curves) should ideally be absolutely circular.

Figure 5. Distance transforms from a single object pixel with different metrics.

5a. City Block distance transform.

5b. Chessboard distance transform.
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It is obvious from Figure 5a that City Block distance as well as Chessboard distance are
far from the Euclidean distance. The equidistance curves are quadratic. The Chessboard
distance, illustrated in Figure 5b, has errors of the same magnitude, but demands some-
what more computation time.

For a long time, only these approximative distance maps could be created by the fast,
propagating algorithms. Methods for creating close approximations to Euclidean dis-
tance were developed [2, 7], but for all of them the errors increased with increasing dis-
tances.

The Chamfer distance algorithms [2], using different distance values for different
pixels in the masks, make far better approximations of the Euclidean distance, and are
often referred to as Quasi-Euclidean distance. The simplest one, Chamfer 3-4, demands
about the same computation time as the Chessboard distance. It is illustrated in Figure
5c. Note that the equidistance curves are octagons.

5c. Chamfer 3-4 distance transform.

Even better approximations are created by using larger neighborhoods. The Chamfer 5-
7-11 distance, illustrated in Figure 5d, uses masks of 5·5 pixels. In this case, the equidis-
tance curves are polygons with 16 corners.

The Euclidean Distance Transform (EDT) was first proposed by Danielsson [3] in
1980. Danielsson's sequential algorithm proves not to be totally error-free, but the errors
are small (far less than a pixel distance), bounded (actually decreasing with distance) and
occurs only in very few discrete pixels. This is discussed further in section 2.5.
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5d. Chamfer 5-7-11 distance transform.

Figure 5e illustrates the Euclidean distance map from a single object pixel, computed
with the original EDT algorithm. There are no errors whatsoever. The distance map is
exact. The equidistance curves are perfect circles (though in a sampled grid, of course).

5e. Euclidean distance transform.

Both Danielsson [3] and Yamada [10] point out the possibility to include directions to
object pixels in the Euclidean distance map. This variant is named Signed Euclidean Dis-
tance Transform (SEDT). A number of new possibilities arise from having this informa-
tion available. This was investigated by Ye [11], who developed a number of
applications, for example a convex hull algorithm.
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The difference between EDT and other distance transforms is the representation of
the distance values. EDT does not just keep one value, but rather a two-element vector
(u,v) to the closest object pixel. For SEDT, these components are allowed to be negative.
The distance may then be computed as (u2 + v2)1/2. Suggested masks are shown in section
2.4, Figure 12.

As mentioned above, parallel algorithms do not per se prevent sequential execution.
Sequential algorithms, however, often but not always prevent parallel execution. In this
paper we will investigate the possible execution of the sequential Euclidean distance
transform on a parallel machine where the processors are arranged as a linear array. One
such machine is PICAP3 [6], which is a coarse-grained linear SIMD array. It has a mod-
erate number of powerful processors working in SIMD mode.

In this paper, we will not go into implementation details concerning low-level access
in parallel architectures. Our goal is to outline algorithms that are possible to implement
on certain architectures that conform to any of the models we use for parallel architec-
tures. The models are simple, but that is necessary for making the results more generally
useful.
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2. Propagation of Euclidean distance values

2.1 Motivations and definitions

The SEDT versions presented by Danielsson and Ye can not be implemented in parallel
with any gain from using several processors, since they do not allow more than one pro-
cessor at a time to be active.

In this chapter, the propagation of distance values in Euclidean distance transforms
is analyzed. Not only does the analysis give an explanation to why the original SEDT
must use the scanning pattern in [3] (scanning each line back and forth) but it also points
to alternatives that will lead to the final solution in our case.

Definition: By object pixels we refer to pixels with distance zero, that is, the pixels to
which the distances (or vectors) in the distance map refer.

Definition: By Voronoi polygon we refer to a polygon enclosing all the pixels in the pic-
ture which has one and the same object pixel as the closest one.

Note that the division of a picture into Voronoi polygon is equivalent to a Voronoi dia-
gram [2, 5, 11].

2.2 Voronoi Polygons

A Voronoi polygon is bounded by a number of straight lines. For each pair of object pix-
els the picture plane is cut into two halves my the mid-line, each half closer to one pixel
than the other, as illustrated in Figure 6.

Figure 6. For each pair of object pixels, the picture plane is divided into two halves 
along a line.

Figure 7. The intersection of all such half planes is the Voronoi polygon of the object 
pixel.
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The Voronoi polygon of a certain object pixel is the intersection of all half planes on the
object pixel's side of the midlines between itself and every other object pixel. See Figure
7.

Proposition: Voronoi polygons are convex.

This proposition is easily proven by induction.

Figure 8. If a new object pixel is added, a part of the Voronoi polygon is cut off along a 
straight line.

The proposition infers that any pixel within a Voronoi polygon may be reached from any
other pixel in the Voronoi polygon by a path along a straight line, which is completely
within the Voronoi polygon.

2.3 Propagation

An important issue for distance transforms is the propagation. We must make sure that
each pixel will get the minimal distance value possible, a value that has propagated from
the closest object pixel. The distance values should propagate from all object pixels, and
step by step fill out each Voronoi polygon with values from its proper object pixel.

The actual propagation paths used in a distance transformation depends on the algo-
rithm as well as the picture. Many different propagation paths are possible. The question
is, however, when the propagation works properly. The following theorem will answer
this question.

Definition: By complete propagation, we say that the propagation of values is able
to reach any pixel in the Voronoi polygon of a given pixel. This ensures that all pixels
will get their correct value, provided that the distance values are exact, that is, Euclidean.

Theorem 1: If the algorithm supports propagation from any pixel position to infinity
along any straight line, the propagation will be complete.

Proof: The propagation from one object pixel will always overwrite values from
other object pixels while within that object pixel’s Voronoi polygon, and can not be over-
written by values from other object pixels. Thus, if propagation is possible from an object
pixel to any other pixel in its Voronoi polygon without ever propagating through pixels
outside its Voronoi polygon, the propagation can not be interrupted and will therefore be
complete.
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Since Voronoi polygons are always convex, it is always possible to draw a line from
the object pixel to any other pixel in its Voronoi polygon. As long as the Voronoi poly-
gon doesn’t have corners with too acute angles (see below), a propagation path from an
object pixel O to a pixel P can be guaranteed to exist only along the straight line through
O and P.

Theorem 1 does not take into account the sampling of the image, which causes any prop-
agation path to be non-linear. However, as long as the Voronoi polygons are not too nar-
row for the propagation path to fit, this is no problem. See section 2.5.

Theorem 1 is illustrated by the following example. The algorithm described in the
introduction makes one picture scan to the right and downwards, and one scan to the left,
upwards. Let us now consider this scanning pattern for a Euclidean distance transform.
In a picture with one object pixel, the first scan will propagate over one quadrant, as in
Figure 9a, and the second will propagate over the rest of the picture, as shown in Figure
9b.

a)  b)  

Figure 9. Propagation from one object pixel with a two-scan algorithm.

It may seem like the entire Voronoi polygon will be reached with this algorithm, since
the propagation does reach any pixel in the picture in this example. However, as shown
in Figure 10, it is not difficult to find a counterexample. If two object pixels are located
in suitable positions, the first scan will result in a propagation shown in Figure 10a. In
Figure 10b the result of the second scan is shown. The algorithm has failed.

a)                b)  

Figure 10. Propagation from two object pixels with a two-scan algorithm. The dotted 
line shows the border between the Voronoi polygons of the two object pixels.
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These errors occur since the algorithm does not conform to Theorem 1. The upper object
pixel in Figure 10 can not reach some parts of its Voronoi polygon directly, but only
through areas in the Voronoi polygon of the other object pixel. These propagation paths
were denied since the final, correct values reached these areas before they could be used
for propagation on behalf of the upper object pixel.

2.4 Thin or elongated Voronoi polygons.

The hardest case for correct propagation is very thin or elongated Voronoi polygons. A
thin part of a Voronoi polygon constrains the propagation path to a straight line. Incorrect
algorithms like the one in the example above can also have problems with Voronoi poly-
gons that are wide but very elongated, as illustrated in Figure 11. This motivates the for-
mulation of Theorem 1.

Figure 11. Voronoi polygons may have very elongated shape.

As an example, we will use it to verify the correctness of the sequential algorithms sug-
gested by Danielsson and Ye.

We will primarily concentrate upon the 8-connective algorithms, 8SED or 8SSED
(unsigned and signed, respectively). See Figure 12.

Figure 12. Masks for the original sequential EDT (8SED or 8SSED).
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Mask 1a Mask 1b

Mask 2bMask 2a
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Each row is scanned both from left to right and from right to left. This is done first top-
down and then bottom-up. This means that the value written to a pixel in one row scan
may have propagated from any pixel on the same row and the previous row. 

Mask 1a and 1b result in propagations in half of all possible directions. Mask 2a and
2b result in propagation in the remaining directions. Thus each picture scan will support
propagation in all directions within an interval with the width π (180°). Together, the two
scans support propagation in any direction, covering all possible elongated Voronoi
polygons, as in figure 15.

In the following discussion, direction intervals have a central part. Therefore, we
make the following definition:

Definition: A direction interval DI[α1, α2] consists of all directions with angle α for
which α1 ≤ α + n2π ≤ α2 for any one integer value of n.

Most properties of direction intervals are intuitive, such as the meaning of the union of
two direction intervals and the fact that all intervals DI[α1 + n2π, α1 + n2π] for integer
values of n are identical. Pie-chart symbols will also be used for illustrating direction in-
tervals.

One scan of a sequential EDT supports propagation in a direction interval. In order
for a scanning EDT to fulfill Theorem 1, the union of all direction intervals supported by
all the scans of the algorithm must cover the entire direction space DI[0, 2π].

As long as we consider the picture to be continuous, that is, we consider the propa-
gation steps to be infinitely small, this implies that the sequential algorithms in [3, 11]
fulfills Theorem 1.

2.5 The effect of using a picture with discrete pixels

So far, we have considered the picture to be continuous. The discrete nature of digital
images will cause problems in narrow parts of Voronoi polygons, as shown in [3] and
illustrated in Figure 13. This problem is a straight-forward violation of the condition in
Theorem 1. An algorithm that is only performing neighborhood operations does not sup-
port propagation along any arbitrary thin line. For example, with 3·3 neighborhoods we
do not support the propagation path shown in Figure 13.

Figure 13. Propagation along any possible line may need to pass between 
discrete pixels.
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The errors that arise from this effect are very few and scattered and are all much less than
a pixel distance. Also, note that the magnitude of the errors does not increase with dis-
tance, which is the case for Chamfer distance transforms. As long as we want to use se-
quential, scanning algorithms, we must accept these errors to some extent. Since the
errors are negligible, we may disregard the problem altogether for practical purposes.

Yamada [10] shows that the (on sequential computers, highly inefficient) parallel
Euclidean distance transforms produce totally error-free distance maps. In parallel algo-
rithms, propagations from different object pixels automatically form queues where sev-
eral propagations advance in the same direction without overwriting each other. This
idea is also exploited in the error-free sequential algorithm based on contour processing
[8].

We conclude that though Theorem 1 provides a sufficient condition for an EDT to
work in a broad sense, giving almost all pixels the correct value in a discrete image, we
must take the sampling into account in some way to produce a totally error-free EDT,
which demands other methods.
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3. Implementation of sequential algorithms on parallel 
architectures

3.1 Hardware models

In the following, we will use two simple architecture models. We will primarily use a
model that corresponds to PICAP3 and Picap 3.32, as described by Lindskog [6] and Ek-
lund [4], respectively. PICAP3 is a linear array of SIMD processors, each connected to
two neighbors and each with local, private memory. Figure 14 shows a simplified outline
of the system.

Figure 14. Linear SIMD array with separate memory for each processor and connec-
tions between neighbor processors. This is a crude model of how PICAP3 works.

It should be stressed that PICAP3 is a coarse-grained SIMD machine, that is, each pro-
cessor is rather powerful. One particularly useful feature is the local address modifica-
tion, that gives local addressing capabilities. In the following, we will take these kind of
features for granted.

We will also mention the shared-memory SIMD model, also known as the PRAM
(Parallel Random-Access Machine) model. In this case, a number of processors working
in SIMD mode access the same memory space in parallel. See Figure 15. Such machines
are divided into subclasses according to the access possibilities, whether two processors
may access the same memory space simultaneously. On this subject, see for example Akl
[1]. The PRAM is, however, a rather unrealistic architecture. A more realistic solution is
sketched in Figure 16, where a network connects each processor to one memory block.
Incidently, a vector processor like the Cray-1 can be considered a PRAM.

We will refer to these two models as the PICAP3 model and the PRAM model, re-
spectively.

Memory Memory Memory Memory

PU PU PU PU

Control
Unit

Instruction/address stream

PU = Processing Unit
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Figure 15. A SIMD machine with common memory for all processors, according to the 
PRAM model. This makes communication between processors trivial, but the model is 

rather unrealistic in practice, since it presumes parallel access to memory.

Figure 16. A more realistic architecture, related to PRAM. All processors can access all 
memory, but in a more limited fashion.

3.2 The partitioning of the image

Lindskog [6] suggests a number of different ways to partition the image. The simplest
one is to partition it in a number of stripes, so each processor processes a continuous part
of the image. This is the partitioning we will consider in the following discussion.

We will make the following assumptions. The number of columns in the image is
divisible by the number of processors. Hence, each processor gets an equally large par-
tition. The number of processors is not higher than the number of columns. If either of
these assumptions are false, it can be helped by adding a number of extra columns and
accepting some processors idle.
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Figure 17. The picture is split in equal parts, giving each processor a number of consec-
utive columns.

With this architecture and partitioning, we may inspect existing distance transformation
algorithms to see how they can be implemented.

Danielsson [3] suggests algorithms scanning each row in both directions in each pic-
ture scan. Let us call this kind of algorithm double scanning. As noted in section 2, they
fulfill the demand of propagation in all directions (Theorem 1), but they can not be im-
plemented in parallel, since the computation for each pixel depends on all previous com-
putations.

Suppose we had a single scanning algorithm, that is, one that only scans each row
in one direction, left or right, for each row in each picture scan. All non-Euclidean algo-
rithms that are used in practice are single scanning, using two single scans, as exempli-
fied in section 1. According to Montanari [7], two scans are sufficient for non-Euclidean
metrics. Note that the masks typically used (as in Figure 3 and 21) access at least one
pixel on the same row as the center pixel. This means that if we use such masks we must
scan through each row sequentially.

Single scanning algorithms can be implemented in parallel. The following sections
will discuss how this can be done.

3.3 Image scan with horizontal propagation front

The most straight-forward way to distribute the work among a number of processors
working in each of a number of stripes, as suggested above, is to have them start simul-
taneously with the first pixel on the first row in their partition, and process the image in
SIMD fashion.

This will lead to one limitation: many neighborhoods will not be useful. When pro-
cessing a pixel, it may only address pixels in the previous line and beyond. Including pix-
els on the same line or the next will not add to the direction interval that is supported to
infinity by the scan, so the increased processing by adding them is wasted.
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Figure 18. With all processors working on the same row in the image, we get a horizontal 
propagation front.

                  

Figure 19. An typical neighborhood for use in a scan with horizontal propagation front, 
supporting propagation in the direction interval DI[-3π/4, -π/4].

Expressed in pseudo code, this comes out like:

Parallel implementation of sequential distance transformation algorithm, one picture
scan only, horizontal propagation front

P processors (1..P)
K columns (1..K)
R rows (1..R)

All processors p∈ {1..P} execute:

for r=1 to R
  for c=1 to K/P
     process(r ,c+(p-1)K/P)

In an EDT, it is of little interest to use larger neighborhoods than 3·3 ones. Hence, the
mask in Figure 19 is a very reasonable one to use. Obviously, it supports a direction in-
terval of π/2 (90°). As shown in the figure it is the interval DI[-3π/4, -π/4].

3.4 Image scan with sloping propagation front

An alternative to the horizontal propagation front is to have the processors processing
different lines at any given moment. Two neighbor processors should process adjacent
lines, as illustrated in Figure 20.
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Figure 20. With a sloping propagation front, all processors are working on different 
rows in the image.

            

Figure 21. A typical neighborhood for use in a scan with sloping propagation front.

In the initial and final phase of the scan, some processors are idle. The loss of efficiency
is increasing with increasing number of processors. Thereby, the gain from adding more
processors is slightly lowered when using this kind of propagation.

Expressed in pseudo code, this comes out like:

Parallel implementation of sequential distance transformation algorithm, one picture
scan only, sloping propagation front

P processors (1..P)
K columns (1..K)
R rows (1..R)

All processors p∈ {1..P} execute:

for r=1 to R+P-1
  for c=1 to K/P
    if r-p≥0 and r-p<P
      process(r-p+1,c+(p-1)K/P)

Note that conditional processing capability, ability to make some processors idle, is
needed here, a feature that is present in PICAP3.

In this case, a 3·3 neighborhood allows the slightly larger mask shown in Figure 21,
which supports a direction interval of 3π/4 (135°), DI[-3π/4, 0].

3.5 Combining several scans to complete distance transformations

This section concerns the propagation of the distance values. Here we should decide
what masks to use and in which order to apply them. Our solution should fulfill Theorem
1 in section 2, and it must be single scanning according to section 3.2.
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Suppose we use the masks used in the 8SSED algorithm, as shown in figure 12, but
using four single scans instead of two double ones. If so, mask 1a will support propaga-
tion in directions within a 3π/4 (135°) interval, and so will mask 2a. The masks 1b and
2b, however, will not cover any direction interval at all, just a horizontal line. Therefore,
we find the algorithm does no longer fulfill Theorem 1. The errors are also easily found
by experiments. Figure 22 show the masks along with the direction intervals supported
by each scan.

Figure 22. The 8SSED algorithm can not be separated into four separate scans.

Figure 23. Some possible masks, resulting in propagations in all directions within dif-
ferent intervals, all less than π.

Since we must use single scans in the architecture chosen, the direction interval for one
image scan is always less than π (180°), as illustrated in Figure 23. Therefore, we may
never cover all angles with two scans, but we may do it using three scans, as shown in
figure 24. This gives us a new 3-scan 8SSED algorithm.

Figure 24. Masks for an algorithm using three single scans.

Mask 1a

Mask 1b

Mask 2a

Mask 2b
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The masks define the 3-scan 8SSED algorithm. The first two masks scan row by row,
but the third scans column by column. The third mask of Figure 24, however, forces one
of the scans to be done in a different direction, scanning column by column. Such a ver-
tical scan may be expressed in pseudo code as:

for column=...
   for row=...

while a horizontal scan looks like:

for row=...
   for column=...

The computer model of PICAP3 permits only horizontal scans. To do a vertical scan, we
must transpose the picture, turning rows into columns and columns into rows. Transpos-
ing is a fairly time-consuming operation, compared to a distance transformation scan.
Lindskog [6] calculated the time required for an N·N image on a PICAP3 with P proces-
sors to Ttot in (2).

(2)

This means that the operation takes O(N2) time when P is high, while a distance trans-
formation scan takes O(N2/P). Hence, on a PICAP3 architecture, we should avoid trans-
positions during distance mapping, if possible, and the algorithm suggested by Figure 24
is not suitable. On a PRAM architecture, transposition is not needed, so the three-scan
version is perfectly suitable in this case as well as in the case of a single processor com-
puter.

Figure 25 shows a set of masks which together cover the full direction space of 2π.
They define the four scan 8SSED/SIMD algorithm, a new version of 8SSED that can be
used in a linear SIMD array.

Ttot
N

2

2
------- 1

2
---⋅ 25

P
------+=
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Figure 25. A solution using four single scans. This mask set is preferable using an archi-
tecture like PICAP3, since the image does not need to be transposed. This defines the 

8SSED/SIMD algorithm.

A PRAM architecture, where transposition is not necessary (or at least can be done in
shorter time than one distance transformation scan), we may use a four-scan solution
with masks that use all processors at full speed throughout the operation. These masks
are shown in Figure 26, which defines the 4H-8SSED/SIMD algorithm (8SSED/SIMD
with 4 horizontal scans).

Figure 26. A solution using four single scans. This mask set is not useful with the PICAP3 
model, but for other architectures like the PRAM. This defines the 4H-8SSED/SIMD al-

gorithm.

All these three mask sets are single-scanning versions of the 8SSED algorithm as defined
by Danielsson [3]. Here give them the generic name 8SSED/SIMD algorithms (8SSED
suitable for SIMD-architectures), since they all can be implemented in parallel on linear
SIMD arrays.

A relative to the 8SSED/SIMD of Figure 25 should also be recognized. This is the
4SSED/SIMD, defined by the masks of Figure 27, which is similar to the 8SSED/SIMD
but with one pixel less in each mask. This feature gives higher speed but a larger number
of pixels with small errors.
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Figure 27. Masks for the 4SSED/SIMD algorithm, a 4-neighbor version of the 8SSED/
SIMD. This version is faster but the resulting distance map has more errors.

The algorithms for applying two of the masks employed in Figures 25-27 are described
below in pseudo code. Algorithms for the others can easily be obtained by changing scan
and mask directions. The two masks described are the ones in Figure 28.

a)           b)  

Figure 28. The masks and scanning directions for the two scans described in the pseudo 
code. a) Sloping propagation front. b) Horizontal propagation front.

 

8SSED/SIMD in parallel, examples of scans

Working on a picture with
R rows (1..R)
K columns (1..K)
using P processors (1..P)

Start:
L(i,j) := (0,0) for all object pixels
L(i,j) := (Z,Z) otherwise

All processors p∈ {1..P} execute the algorithms below.

One picture scan, sloping propagation front:
for row := 1..R+P-1
for column := 1..K/P
if row-p≥0 and row-p<P
process2(row-p+1,column+(p-1)K/P)

using the procedure
process2(i,j)
L(i,j) := min{

L(i,j)
L(i-1,j) + (-1,0)
L(i-1,j-1) + (-1,-1)
L(i,j-1) + (0,-1)
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}

One picture scan, horizontal propagation front:
for row := 1..R
  for column := 1..K/P
    process1(row,column+(p-1)K/P)

using the procedure
process1(i,j)
L(i,j) := min{

L(i,j)
L(i-1,j-1) + (-1,-1)
L(i,j-1) + (0,-1)
L(i+1,j-1) + (+1,-1)
}

The code above does not describe the actual computation of distance values, i.e. evalua-
tion of the expressions of the type L(i,j) := min(...). For each pixel (i,j) we hold a two-
component vector (u,v), pointing to the closest object pixel. The distance L is the length
of the vector, that is L = (u2+v2)1/2. For each neighbor in the mask we take its vector and
modify it to point from the center pixel to the object pixel.

For an example, take the neighbor at (i-1,j). If this position contains the vector (u',v'),
pointing to an object pixel, the vector (u'-1,v') points from the center pixel to the same
object pixel. If ((u -1)2 + v2)1/2 < (u2 + v2)1/2, then the vector (u,v) in the center pixel can
be replaced by (u'-1, v'). It may seem costly to have to compute several square roots for
each processed pixel. In reality, we implement the algorithm avoiding both square roots
and multiplications. This can be done using a lookup table, as suggested by Ye [11].

A potential new vector and distance value should be computed for each neighbor in
the mask. The vector corresponding to the lowest of these distance values is put in the
center pixel.

3.6 Comparison of the speed of the resulting algorithms

Suppose that we have a linear SIMD computer with P processors, and we want to make
a distance map of an image of N·N pixels, and the time required to process one neigh-
borhood is 1, what running time does an image scan require?

We have two cases: horizontal propagation front and sloping propagation front.
With horizontal propagation front, all processors are active during the whole operation,
while for a sloping propagation front, some processors are idle under the initial and final
phases. This gives the running times (3) and (4) for a single scan.

With horizontal propagation front: N2/P (3)

With sloping propagation front: N·(N+P-1)/P (4)
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This means that both kinds of scans take approximately the same time when P << N. For
P ≈ N, a scan with horizontal propagation front takes half the time of a scan with sloping
propagation front. For the complete algorithms, (3) and (4) together with Figures 24, 25
and 26 give the total running times (5) (6) (7).

8SSED/SIMD: 4·N·(N+P-1)/P(5)

4H-8SSED/SIMD: 4·N2/P(6)

3-scan 8SSED: 2·N·(N+P-1)/P + N2/P = 3N2/P + 2N(P-1)/P(7)

For a PICAP3 architecture, the 8SSED/SIMD and 4SSED/SIMD are the only reasonable
choices. For a PRAM, the 3-scan 8SSED is preferable with a small number of proces-
sors, while the 4H-8SSED/SIMD is faster with many processors, i.e. P≈N.

Finally, let us compare the above results to the complexity and performance of
equivalent algorithms on totally different architectures. Algorithms have been presented
for single processor computers [3, 11] and for 2-dimensional SIMD meshes [3, 10]. With
one processor (0-dimensional architecture) a scanning algorithm has a running time ∈
O(N2). With a 2D mesh, we can only use a parallel algorithm, which will have a running
time ∈  O(N) time. This should be compared to the algorithms in this paper, that have
running times ∈  O(N) on a 1-D architecture.

Note that some architectures can be configured both as a mesh or a linear SIMD,
which gives them the option of using either kind of algorithm. See further below.

The cost of an algorithm is, according to Akl [1], defined to be

cost = number of processors · running time

That gives the following table, where the cost should be as low as possible:

Processors Time Cost

O(N0) (Single PU) O(N2) O(N2)
O(N1) (Linear SIMD) O(N1) O(N2)
O(N2) (Mesh) O(N1) O(N3)

Hence, for this kind of algorithms, a linear SIMD array gives us a speed comparable to
that of a 2-dimensional SIMD array with N times less processors.

For architectures that allow both mesh and linear organization, we must rather com-
pare the performance for a given number of processors P. In this case, each processor in
a Mesh architecture will process all pixels in a N/  · N/  square. For each iteration,
each processor must process N2/P pixels. Still assuming the number of iterations to grow
with image size, O(N), the time is in O(N2/P·N) = O(N3/P).

P P
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With a number of processors far smaller than the number of pixels, we should also
consider a hybrid algorithm, an algorithm where each processor uses a sequential algo-
rithm when processing the N/ ·N/  pixels area it is responsible for.

In this case, one iteration performs a full DT in the area allotted for each processor,
taking into account changes in the border pixels caused by the previous iteration. Since
each square is N/  by N/  pixels, O(N/ ) steps of propagation is performed for each
iteration. Thus, only O( ) iterations are needed. This improves the time to O(N3/(P· ))
= O((N/ )3).

We get the following table.

Architecture Processors Time Cost

Single PU 1 O(N2) O(N2)
Linear SIMD P O(N2/P) O(N2)

Mesh, hybrid P O((N/ )3) O(N3/ )
Mesh, parallel P O(N3/P) O(N3)

The Linear SIMD architecture/organization comes out as a clear winner, with higher
speed for the same number of processors.

P P

P P P
P P

P

P P
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4. Conclusions

We have investigated the possibility to implement the Euclidean Distance Transform on
parallel architectures, and described ways to implement scanning algorithms on a 1-di-
mensional SIMD array of the PICAP3 type or on a PRAM architecture. Four new algo-
rithms were suggested:

• 3-scan 8SSED, suitable for both single-processor computers and PRAMs with a
small number of processors. It is less suited for PICAP3-style architectures, since the im-
age needs to be transposed.

• 4H-8SSED/SIMD, suitable for PRAM architectures with a large number of proces-
sors.

• 8SSED/SIMD, suitable for PICAP3-style architectures.
• 4SSED/SIMD, a fast, low-quality version of 8SSED/SIMD.

The algorithms are supported by a theorem about the propagation paths for Euclidean
distance propagation, saying that we must support propagation along straight lines in all
directions. All algorithms were derived from this theorem.

These scanning algorithms, which can be implemented on 1D parallel archiectures,
seem to have a very favorable performance/cost ratio compared to parallel distance
transform algorithms.
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Appendix: The Quick-And-Dirty SSED algorithm

The following results were cut from the above paper in order to shorten it, making it
more suitable for publication. These results are minor, mostly included as some margin-
ally interesting side notes.

For high precision, we can use a 8-neighbor EDT like the 3-scan EDT or the 8SSED/
SIMD. With lower demand for precision, we can use the 4SSED/SIMD. However, it is
possible to go even further in sacrificing precision for speed. Figure 24 suggests that we
could cover most of the possible directions using only two scans. However, since it only
covers most directions, some directions are no longer supported, and we do no longer ful-
fill Theorem 1.

The result is a faster and simpler algorithm with larger and much more frequent er-
rors. The algorithm, in the following text referred to as Quick-And-Dirty SSED, uses the
masks shown in the figure below. This variant is exactly twice as fast as 4SSED/SIMD,
since its masks are of the same size, but it uses only two scans. The masks for these two
scans are shown in Figure 29.

Figure 29. Masks for Quick-And-Dirty SSED

Note the variable k. By choosing different k values, we get different behavior. A small
k, like 1 or 2, will cause more errors in large areas, since the supported direction intervals
(shown in Figure 29) will cover a smaller part of the direction space. We name this kind
off error missing direction error (MDE).

Figure 30 illustrates the MDE errors. In the Figure, the propagation from the upper
of two object pixels (small shaded circles) is supported in the interval between the arrows
from the object pixel. In the second scan, the propagation from the lower object pixel will
overwrite the pointers to the upper object pixel before they can propagate in to the shaded
area. Thus, the shaded area will refer to the lower object pixel, though the upper one is
closer.

-1,0 0,0

k,-1

1,00,0

-k,1

Mask 1:

Mask 2:
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Figure 30. Two object pixels in a configuration where the shaded areas will refer to the 
wrong object pixel.

Using a larger k, the MDE errors will be reduced, but instead more errors in discrete pix-
els will occur. For large k values, this problem will not only cause errors in single pixels,
but rather in small areas. This is caused by the low density of the masks, why we name
it low density error (LDE).

Like the occasional errors occurring in 4SED and 8SED, LDE errors occur in narrow
parts of the Voronoi polygons, typically in corners with acute angle. As long as the center
pixel and at least one neighbor of the mask can fit within the Voronoi polygon, we will
get correct results. In the narrow parts of Voronoi polygons where this is not possible,
propagation is not supported and we will get errors. This is illustrated in Figure 31.

Figure 31. Low density errors occur when a mask can not fit in a narrow part of a 
Voronoi polygon, so none of the mask members is in the same Voronoi polygon as the 

center pixel.

The LDE can be reduced by using one more pixel in each mask, which gives us the Less-
Quick-And-Dirty-SSED. We should then have one pixel with a large k value, but also a
pixel with a small k, zero or possibly 1. See Figure 32. Experiments show very few errors
with this algorithm, but the speed is not double the speed of 4SSED/SIMD any more, but
instead double the speed of 8SSED/SIMD. The improvement compared to 4SSED/
SIMD is rather about 50-60%.

0,0-1,0

k,-1
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Figure 32. Masks for Less-Quick-And-Dirty SSED, a variant which is slower, but with 
much less LDE errors.

Both approaches will cause a lot more errors than EDT algorithms satisfying theorem 1.
It is, however, more appropriate to compare them to more approximative DTs like
Chamfer 3-4 or Chamfer 5-7-11.

The maximum error caused by using two scans instead of four

There are, as mentioned above, two kinds of errors that may occur in a distance map pro-
duced by a Quick-And-Dirty EDT. MDE, the one caused by not being able to propagate
in all directions, is impossible to avoid completely by other means than using more than
two scans. The LDE's can be reduced by adding more pixels to the masks. In this section,
we will analyze what the worst case for MDE is for different versions of Q-A-D SSED.

Assume we have an image with two object pixels, placed in relative positions so that
errors will occur. Errors will then occur only in certain areas, as shown in Figure 30.

Close to the real Voronoi polygon border, the distance to the object pixels are almost
equal. They will differ more the farther we go from the vicinity border. The largest errors
will occur along the horizontal line, where the difference between the distances to A and
B is largest.

Let us define a number of variables, in Figure 33. The two object pixels, named A
and B, are located at the distance b from each other, and at the angle ϕ. In cartesian co-
ordinates, the distance may be expressed as ∆x and ∆y.

Figure 33. Two object pixels A and B, and the symbols for their relative position.

From the geometry of the triangle we have  and .

The k value, defined by the choice of mask, gives the angles q and p, shown in Figure
34, showing within what angles propagation is supported. We define:

Mask 1 Mask 2

(0,0)

(0,-1) (k,-1) (1,0)(0,0)

(0,1)(-k,1)(-1,0)

∆x

∆y

A

B

ϕ

b

b x
2∆ y

2∆+= ϕ y∆
x∆

------atan=
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Figure 34. Propagation directions in one scan is possible within an ϕ+p angle interval.

The errors will occur beyond the point where the vicinity border and the p slope inter-
sects. We name this point F. The distance to F from any of the object pixels A and B
(equal distance since we follow the Voronoi edge) is D in Figure 35.

Figure 35. The point F is the point beyond which errors may occur. The distance from 
either of A or B is D.

The Voronoi polygon border is normal to a line passing through A and B. The triangle
formed by ABF is equilateral. This give us the distance D:

As noted above, the maximum errors will occur along the horizontal line, the upper edge
of the area with erroneous values, starting at F. Let ε be the distance to F along this line.
The distance to a pixel along the line from A is L1, and from B is L2, as shown in Figure
36. Since the correct distance value is L1, but the erroneous pixels will get the distance
value L2.
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Figure 36. The distance L1 and L2 to a point, located at the distance ε from the F point 

along the horizontal line.

We may then find these distances as

Note that errors only occur when . We define the absolute error as

. We have an absolute maximum for this error, depending on the posi-

tions of A and B. For very large ε, the maximum error approaches ∆x, but there is a local
maximum for some ε.

There is no maximum absolute error. The absolute maximum error depends on the
pixel locations and the image size. However, the relative error is maximized. We define
the relative error as

.

This is a function of ϕ, b, q and ε. By numerical methods we have found a the maximum
given some values of k. The maximum relative error was found to be independent of b,
as one would expect. For all cases, the maximum error was found at
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The results are shown in Table 1.

The maximum errors drops rapidly and has reasonable values at k=2 and up. However,
we should beware of using large k for the Quick-And-Dirty SSED, since the LDEs will
increase. The Less-Quick-And-Dirty SSED allows larger k values, but even there the er-
rors will get worse for large k.

The errors should be compared to the Chamfer algorithms [4]. The two recommend-
ed Chamfer algorithms are the Chamfer 3-4, using a 3·3 neighborhood, and the Chamfer
5-7-11, using a 5·5 neighborhood. According to [4], they have maximum errors of about
8% and 2% respectively.

In [3] it is shown that we should expect the Quick-And-Dirty SSED to be slightly
slower than Chamfer 3-4, and the Less-Quick-And-Dirty SSED to be even a little slower,
but still faster than the Chamfer 5-7-11. In that context we should demand the QAD
SSED to be more accurate than the Chamfer 3-4 but not necessarily more accurate than
the Chamfer 5-7-11, which the LQAD SSED should.

This says that QAD SSED should have a k value of at least 2, whereby it becomes
far better than the Chamfer 3-4. The LQAD SSED should also have a k of at least 2, but
preferably 3. If so, the two QAD SSED should are superior to the non-Euclidean distance
transforms. They have less maximum errors for equal speed, and the errors only occurs
in small areas. In most of the picture, the distance values are Euclidean. Of course, the
accuracy is still inferior to the ordinary Euclidean transforms.

The errors caused by using incomplete masks

The numbers in Table 1 look very attractive, but note that we have not included the LDE
in the analysis above. We will not go into depth on the maximum error possible, but rath-
er note that the errors can be rather big, particularly for the QAD SSED. For QAD SSED,
we can easily find cases where the absolute error is close to k. LQAD SSED behaves

Table 1: 

k
maximum relative error

(%)

0 41.4

1 8.2

2 2.75

3 1.31

4 0.76

5 0.49

6 0.34

8 0.19

10 0.12

15 0.055
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much better in this respect. For LQAD SSED with k=3, the biggest LDE error we have
found is 0.6 pixel distances, at distance . Even then, the relative LDE error is quite big
due to the small distance where the error occurs. For a large enough distance, the LDE
errors get smaller than the MDE errors, and Table 1 will be valid.

The big LDE errors make the QAD SSED rather useless. The LQAD SSED is some-
what more interesting, but the existence of efficient ordered propagation algorithms for
EDT (paper #2 and later work, developed after the QAD algorithms were invented)
makes even that a mere curiosity.

2
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Abstract:
This paper presents a fast method for creating distance maps using ordered
propagation techniques, where only the propagation front is processed in
any stage of the operation. In this paper, we place the emphasis on the size
of the neighborhoods used, the number of pixels that must be inspected for
each pixel that is processed. We have developed algorithms for both non-
Euclidean and Euclidean metrics where only two neighbors need to be in-
spected per pixel. For Euclidean distance maps, a version is proposed that
is totally error-free.
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1. Introduction

A distance map is an image where each pixel tells the distance to the closest set pixel
(object pixel) in a corresponding binary image. A number of applications exist that use
distance maps for extracting information from an image. [7]

In ordinary distance maps, the distance values are just that, a single value telling the
distance [1, 3, 8, 11, 12]. Such distance maps typically use non-Euclidean metrics like
the City Block distance, Chessboard distance or the more accurate Chamfer distance
(pseudo-Euclidean) metrics.

An alternative is the Euclidean distance map, where we use a two-component vector
(three for 3D images, etc.) that tells the distance to the closest object pixel along each
coordinate axis [2, 5, 7, 10, 15]. An example is shown in Figure 1. For a vector (x,y) the
distance is (x2 + y2)1/2. As the name implies, this distance is the exact Euclidean distance.
If this vector tells the exact position of the object pixel instead of just telling the distanc-
es, the distance map is said to be signed. In the following, we consider all Euclidean dis-
tance maps to be signed. The extra information supplied by Signed Euclidean distance
maps give a wider range of applications than ordinary distance maps or unsigned Euclid-
ean distance maps. [7, 15].

Figure 1. A signed Euclidean distance map generated by applying the Signed Euclidean 
Distance Transform on a binary image with two feature pixels.

A distance map is generated with a distance transform (DT), while a Euclidean distance
map is generated by a Euclidean distance transform (EDT). The term distance transform
is often also used for the distance map itself, the output from the algorithm.

The normal method to generate distance maps of either kind is to use a recursive,
raster scanning algorithm that scans the image twice (or more) [1, 2, 5, 8, 16]. When a
pixel is processed (referred to as the center pixel) its distance value is compared to the
distance value of a number of neighbors (modified to refer to the center pixel) and the
lowest value found is written into the center pixel. This will cause the distance values (or
vectors) to propagate from each object pixel in the direction of the scan.
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We could generate distance maps using a parallel algorithm, where all pixels are
processed in each iteration [2, 9]. If so, we should iterate until there are no changes in the
distance map during a whole iteration. This will, however, require a lot more processing.
It has a complexity of O(n3) instead of O(n2) for a 2D image. This makes parallel algo-
rithms truly useful only on massively parallel systems.

This paper discuss a third possibility, namely ordered propagation (a.k.a. contour
processing). Piper and Granum [4], Verwer et al [11, 12] and Vincent [13] have de-
scribed algorithms using related techniques. Van Vliet and Verwer [14] describe a relat-
ed algorithm for binary neighborhood operations. This paper will mainly focus upon the
possibility to reduce the number of neighbors inspected per pixel.

It should be noted that Euclidean distance maps generally are not totally error-free,
as pointed out by Danielsson [2]. The raster scanning EDTs produce distance maps
where single pixels may occur that have an incorrect value. These errors are always less
than one pixel distance. Yamada [9] has, however, shown that certain algorithms do pro-
duce error-free distance maps. See further section 5.

While Piper and Granum [4] consider domains of many different shapes, we consid-
er only convex domains here, particularly the usual 2-dimensional rectangular image ar-
ray. The extension of the algorithms into three dimensions is rather straight-forward. The
case of non-convex domains, constrained DTs, is more complicated. Constrained DTs
using pseudo-Euclidean (i.e. Chamfer) metrics do not benefit from using directional in-
formation as used extensively in this paper, but should rather use complete neighbor-
hoods [4, 12]. The Euclidean DT, however, must use directional information to work in
a non-convex domain. This is demonstrated by the constrained EDT as described in [7],
using ordered propagation and directed masks.
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2. Ordered Propagation Algorithms

In both parallel and recursive algorithms, as described above, much processing power is
wasted in processing pixels that already have received their correct distance values or
that have not yet been reached by propagation from the object pixels. Each pixel is there-
by processed several times. Ideally, each pixel should only be processed once. The pro-
cessing of a pixel is only truly useful when the pixel receives its final value. We can get
very close to this goal by using ordered propagation.

We will now describe our algorithm for DTs using ordered propagation techniques.
First, we make the following definition.

Definition: In any stage of the transform, only a limited set of pixels is possible to
process with any benefit. We define this set as the Contour Set.

In the initial phase of a DT, only the neighbors of the object pixels can be changed.
Therefore, the set of object pixels on edges of objects is the initial Contour Set. In later
stages, the Contour Set holds pointers to pixels on the propagation front.

In an ordered propagation algorithm, the processing of a pixel is different from the
usual procedure for raster-scanning methods. When a pixel is processed in a raster-scan-
ning algorithm, the neighbors are inspected, their distance values modified to refer to the
center pixel, and the center pixel is set to the lowest distance value. Verwer et. al. [12]
use the term read formalism for this procedure.

The alternative, used in our algorithms, is write formalism. In this case, the distance
value (vector) of the center pixel is modified to refer to each of the neighbor pixels, and
the neighbors are updated if the new distance value is lower. See [12] for definitions of
write and read formalism.

The set of neighbors that are inspected in either case are often called the mask for the
processing of the pixel.

Suppose we process an arbitrary pixel in the Contour Set. It may update some neigh-
bor pixels. The neighbors of the updated neighbors must then be marked for future pro-
cessing. This is done by adding pointers to the updated pixels to the Contour Set. We also
remove the processed pixel from the Contour Set. We will compute the DT simply by
repeating this until the Contour Set is empty.

The algorithm described above is expressed in the following procedure:

1: Put pointers to all the object pixels into the Contour Set. Set the distance value of all ob-
ject pixels to zero and the distance value of all background pixels to a sufficiently high value.
2: Choose a member of the Contour Set and remove it from the set. This member points to
a pixel that will be processed. We name it the Center Pixel.
3: For each of the pixels in a neighborhood of the pixel:
3.1: Modify the distance value of the Center Pixel to refer to the neighbor instead. (In non-
Euclidean algorithms, this is done by simply adding the distance from the Center Pixel to the
neighbor.)
3.2: If this modified distance is less than the distance value stored in the neighbor:
3.2.1:Store the distance value into the neighbor.
3.2.2:Put a pointer to the neighbor into the Contour Set.
4: If the Contour Set is not empty, repeat from step number 2.
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This algorithm is written in a general manner, and leaves a lot of options. We have said
nothing about which pixel to choose in step 2 or what neighborhood we will use in step 3.

Piper and Granum [4] suggest a queue, putting the modified pixels in the end of the
queue and taking new center pixels from the front. We could use a sentinel to separate
different iterations, which is needed in some applications. We may also use two different
queues, one for the current and one for the next iteration.

However, this approach may cause many pixels to be updated twice or more, if the
propagation contours (defined by the neighborhood used) do not coincide with the equi-
distance contours (defined by the metric chosen).

Figure 2. An image with two object pixels (black). The black line is the border between 
the two pixels’ Voronoi polygons. Using quadratic propagation contours and Euclidean 
metric, the shaded areas will be updated twice, since the propagation from the more dis-

tant object pixel will arrive first.

The worst case for this problem is when a number of object pixels are located in a
straight, slightly sloping line. In such a case, pixels in some areas may be updated once
per object pixel in this sloping line, as illustrated in Figure 3.

Figure 3. The worst case for the problem with multiple updates is a sloping line of object 
pixels. In the figure, only four object pixels are included, and in some areas, each pixel 

may get updated up to once per object pixel.

This problem can be avoided by accessing the pixels in order of increasing distance val-
ue. The optimal case is to make all updates of pixels in order of the distances that the
pixels are assigned. We suggest two ways to achieve this, one exact and one approximat-
ing.
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Verwer [11] suggest a method for integer-based non-Euclidean algorithms. Un-
necessary updates are completely avoided at the cost of a fairly complicated algorithm,
using bucket sorting of the Contour List. With slight modifications, the method can be
adapted to Euclidean metrics, as is done in [6]. Montanari [3] uses a related algorithm
for skeleton extraction, addressing the pixels in order of increasing distance.

A simpler method that still gives satisfactory results is to use circular propagation
by thresholding. A threshold variable is introduced which holds an upper bound for the
distance value of all pixels to be processed during the current iteration. Pixels with higher
distance value remain in the contour set in the next iteration. After each iteration, this
upper bound is increased by the smallest distance from the mask center to its border. This
distance is 1 for a 3·3 mask, 2 for a 5·5 mask etc. For Chamfer 3-4, the distance is 3. For
Euclidean DTs, it is 1. Experiments show that when using 3·3 neighborhoods, this does
indeed remove almost all multiple updates, and that this has a significant impact on
speed.
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3. Neighborhoods

According to [5], theorem 3, the propagation of an EDT algorithm will work properly if
the algorithm supports propagation of distance values along any straight line from any
object pixel to infinity. It implies that we do not have to support propagation in other di-
rections. Therefore we only need to check the pixels located beyond the processed pixel,
looking from the object pixel.

In [3], theorem 1, Montanari shows that the minimal path between two points in an
image is two straight lines when using metrics like City Block or Chamfer metrics. These
two straight lines correspond to two of the many propagation directions supported by
some neighborhood (mask). This means that to reach one point from another with the
propagation of distance values in a DT, only two mask members need to be used. They
are the two mask members supporting propagation in the directions closest to the direc-
tion from the origin pixel (object pixel) to the destination pixel, one on each side of the
desired direction. This is illustrated in Figure 4.

Figure 4. To propagate from one point to another, we need to use only the mask members 
with directions closest to the desired direction, one on each side.

Because of these two theorems, theorem 3 in [5] for Euclidean DTs and theorem 1 in [3]
for non-Euclidean (pseudo-Euclidean) DTs, we may compute distance maps, Euclidean
as well as non-Euclidean, using only two neighbors in most masks. Such masks, includ-
ing neighbors only within a certain direction interval, is in the following called directed
masks. This method was also used in [11], though not described in detail.

However, some reservations are needed to make the propagation complete, reaching
to any pixel desired.

Each neighborhood member supports by itself propagation in a certain direction. We
refer to these directions as the directly supported propagation directions (DSPD). In
these directions, only one neighbor is needed. All other directions need to use a combi-
nation two DSPDs, as mentioned above.

Let us first consider 3·3 neighborhoods. There will be 8 DSPDs, which will divide
the possible directions into 8 direction intervals. In each interval, different masks are
used. These masks include only the center pixel and two other mask members.

If we assume that we have propagated a few steps out from the object pixels, the
masks in Figure 5 should be used. Figure 6 illustrates the resulting propagation paths.

Needed propagation paths:Sample path:
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Note that the masks in the regions between two DSPDs are the union of the 2-pixel masks
in these DSPDs.

Figure 5. Directed masks. In directly supported propagation directions, only one neigh-
bor need to be inspected, while otherwise two neighbors must be inspected.

Figure 6. The resulting propagation paths in different directions in the previous figure.

The first two iterations need to be different. In the first iteration, we need to support a
complete neighborhood, the 3·3 neighborhood shown in Figure 7.

Figure 7. In the first iteration, propagation must be supported in all directions.

Using the neighborhood in Figure 7 in the first iteration, we need to use slightly modified
masks in the second iteration as well. Otherwise, we would only propagate in the DSPDs.
These masks are similar to the ones in Figure 5, but include more pixels in some cases.
They are shown in Figure 8.
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Figure 8. In the second iteration, the masks need to be slightly larger than in the follow-
ing iterations.

Note that we only check one neighbor along coordinate axes and (after the second itera-
tion) diagonals. If, for the horizontal case, we used a mask with, for example, three
neighbors (up-right and down-right in Figure 9), we have a worst case for the algorithm
in terms of computation time. Every time we have a straight horizontal or vertical edge
in the image, large areas along these lines will be updated twice, as illustrated in Figure
10. However, this problem will not occur when using bucket sorting, but only when us-
ing circular propagation by thresholding or no circular propagation at all.

Figure 9. Possible, sub-optimal masks for use along horizontal or vertical lines from the 
object pixels. Apart from being larger, and thereby more time-consuming, we find a 

worst case that would make the algorithm even slower.

Figure 10. If we used the masks in the previous figure, all pixels in certain regions would 
be updated twice, once along a diagonal path and then along a horizontal or vertical 

path. The arrows show updates.

The following theorem justifies the correctness of these directed masks for EDT, espe-
cially the use of 1-neighbor masks under propagation horizontally, vertically and diago-
nally.

Theorem: In a Euclidean distance transform, propagation does not have to be sup-
ported from a diagonal vector under distance propagation to vectors with other directions
except once, from the shortest possible diagonal vectors (±1,±1). We do not have to sup-

Processing order along the contour
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port propagation from a vertical or horizontal vector under distance propagation to vec-
tors with other directions.

Proof: A proof is given in [7].1

An alternative to the modified second iteration is to use an even larger neighborhood in
the first iteration, as shown in Figure 11. This simplifies the algorithms somewhat, but
gives much unnecessary computation in cases where the binary image has many object
pixels.

Figure 11. When processing the object pixels, the very first iteration, we need to check 
all eight neighbors, but we may consider an even larger neighborhood, including the pix-

els that are the closest ones that can not be reached along DSPDs.

Now, let us consider using these masks for EDTs. We do not only know the distance to
the closest object pixel from each pixel, but also exactly where it is located. Hence, we
have the necessary direction information for using directed masks. We also have no prac-
tical need for larger masks than 3·3, which simplifies the division in different direction
intervals. This makes the directed masks very suitable for EDT. Hence, Figures 5-8 are
immediately applicable.

For non-Euclidean distance, on the other hand, each pixel must hold not only the dis-
tance value, but also some directional information, like the index of a direction interval.

For example, consider the Chamfer-3-4 distance [1]. The mask is a 3·3 one, but de-
pending on what direction interval the center pixel is in, only a few pixels are used in
each case. The masks and propagation intervals are exactly as described above, as in Fig-
ures 6-8. The direction index can have 16 different values, one per interval and one per
DSPD, as in Figure 12.

1. The proof is also given in an appendix at the end of this chapter.
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Figure 12. Possible indexes on different direction intervals for non-Euclidean trans-
forms using a 3·3 mask.

As another example, consider a 5·5 neighborhood, like the Chamfer 5-7-11. We may
make a similar division in intervals. We need twice the number of intervals, 16, but with-
in each interval, we still need to propagate to no more than two neighbors. See Figures
13 and 14.

Figure 13. The masks in one quadrant for a non-Euclidean DT using a 5·5 neighbor-
hood, such as Chamfer 5-7-11 or similar.

Figure 14. The propagation paths corresponding to the masks in the previous figure.

We also need modified masks for the first one or two iterations, as mentioned before (i.e.
Figure 8). This method can be generalized for even larger neighborhoods, at the cost of
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an even higher number of intervals. For these larger neighborhoods, circular propagation
by tresholding, as described in the previous section, is no longer practical, but we should
rather use bucket sorting.
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4. Euclidean DT using Ordered Propagation 

Below is pseudo code for Contour Processed Signed Euclidean Distance Transform
(CSED), an algorithm generating Euclidean distance maps using ordered propagation
with directed masks and circular propagation by thresholding, as described above.

In the following, D(v) is the length (distance) of the vector v. In order to make all
computations with integer numbers, we will in a real program use the squared distance
rather than the distance.

p is a pixel, defined by its position (px,py)
v(p) is the vector in p with components (vx,vy)
v(p)=(0,0) if p is an object pixel
v(p)=(N,N) if p is a background pixel, (N,N) is a vector long enough to be considered “infinite”
d is the distance threshold for circular propagation
o is an offset vector , the vector from the center pixel to a chosen neighbor

for all p
if D(v(p))=0

for all o ∈  {(0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1,0), (-1,1)} test (o)
switch list 1 and 2
d := 1
† for all p in list1

if D(v(p)) > d p is put on list2
else if vx(p)=0test (0,sgn(vy(p)) {vertically}
else if vy(p)=0test (sgn(vx(p),0) {horizontally}
else if |vx(p)|=|vy(p)|test (sgn(vx(p)),sgn(vy(p)){diagonal}

if d = 1test (sgn(vx(p)),0), test (0,sgn(vy(p))
else if |vx(p)|>|vy(p)|test (sgn(vx(p)),sgn(vy(p)), test (sgn(vx(p)),0)
else test (sgn(vx(p)),sgn(vy(p)), test (0,sgn(vy(p)) {if |vx(p)|<|vy(p)|}

clear list 1
d := d+1
if list 2 is not empty, switch list 1 and 2 and repeat from †

subroutine test(o):
if D(v(p+o)) > D(v(p)+o): v(p+o) := v(p)+o, p+o is put in list2

Note that the update rule is “D(...)>D(...)” and not “D(...)≥D(...)”. If we allowed updates
on equal distance, the speed would be reduced severely by redundant pointers in the Con-
tour Set.

The pseudo code above is only a description of the fundamental algorithm. Many
hardware-specific optimizations are possible, and should be considered when imple-
menting the algorithm.

To test the speed improvement in practice, we made implementations in the C lan-
guage and ran on a conventional workstation (Sun Sparcstation 2), measuring the pro-
cessing time using the Unix command time. Two test images were used, one synthetic
image with only a single object pixel in the center of the image, and one real image,
shown in Figure 15. The size of both images were 256 by 256 pixels.
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Figure 15. A test image: blood sample.

Four algorithms were tested. All were reasonably optimized, using lookup tables for dis-
tance value computations. The algorithms were 1) the scanning EDT (8SSED) [2, 10],
2) ordered propagation algorithm using complete 3·3 neighborhoods rather than the di-
rected masks suggested in this paper, and the ordered propagation EDT (CSED) de-
scribed above, 3) with and 4) without using circular propagation. The table below shows
the processing times in seconds.

Algorithm Image 1 Image 2 (Figure 15)

1. 8SSED 1.71 1.68
2. complete neighborhood EDT 1.29 1.68
3. CSED 0.77 0.81
4. CSED w/o circ. prop. 0.67 0.78

The ordered propagation algorithms would benefit even more than raster scanning algo-
rithms from being implemented in assembly language, since these algorithms are more
complicated. Despite the lack of low level optimization, CSED proved to be significantly
faster than 8SSED, but at this level of optimization only when using directed masks. See
also section 6 in this paper.
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5. An error-free version of CSED

According to [2], raster scanning EDT algorithms are almost, but not totally error-free.
The problem is that some Voronoi polygons (VP), for each object pixel the part of the
image where it is the closest object pixel, have very sharp points, as exemplified by Fig-
ure 16.

Figure 16. A VP can have very thin parts. When it fits between pixels in other VPs our 
neighborhood may be too small to reach some points. The arrows illustrate the queuing 

process in the image that will ensure error-free Euclidean distance maps.

In such cases, pixels in the thinnest part of the Voronoi polygon might not be within the
neighborhood of other pixels in the Voronoi polygon, and thereby not directly reachable.
The pixel may therefore not be reached by the propagation from the appropriate object
pixel, and will receive an incorrect distance value (vector).

Ordered propagation algorithms should cause propagations similar to what a parallel
algorithm would. Yamada shows in [8] that a parallel (O(n3)) Euclidean distance trans-
form algorithm (PED) like the one he proposes is totally error-free.

By a simple modification to the CSED, we may cause it to behave exactly as a PED,
and therefore create error-free distance maps, but with complexity O(n2) instead of
O(n3). One may get the impression that the CSED already behaves like a PED, but un-
fortunately, this is not true.

The reason for a PED to be error-free is that propagations from different object pix-
els may form queues in the image as illustrated in Figure 16. With chessboard propaga-
tion (quadratic) the propagation from the middle pixel (o2 in Figure 16) will reach the
narrow passage before the upper one (o1), and may therefore use the pixel p1 to reach the
pixel p2. The dotted arrows are propagation steps in one iteration, and the other arrows
are propagation in the following iteration. The propagation from o2 borrows p1 for one
iteration.

The parallel execution must work as implicitly assumed by Yamada, allowing p1 and
p2 to be updated simultaneously, without one update affecting the other. This allows one
propagation front to propagate immediately after another, which is what we need for Ya-
mada's proof to hold.

The problem with the ordered propagation algorithms described above is that pixels
that are to be processed in the iteration in progress sometimes are updated before they
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are processed, thereby destroying the queuing process. If we can delay such updates, we
will achieve the same result as parallel algorithms.

The solution is to save all updates and not execute them until the iteration is finished.
The cost is that it takes even more memory than before, and we may not use circular
propagation. We keep both the pointer to the pixel and the information to do the update
in the lists. The update is made as a part of the next iteration.

Sometimes, several neighbors want to write in the same pixel during the same iter-
ation. This means that we may not simply write all the information from the buffer to the
distance map (of vectors), but we will have to check the present distance value each time.

Here follows pseudo code for the error-free CSED. It is similar to the pseudo code
in the previous section. Note that the variable d is removed, and the new list member u
is introduced, which is used for delaying the updates.

p is a pixel, defined by its position (px,py)
v(p) is the vector in p with components (vx,vy)
v(p)=(0,0) if p is an object pixel
v(p)=(N,N) if p is a background pixel, (N,N) is a vector long enough to be considered infinite
o is an offset vector, the vector from the center pixel to a chosen neighbor
u is a vector that v(p) will be updated to, if a better value hasn't shown up since the test that
generated u

for all p
if D(v(p))=0

for all o ∈  {(0,1), (1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1,0), (-1,1)} test (o)
switch list 1 and 2
† for all p and u in list1

if D(v(p)) > D(u)
v(p) := u
if vx(p)=0 test (0,sgn(vy(p)))
else if vy(p)=0test (sgn(vx(p),0))
else if |vx(p)|=|vy(p)|test (sgn(vx(p)),sgn(vy(p)))

if d = 1test (sgn(vx(p)),0), test (0,sgn(vy(p)))
else if |vx(p)|>|vy(p)|test (sgn(vx(p)),sgn(vy(p))), test (sgn(vx(p)),0)
else test (sgn(vx(p)),sgn(vy(p))), test (0,sgn(vy(p)))

clear list 1
if list 2 is not empty, switch list 1 and 2 and repeat from †

subroutine test(o):
if D(v(p+o)) > D(v(p)+o): p+o and v(p)+o are put in list2

To verify the claims above in practice, experiments were made to confirm that the algo-
rithm is indeed error-free, and to see how frequent the errors really are in the other algo-
rithms. The test was made using images of 32·32 pixels. This may seem small, but the
first errors for 8-neighbor algorithms (all but the 4SSED in the table below) were found
at distance 13, and the largest known error [2] is at distance 18.4, well within the 32·32
image.
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Three object pixels were put in the image in a number of possible arrangements. Pix-
el p1 was placed along the bottom edge of the image, p2 was placed along the left edge
and p3 within the triangle formed by p1, p2 and the lower left corner. The pixels were
placed in all such combinations, and for every case, a number of distance transforms
were run. This yields a O(n6) problem, generating 55970 different images. The test is not
fully exhaustive with respect to recursive, scanning algorithms, but they were not the al-
gorithms the test was focused upon.

The maximum error detected for each algorithm are also included in the table. These
measures merely confirms the statements made in [2].

Algorithm Max. error Total # of errors

8SSED (scanning) [2,10] 0.074 158
4SSED (scanning) [2,10] 0.27 4221
Ordered propagation 0.054 27
algorithm without circular propagation
Ordered propagation 0.074 130
algorithm with circular propagation
Ordered propagation 0 0
algorithm, error-free

The test has also been run using images of 64·64 pixels, but only for the error-free algo-
rithm. We conclude that the test confirmed that the new algorithm was error-free, while
all the others showed the expected errors.
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6. Speed analysis

In this section, the speed of ordered propagation DTs is estimated and compared to cor-
responding sequential algorithms.

The measure chosen is the number of memory accesses necessary per pixel in the im-
age. This is chosen since none of the algorithms in question demand any calculations oth-
er than additions, shifts and comparisons, and all algorithms have the same complexity,
namely O(N2) for an N·N image.

Note that the correctness of the memory access measure is hardware dependent, and
assumes that we may neglect both the instruction fetches and numerical calculations.
That is, we assume that our hardware has good instruction caching and that calculations
are fast, possibly pipelined. We also assume the bus to be wide enough to write a whole
2-component vector with only one memory access. Typically, this implies a 16-bit bus
or wider.

To be able to make these measurements, we must outline how the calculations in the
inner loops of the algorithms are computed. The operation of the DT algorithms are ba-
sically as follows:

Recursive, raster scanning algorithms:
for y, for x, scan the image:
Read the vector/distance value in the pixel x,y
Fetch the distance values/vectors of the neighbors
Compute the corresponding distance value for the center pixel for each neighbor
Compare
If a neighbor had a lower value, update the center pixel

Ordered propagation:
Fetch x,y from the list
Read the vector/distance value in the pixel x,y
Compute the corresponding distance value for each neighbor
Fetch the distance values/vectors of the neighbors
Compare
If a neighbor had a higher value, update it and write its position into the list

However, we need to ask ourselves how the distance value is calculated for Euclidean
distances, where we only have the vectors.

We may simply compute x2+y2. It only requires multiplications, and is suitable if
we can consider multiplications to be fast.

If we store the value x2+y2 for each pixel, we may compute new values incremen-
tally, e.g. for the vector (x+1,y-1):

(x+1)2+(y-1)2 = x2+2x+1+y2-2y+1 = (x2+y2) + (2x-2y+2)
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Thus, we only need additions and shifts.
We can also use a lookup-table, with a large two-dimensional array with either the

distance (x2+y2)1/2 or the square, x2+y2. If we have the distance value itself, we may
also use it in the post-processing step to turn the vector image into a scalar distance map,
if needed.

Then, how many memory accesses are needed for each kind of algorithm? We count
the number for each case for a mask with M pixels including the center pixel:

Incremental sequential EDT (raster scanning):
M to read all distance values
M-1 to read all vector components except for the center pixel
2 to write if the pixel is changed

Look-up table supported sequential EDT (raster scanning):
M to read all vector components
M to read from the look-up table
1 to write if the pixel is changed

Non-Euclidean DT (raster scanning):
M to read all distance values
1 to write if the pixel is changed

Hence, we consider the inner loop to take the time 2M+1 for EDTs and M+1 for non-
Euclidean DTs. Note that EDTs would only take M+1 if we consider multiplications
negligeable, thereby removing the need for the look-up table.

Now, let us calculate the corresponding measures for some interesting ordered prop-
agation algorithms:

Euclidean distance, ordered propagation, incremental implementation:
1 to read pointer to the center pixel
M to read distance values
1 to read the vector components for the center pixel
0 to (M-1) to write distance values (typically 1)
0 to (M-1) to write vector components (typically 1)
0 to (M-1) to write pointers (typically 1)

This sums to M+5. As noted above, M is 3 in most cases, but sometimes 2 or 4. Using
M=3, this gives a total of 8.

Euclidean distance, ordered propagation, using look-up-tables:
1 to read pointer to the center pixel
M to read the vector components for all pixels
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M for table look-up
0 to (M-1) to write vector components (typically 1)
0 to (M-1) to write pointers (typically 1)

M for table look-up is counted with incremental methods to modify the distance value of
the center pixel. Using only table look-up, we would have to access the lookup table 2M-
2 times. Totally, the sum is 2M+3, totalling to 9 for the 3·3 neighborhood case.

Non-Euclidean distance, ordered propagation:
1 to read pointer to the center pixel
M to read distance values
0 to (M-1) to write distance values (typically 1)
0 to (M-1) to write pointers (typically 1)

This sums to M+3.

If we use non-Euclidean algorithms with directed masks, as described in section 3.7, it
would add one read and one write (typically), which gives a total of M+5.

With this information we may compare the speed of a number of different DTs. For
sequential EDTs we only consider the 8-neighbor and 4-neighbor algorithms.

For the sequential algorithms, we get:

Raster scanning EDT:
4SSED [2]: M1 = 3, M2 = 2, total (2M1+1)·2 + (2M2+1)·2 = 24

8SSED [2]: M1 = 5, M2 = 2, total (2M1+1)·2 + (2M2+1)·2 = 32

4SSED/SIMD [5]: M = 3, total (2M+1)·4 = 28
8SSED/SIMD [5]: M = 4, total (2M+1)·4 = 36
8SSED/SIMD, 3 scans [5]: M1 = M2 = 5, M3 = 4, total (2M1+1) + (2M2+1) + (2M3+1)
= 31

These values should be compared to corresponding values for non-Euclidean algorithms.
Particularly, we should compare with the popular Chamfer DTs [1].

Raster scanning non-Euclidean DT:
City block distance: M = 3, total (M+1)·2 = 8
Chamfer 3·3: M = 5, total (M+1)·2 = 12
Chamfer 5·5: M = 9, total (M+1)·2 = 20
Chamfer 7·7: M = 17, total (M+1)·2 = 36
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For the ordered propagation transforms, we may consider either using complete, sym-
metrical masks (M+3 for non-Euclidean metrics) or directed masks (M+5 for non-Eu-
clidean metrics). First, we look at symmetrical masks:

Ordered propagation Non-Euclidean DTs with symmetric mask:
City Block distance: M=5, total M+3 = 8
Chamfer 3·3 or Chessboard Distance: M=9, total M+3 = 12
Chamfer 5·5: M=25, total M+3 = 28
Chamfer 7·7: M=49, total M+3 = 52

Non-Euclidean algorithms with directed masks take M+5 memory accesses, just like the
Euclidean version. We therefore get the same values for both CSED and non-Euclidean
algorithms:

Ordered propagation DTs with directed masks, Euclidean or non-Euclidean:
3·3 neighborhood: M≈3, total M+5 ≈ 8
5·5 neighborhood: M≈3, total M+5 ≈ 8
7·7 neighborhood: M≈3, total M+5 ≈ 8

This means that a Euclidean Ordered propagation DT is among the fastest DTs possible.
Also, it is the most exact one of these fast algorithms. The non-Euclidean DTs are as fast,
but not significantly faster than the CSED. We pay for this in two ways: we need more
memory and a more complex algorithm.

For most general-purpose computer systems, the advantage is much less than indi-
cated above. The numbers presented here describe the idealized case where only memory
access limits speed. The fetching of instructions from memory is not included, and nei-
ther is the time for calculations. Even so, experiments have shown a significant speed
improvement.

We conclude that the ordered propagation DTs are significantly faster than raster
scanning distance transform algorithms, and that the difference in speed between Eucli-
dean and non-Euclidean distance is likely to disappear completely with future improve-
ments in processor architecture.
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7. Conclusions

The method of using ordered propagation for computing Euclidean and non-Euclidean
distance transforms was investigated. We have focused upon methods using a single list
of pixel pointers as its representation of the propagation front.

We find that with ordered propagation algorithms, Euclidean distance maps are cre-
ated faster than with other methods. The generation of non-Euclidean distance maps can
also be speeded up by this method.

The possibilities for reducing the number of neighbors inspected during the proces-
sing of a pixel was investigated. The method chosen was directed masks, using masks
including only pixels in the propagation direction. This was combined with circular
propagation by tresholding, a simple method for accessing the pixels in approximately
order of increasing distance value.

The typical neighborhood size is as low as 2 pixels, 3 including the center pixel. This
is true even for high-precision Chamfer metrics, which otherwise demand very large
neighborhoods.

An algorithm was found that generates error-free Euclidean distance maps with time
complexity O(N2). This is by an order of magnitude faster than the previously known
error-free parallel algorithms.

Finally, the algorithms using ordered propagation were compared to the raster scan-
ning ones. A comparison counting the number of memory accesses needed indicated that
the ordered propagation algorithms are significantly faster.
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Appendix: Proof of Theorem in section 3

The following proof was included in my licentiate thesis [7], but was removed before
submitting this paper to CVGIP:IU, in order to get rid of some non-essential material and
thereby having more interesting points per page. For completeness, while preserving the
paper as close to the CVGIP:IU publication as possible, it is given here as an appendix.
For historical reasons, the term “vicinity” is used below when referring to the Voronoi
polygon of an object pixel. The Figure numbering is the one that was used in the licenti-
ate thesis.

Theorem: In a Euclidean distance transform, propagation does not have to be supported
from a diagonal vector under distance propagation to vectors with other directions except
once, from the shortest possible diagonal vectors (±1,±1). We do not have to support
propagation from a vertical or horizontal vector under distance propagation to vectors
with other directions.
Proof: Consider the vicinity of every object pixel. If a pixel p0 falls inside the vicinity of
an object pixel f0, in a distance map the distance value (vector) of p0 should refer to f0.
Study Figure 3.22 with the pixel p0, all pixels pi that are not along any horizontal, vertical
or diagonal line as shown in the figure and an object pixel f0. The pixel p0 is at one of the
shortest possible diagonal vectors from f0.

Figure 3.22. An object pixel f0, a diagonal neighbor p0 and an area with pixels pi that 

are not located along any horizontal, vertical or diagonal line from f0.

The theorem is valid if the following statement is correct:
If any pixel pi within the area shown in Figure 3.22 is within the Voronoi polygon

of f0, p0 is also within the Voronoi polygon.

If it is not correct, there exists another object pixel f1 positioned so that p0 falls with-

in the vicinity of f1, while some pixel pi within the area falls within the vicinity of f0. To

find such positions, we draw a line through p0. If this line is the possible border between

the two Voronoi polygons, f1 should be placed as a mirrored f0 on the other side of the

line. See Figure 3.23.
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Figure 3.23. To find a counter-proof to the theorem, we must find an object pixel f1 so 

that p0 falls in the Voronoi polygon of f1 and some pixel in the shaded area in the Voronoi 

polygon of f0.

By simple geometry, we can find the area within which f1 should be placed. First, we

find that if the vicinity border passes through p0, f1 must be located at a circle with p0 in

the center and f0 at the border, as illustrated in Figure 3.24.

Figure 3.24. A point mirrored from f0 over a line through p0 must be on a circle with p0 

in the center and f0 at the border.

We also know that, according to Figure 3.23, f1 must be located to the left of f0, other-

wise the vicinity border would pass below the area we stated that it must cut through.
This leaves us a small part of the circle, illustrated in Figure 3.25.

Figure 3.25. Can p0 be closer to f1 than f0 while some shaded pixel is closer to f0?
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To make p0 closer to f1 that to f0 while at least one pixel within the large shaded region

is closer to f0 than to f1, the object pixel f1 must be within the small shaded area to the

left in Figure 3.25, and no grid pixel falls within this area.
Thus, it is impossible to exclude p0 from the vicinity of f0 without excluding the en-

tire region, and thereby the theorem is proven.
The theorem says that if the propagation of distance values from f0 should reach any

pixel in the area shown, it should also reach p0, and therefore we may safely use p0 as a

part of the path.
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The Constrained 
Euclidean Distance Transform

Not yet published.
Short version in: Proceedings, Symposium on Image Analysis, Linköping 1990.
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Det finns ingen kungsväg till geometri.

There is no royal road to geometry.

Euclids reply to King Ptolemy who asked if there was any shorter way to learn
geometry than through the Elements.
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The Constrained 
Euclidean Distance Transform

Ingemar Ragnemalm

Dept. of Electrical Engineering, University of Linköping, S-581 83 Linköping, Sweden

Abstract:
This paper presents an algorithm for generating constrained Euclidean dis-
tance maps. The algorithm can be used for finding the shortest path through
an arbitrary 2-dimensional area with obstacles, sampled with rectangular
grid. The known algorithms for Euclidean distance mapping can not easily
be adapted for this problem. Hence, the algorithm presented in this paper
differs considerably from other distance mapping algorithms.
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1. Introduction

A distance map is an image where each pixel tells the distance to the closest set pixel
(feature or object pixel) in a corresponding binary image. See Figure 1. Images and dis-
tance maps may have higher dimension than 2 [17], but in this paper, only 2-dimensional
images will be considered.

0 0 0 0 0 0 0 5 4 3 2 1 2 3
0 0 0 0 1 0 0 4 3 2 1 0 1 2
0 0 0 0 0 0 0 4 3 2 2 1 2 3
0 0 0 0 0 0 0 3 2 1 2 2 3 4
0 0 1 0 0 0 0 2 1 0 1 2 3 4
0 0 0 0 0 0 0 3 2 1 2 3 4 5

a) 0 0 0 0 0 0 0 b) 4 3 2 3 4 5 6

Figure 1. From a binary image a) with two object pixels (1:s), a distance map b) can be 
generated. In the example, the City Block distance metric is used.

In ordinary distance maps, the distance values are just that, a single value telling the dis-
tance. An alternative is Euclidean distance maps, where each pixel carries a two-compo-
nent vector that tells the distance to the closest object pixel along each coordinate axis
[1,3,7,8]. For a vector (vx,vy) the distance is (vx2 + vy2)1/2. As the name says, this distance
is the exact distance. If this vector tells the exact position of the object pixel instead of
just telling the distances, the distance map is said to be signed. Figure 2 shows a small
signed Euclidean distance map.

Figure 2. A signed Euclidean distance map generated by running the Signed Euclidean 
Distance Transform on the binary image in Figure 1a. A few arrows illustrate how the 

vectors point to the closest object pixel.

Note that algorithms that use only a single distance value per pixel and not a vector can
never generate Euclidean distances if they are using neighbourhood operations (see be-
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low). The distances generated are the distances along a path consisting of small steps be-
tween neighbour pixels (grid points). Such a path is straight only in special cases. This
makes the errors increase with increasing distance. Apart from this, single component
Euclidean distance values are often irrational and must be truncated to be used in a com-
puter. Euclidean distance maps using vectors have none of these drawbacks. The fastest
algorithms generate negligible errors in some cases, as noted by Danielsson [1]. These
errors does not matter in practical cases, and if desired, error-free distance maps can be
generated in slightly more time, as described in [8].

Some common metrics are listed in the table below:

Name Definition
Euclidean distance L(x,y) = (x2 + y2)1/2

City Block distance L(x,y) = |x| + |y|
Chessboard distance L(x,y) = max (|x|, |y|)
Octagonal distance L(x,y) = max (|x|, |y|) + min (|x|, |y|) ÷ 2

The Euclidean distance metric can only be achieved with Euclidean distance maps (vec-
tor maps), generated by Euclidean distance transformations. Using approximative met-
rics like City Block, Chessboard or Octagonal distance, much simpler algorithms may
be used [13]. Closer approximations to Euclidean distance has been suggested by Mon-
tanari [10] and Borgefors [14].

Constrained distance maps

A special case of distance maps is the constrained ones, where the source image consists
not only of object pixels and background pixels, but also of obstacle pixels. A distance
value in a constrained distance map tells the distance to the closest object pixel, but not
along a straight line but along a path that doesn't pass through any obstacle pixels. 

Figure 3. The typical output after using constrained distance maps: the shortest path 
from one point to another through an area with obstacles.

This kind of maps are typically used in path-planning problems. The basic method gives
an approximative shortest path through a constrained area for a single-point object. In
short, the algorithm works as follows:

1: Set the end point(s) to object pixels.
2: Generate the constrained distance map.
3: Find the path by beginning at the start point(s) and move to the lowest distance value in
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the neighbourhood in each step. While following this path, it can be recorded in chain-code or
similar form.

The method can be extended to find a path for rigid objects of arbitrary shape by expand-
ing the obstacles (the constraining areas), using the object's shape as structure element.
In short, every pixel where the object's center cannot be placed without it hitting an ob-
stacle is set to an obstacle point. The algorithm can then be run as for a single-point ob-
ject, as the algorithm above. This method is mentioned by Dorst et. al. as Fat Robots [6].

If the object is allowed to rotate, the distance map must be three-dimensional. The
rotation angle spans the third axis. If it is also allowed to move in three dimensions, we
must use a six-dimensional distance map, since rotation of a 3D object in a 3D space is
defined by three angles. Still higher dimensions appear for problems with robot-arms,
multiple objects etc.

The algorithms mentioned so far are all image processing algorithms, in the sense
that they are pixel-based, with all data represented as sampled images. An alternative is
to transform the obstacles into polygons and search for a path by examining the corners
of the polygons. The output of such an algorithm is a shortest path computed in Euclid-
ean metric, and should be equivalent to the output of the algorithm described below. See
for example [5].

In some applications we may not necessarily want the shortest path, since we would
be perfectly happy to get any path at all. [15] In other cases, we may want the safest path,
where we can move some robot or other object with the largest possible clearance. In this
paper, however, the problem being solved is to find the shortest path through an image
with obstacles.

Generation of distance maps

The brute-force method for generating a distance map is to check each pixel against all
object pixels. With an N·N image with P object pixels, this task has the complexity
O(P·N2) ≈ O(N4).

We define the following symbols:

I: The set of all pixels in the image
F: The set of object (or feature) pixels
B: The set of background (or non-feature) pixels
O: The set of obstacle pixels (exists in constrained distance maps)
D(i,j): The distance between pixel i and j
Di: The distance value associated with pixel i

The brute-force algorithm can then be expressed like:

∀  i∈ I: Di = min (D(i,j), j ∈  F)

Using neighbourhood operations, distance maps can be generated much faster.
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In a neighbourhood operation, one pixel is the center of interest. We refer to it as the
center pixel. Usually, its value (i.e. distance value) is determined as a function of itself
and the members of a neighbourhood. This is called read formalism by Verwer et. al.
[12]. Sometimes it is more suitable to use write formalism, where the value of each
neighbour is determined as a function of the neighbour and the center pixel.

Despite its name, the neighbourhood does not necessarily include all pixels in a con-
vex area around the center pixel, it is not necessarily symmetrical and the center pixel is
not necessarily centered within the neighbourhood. The neighbourhood may be any suit-
able set of pixels, but their positions are always relative to the center pixel.

In a parallel algorithm for generation of distance maps, all pixels are processed in
each iteration. We have to iterate until there are no changes in the distance map during
an entire iteration. For generation of non-Euclidean distance maps, the algorithm can be
expressed as follows:

N(i):the pixels in a chosen neighbourhood of i, excluding i itself
m:the iteration number

Initialization:

Di
0 := 0, i∈ F

Di
0 := ∞, i∈ B

∀  i∈ I: Di
m := min (Di

m-1, Dj
m-1 + D(i,j), j ∈  N(i))

This is iterated until no change occur in the image. This procedure has a complexity of
O(N3) instead of O(N4). Each pixel is tested against neighbours in all directions, so dis-
tance values will propagate in all directions, one layer per iteration, as illustrated in Fig-
ure 4.

The Euclidean versions are slightly different, since they don't keep single distance
values but rather vectors.

Figure 4. With a parallel algorithm, each iteration will cause one step of propagation. 
In the figure, the objects are black and each shade of grey corresponds to one iteration.



126 Constrained EDT

For single processor computers, a faster method for generate distance maps of either kind
is to use a recursive algorithm that scans the image twice, once in each direction. When
a pixel is processed (referred to as the center pixel), its distance value is compared to the
distance value of a number of neighbours (modified to refer to the center pixel) and the
lowest value found is written into the center pixel. This will cause the distance values (or
vectors) to propagate from each object pixel in the direction of the scan. Recursive algo-
rithms have the complexity O(N2). See Figure 5. The Figure also includes two masks,
illustrating what neighbours are used in each scan. See further below.

Figure 5. Using a recursive algorithm, the first scan will cause propagation over a part 
of the image and (the) following scan(s) will cover the rest of the image.

The algorithm can be expressed as follows:

(x,y): the pixel at the coordinates x,y.
Nf(x,y):the pixels within the neighbourhood of (x,y) chosen for the forward scan, excluding the
center pixel.
Nb(x,y):the pixels within the neighbourhood of (x,y) chosen for the backward scan, excluding
the center pixel.

Initialization:

Di
0 := 0, i∈ F

Di
0 := ∞, i∈ B

Forward scan:
for x:=1 to N

for y:=1 to N
Dx,y := min {Dx,y, Dz,w + D((x,y), (z,w))}, (z,w) ∈  Nf(x,y)

Backward scan:
for x:=N to 1

for y:=N to 1
Dx,y := min {Dx,y, Dz,w + D((x,y), (z,w))}, (z,w) ∈  Nb(x,y)

Thus the distance value Dx,y may be changed to Dz,w + d, where d = D((x,y), (z,w)) which
is the distance from (x,y) to (z,w). Figure 6 shows neighbourhoods (masks) Nf and Nb
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including distances within the neighbourhoods for the Chamfer 3-4 metric as suggested
by Borgefors [14].

Figure 6. Neighbourhoods (masks) for the Chamfer 3-4 metric.

The Euclidean version is slightly different. With Euclidean metric, we can no longer use
only two scans, but must use three or four [7] or two “double” scans [1]. Below is a gen-
eral algorithm that performs one of these scans. By determining a number of neighbour-
hoods and corresponding scanning patterns, we can define the complete algorithm.

Np(x,y):the pixels within the neighbourhood of (x,y) chosen for the scan p.
vx,y:pthe vector of the pixel at (x,y) after iteration p.

Initialization:
vi:0 := (0,0), i∈ F
vi:0 := (∞,∞), i∈ B

Scan number p:
for x or y

for y or x
vx,y:p := min {vx,y:p-1, vz,w:p + (x-z,y-w)}, (z,w) ∈  Np(x,y)

The “min” function above returns the shortest vector.
In the following figures, two recursive Euclidean distance transforms are defined by

their masks.

Figure 7. The neighbourhoods (masks) for the 8SSED algorithm for generation of signed 
Euclidean distance maps [1]. The scans N1a and N1b are performed simultaneously, ap-

plying both for each row of the image. The same holds for the scans N2a and N2b.
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Figure 8. The neighbourhoods (masks) for the 8SSED/SIMD algorithm for generation of 
Euclidean distance maps [7].

The third alternative is to use ordered propagation (or contour processing) methods.
These methods are similar to the parallel ones, but keep trace of the propagation front,
and only test pixels in that part of the image [8, 9, 11]. Like the recursive algorithms, they
have the complexity O(N2), but they are faster by a constant factor since each pixel is
visited only once instead of two (non-Euclidean metric), three or four (Euclidean metric).

The contour processing algorithms in [8] can be expressed in pseudo code as fol-
lows:

C1, C2:the set of pixels in the active contour, the propagation front, henceforth referred to as
the Contour Set. C1 is the active contour in the current iteration, while C2 is built to become
the set used as C1 in the next iteration.

Initialization:
Di

0 := 0, i∈ F

Di
0 := ∞, i∈ B

C1 := F
C2 := ∅
†
∀  i∈ C1:

∀ j ∈  N(i):
if Dj > Di+D(i,j)

Dj := Di+D(i,j)
C2 := C2 ∪  j

if C2 is not empty:
C1 := C2
C2 := ∅
Repeat from †

This is expressed using non-Euclidean metric, but the algorithm is easily modified for
Euclidean distance, using vectors. With vectors, the neighbourhoods N(i) can be modi-
fied to include only pixels on the far side of the center pixel viewed from the object pixel,
which makes the algorithm even faster.

As mentioned above, the Contour Set is the set of pixels at the propagation front.
This set is represented by a list or queue which will be referred to as the Contour List.

(0,0)

(0,0)

(0,0)

(0,0)(0,1) (0,1)

(0,-1)(0,-1)(-1,0)

(-1,0)

(1,0)

(1,0)(-1,1)

(-1,-1)

(1,1)

(1,-1)

N
1

N
2

N
3

N
4



1. Introduction 129

Generation of constrained distance maps

Constrained distance maps using non-Euclidean distance can be generated using similar
methods as for the non-constrained ones. In this case, however, contour processing algo-
rithms have a major speed advantage. For recursive (scanning) algorithms [6] and paral-
lel algorithms, severe worst cases exist, suggested by Danielsson et. al. [16]. Contour
processing algorithms have no such worst case for constrained distance maps [8, 12].

A parallel algorithm for constrained distance maps propagates of one step per itera-
tion. Such an algorithm is similar to its non-constrained equivalent, the only difference
being that each step should check for obstacle pixels.

See Figure 9, which shows a simple image with obstacles and a single object pixel.

Figure 9. A simple image with obstacles (grey) and a single object pixel (0).

If we use the simple Chessboard distance metric, a 3·3 neighbourhood and a parallel al-
gorithm, the algorithm will give intermediate results as shown in the figures 10 and 11,
below.

a)                       b) 

Figure 10. The distance map generated by a parallel algorithm after a) 1 iteration and 
b) four iterations.
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Figure 11. The resulting constrained distance map.

A recursive algorithm uses forward and backward scans like the non-constrained ver-
sions, but they are repeated until there is no changes in the distance map during an entire
iteration. A recursive algorithm is described in [6]. Figure 12 illustrates a recursive algo-
rithm using the Chessboard metric.

Piper and Granum [9] suggest computing constrained distance maps recursively
with more than two masks. They show that this is needed for some convex domains.

Contour processing methods will propagate exactly as a parallel algorithm, but in
each iteration, only the pixels at the propagation border will be processed. [8,9,12]

In the general case, we have an image with obstacle pixels, background pixels and a
number of object pixels. The constrained distance transform propagates from the object
pixels to all accessible parts of the image. Thus, after termination of the algorithm, all
accessible background pixels will hold the distance value to the closest object pixel.
Now, consider the two background pixels for which

1) the path to the closest object pixel is longest, and
2) the path to the closest object pixels make the largest number of turns.
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Figure 12. The same constrained distance map being computed by a recursive algo-
rithm. After two scans, the distance map is still not complete, and more iterations are 

needed.

The computation time of a parallel algorithm will depend on the longest path that has to
be generated, the path to pixel 1) above. One iteration per unit step along this path is
needed. Thus, the worst case is an image with the longest possible path.

The computation of a recursive, raster scanning algorithm will depend on the path
with the largest number of turns, the path to pixel 2) above. The worst case is an image
where propagation must be performed along a long path with many turns, like the Me-
ander curve shown in Figure 13. For constrained contour processing distance transforms,
this case poses no speed problem.

The computation of a contour processed algorithm will depend on the number of
background pixels in the image. If this number can be considered proportional to the im-
age size, which is true in most cases, we may consider the execution time of the algo-
rithm data independent.

Figure 13. A Meander curve, the worst case for constrained distance transform based 
on the conventional recursive algorithms.

The algorithms described above use non-Euclidean metrics, with only a single distance
value per pixel. By using the improved metrics suggested by Borgefors [14] we can get
arbitrarily good approximations to Euclidean distance. However, good approximations
imply using larger neighbourhoods that 3·3 pixels. For large neighbourhoods the propa-
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gation of distance values can pass through thin obstacles. Using a 5·5 neighbourhood, 1
pixel wide obstacles would be ignored, 7·7 would pass through 2 pixel wide obstacles
and so on. See Figure 14.

a)               b)  

Figure 14. If a 5·5 neighbourhood is used for generating constrained distance maps, the 
propagation of distance values will be able to pass through 1 pixel wide obstacles (a). If 

a 7·7 neighbourhood is used, the propagation of distance values will be able to pass 
through 2 pixel wide obstacles (b).

Dorst and Verbeek [6] suggests both a 3·3 neighbourhood and a 5·5 one. In the 5·5 case,
they note that obstacles need to be at least 2 pixels thick to avoid “leaking”, which seems
to be a rather unfortunate limitation.

A circumvention of this problem not mentioned in [6] is to check the farthest neigh-
bours only if the closer neighbours were not obstacles. The exact scheme for this solution
depends on the connectivity definition used for the obstacles. For each neighbour outside
the 3·3 neighbourhood, we must test a number of pixels between the neighbour and the
center pixel for obstacle pixels.

If we want to maintain a reasonable definition of an obstacle and avoid the cumber-
some testing for obstacle pixels between the pixel being updated and the center pixel, as
mentioned above, we must use a 3·3 neighbourhood (or smaller). Thus, the best approx-
imation of the Euclidean metric that can be obtained by the present methods without de-
manding some lower limit on obstacle width is the 3·3 neighbourhoods suggested by
Borgefors [14], with the Chamfer 3-4 distance as a good integer approximation. One
such algorithm is the 3·3 neighbourhood case in [6].

The Euclidean, vector-based distance transform produces totally or almost error-free
distance maps using only 3·3 neighbourhoods. This property should make such vector-
based techniques very suitable for constrained distance mapping.

However, it is not trivial to adapt Euclidean distance to constrained distance maps,
since the vectors used in an Euclidean distance map are totally independent of the path.
(See chapter 4.) This problem, generating path dependent Euclidean distance maps, is
what the rest of this paper is all about.

To illustrate why the conventional Euclidean distance mapping can not be used di-
rectly for constrained distance maps, we use the example from Figure 9-12, see Figure
15. With a parallel or ordered propagation (contour processed) algorithm, the first two
iterations give the intermediate results shown below.
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Figure 15. The intermediate results from the two first iterations of a conventional Eu-
clidean distance transform in a constrained image.

As long as the propagation takes no turns, everything is good, but when we do (in the
third iteration in the example) we get false and/or meaningless results. The vectors gen-
erated cross over obstacles.

Figure 16. A part of the previous figure. In the third iteration, a new vector v2 is gener-

ated as the sum of the vector in a neighbour, v1, and the path between the two pixels, voffs. 

The resulting vector passes straight through obstacles.

Thus, when the propagation front propagates around a corner, some checking must be
made to detect it and the turn must be remembered in some way. In the example, the two
vectors should be kept as parts of the resulting path rather than being added together. Ob-
viously, we need a data structure that can represent a turning path.
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2. Vector chains

The ordinary, non-constrained Euclidean distance transform is based on vectors instead
of distance values, where the vectors point to the closest object pixel. The corresponding
case for a constrained distance map is a chain of vectors, where each vector points to the
pixel “in sight” to which the resulting vector chain is shortest. The last pixel in the vector
chain holds a vector that points to the pixel itself (the vector (0,0)).

Figure 17. A short vector chain, with two links (vectors). The first link points from the 
leftmost of the marked pixels to the middle one. The chain ends with the rightmost of the 

marked pixels, the vector of which points to the pixel itself.

A constrained Euclidean distance map, a vector map with vector chains, will have the
following properties:

Definition: All pixels i∈ I hold a vector vi=(vxi, vyi).

Definition: The vectors vi are relative to the pixel they are stored in. The coordinates
of the pixel i is denoted by i. The next pixel in the chain from the pixel i can be found by
adding the vector vi to the coordinates of i, that is, i+vi. There must be a straight path
without obstacles from i to i+vi for the vector vi to be valid.

Definition: All object pixels, f∈ F, hold the vector vf=(0,0). Thus, in every object
pixel, the vector points to the object pixel itself.

In the following, the word “link” will occasionally be used for a vector in a vector chain.
Since the vector chains are generated by a propagation process, starting at the object

pixels, we will refer to the pixel pointed to by the vector in the pixel i as the originating
pixel of the vector in i.

If we want to find the shortest path from an arbitrary non-obstacle pixel i∉ O to the
closest object pixel, we may find it by the following recursion which also defines a chain
of vectors.

0,0

4,3

2,-2

Path(i) = 
 


vi = (0,0): ∅
vi ≠ (0,0): (vi,  Path(i + vi))
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A vector chain holds the complete information about a path. The path can thus be extract-
ed from the image and stored as a small data structure. Normally, it is far more economic
than for example chain-code, since it may contain long vectors that pass over large open
areas with a single step. The two component vector is also an exact representation of the
true distance, though the endpoints of each vector must naturally be in the sampling grid.
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3. Restricting propagation to line-of-sight

According to the definition of vector chains in the previous section, a vector must not
point to a pixel outside its “field of view”. This means that there has to be a straight path
without obstacles between the originating pixel and the end of the vector.

As mentioned above, an ordinary Euclidean distance transform delivers a result in
each pixel which is a single vector pointing directly to the closest object pixel, as a
straight path regardless of all obstacles.

Figure 18. If propagation of vectors in an Euclidean distance transform is unrestricted, 
possible in all directions from any position even from non-object pixels, it will pass 

around any obstacle (which is desirable) and result in a single vector that cuts straight 
through any obstacles (which makes the result useless).

To cope with the constrained space, we have to restrict the propagation in some way, and
make a new link for each turn. To begin with, however, let us forget about the turns. The
first problem is to generate an Euclidean distance transform that covers only the areas
directly visible from the object pixels. See figure 19. When this problem is solved, we
will return to the problem of making turns.

Figure 19. If propagation is restricted to line-of sight, the propagation from the object 
pixel in the figure (small shaded circle) should not reach the shaded areas since these 

areas are occluded by the obstacles (black).
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In the following, the term object pixel will generally be replaced by originating pixel (as
mentioned before) since the results will be used for generating vector chains. Then, a
vector will not always point to an object pixel but rather to the next link in the vector
chain.

The line-of-sight problem can be solved by keeping information about the path used
by the propagation. In principle, propagation is only allowed along straight lines, like
beams of light from the originating pixels. We need some mechanism for restricting the
propagation accordingly. Since we are working in a sampled image, a grid, arbitrary
straight lines will not hit pixels exactly. Therefore, the idea about propagation along
straight lines must be modified to fit the grid.

Given a pixel, its vector, its originating pixel and the path used to propagate to it
from the originating pixel, we can find an area that can be considered “forward”. Propa-
gation is allowed from the pixel only to pixels within the “forward” area. The forward
area is defined by the (allowed) Direction Interval, DI.

Similarly, given only a pixel, its vector and its originating pixel, we can find its Lo-
cally defined allowed Direction Interval, LDI, which is an interval including all direc-
tions that could be allowed with any path from the originating pixel to the vector. The
allowed direction interval (DI) of the propagation from the pixel is then the intersection
of all LDIs in the path from the originating pixel to the pixel.

We will need the following definitions:

Definition: A single obstacle pixel is square-shaped, side length one pixel distance and
centered around the point specified by the pixel's coordinates.

Definition: The obstacles are 8-connected. A path may not pass between two connected
obstacle pixels.

Definition: The background is 4-connected. This follows from the previous definition.

Definition: The object that is to be moved through the image is square-shaped, side
length one pixel distance and centered around the point specified by the object's coordi-
nates.

Note that the definitions of the obstacle pixels and the moving object is equivalent to a
point-shaped moving object and obstacles with the side length two pixel distances, since
the centres of the moving object and the obstacle pixels must be one pixel distance apart
in either case. See Figure 20.
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Figure 20. Using 1·1 pixel distance moving object (white) and 1·1 pixel distance obstacle 
pixels is equivalent to point-shaped moving object and 2·2 pixel distance obstacle pixels 

with respect to the allowed positions of the center of the moving object.

In practice, the object that is supposed to travel along the path is not always a single pixel.
This is handled by expanding the background appropriately, using the object as structural
element or expanding to its maximum radius.

We will now introduce the unit vectors major and minor, which are important for the
algorithm. These unit vectors indicate the orientation and sign of the dominant and the
non-dominant component of a vector, respectively, as illustrated in Figure 21.

The representation of the propagation front: pixel blocks

During the generation of the constrained distance map, we must keep track of the al-
lowed direction interval of every propagation front. Considering that we must have this
extra information, it follows that we must use an ordered propagation algorithm similar
to the contour processed Euclidean distance transform [8].

In all the distance mapping algorithms described in the introduction, the processing
is performed pixelwise, that is, with a single center pixel at a time. This single center pix-
el is compared to the pixels in a neighbourhood. For a pixelwise ordered propagation al-
gorithm, the propagation front is represented as a set of pixels, above referred to as the
Contour Set. The Contour Set is considered identical to the list of pointers defining the
contour, the Contour List.

Unfortunately, this approach is not suitable for vector-based constrained distance
mapping. In this section, we will briefly describe how it would work, and why it fails. In
spite of its failure, the approach illustrates mechanisms used in the final solution.

v̂ v̂
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Figure 21. The vectors shown above are used to simplify and generalize the descriptions 
below.

For a pixel located at c = (x,y) with a vector v that is not vertical, horizontal or diagonal,
the LDI as defined above must be within the lines through the two neighbour pixels sit-
uated to the left and to the right of c, viewed from the originating pixel c + v, the one-
pixel-out neighbours. See Figure 22. If the vector is expressed the usual way in two com-
ponents as v = x·  + y·  = v· major + v· minor, these pixels are the pixels closest to c

along the minor axis, c - minor and c + minor.

Figure 22. The LDI of a pixel c when using an 8-pixel neighbourhood. The propagation 
from a pixel c which causes vectors to the same originating pixel o must be restricted to 
a region bounded by the lines passing through both o and either of the two neighbours 

along the non-dominant component of the vector minor (vertical in the figure).

This is the one-pixel-out rule, which holds for the d8 case as written above for all vectors
except diagonal ones, where it has to be slightly modified. For other neighbourhoods (i.e.
d4) similar rules can be made. The idea is that if a (pixelwise) propagation that passes c
instead of one of the one-pixel-out neighbours, the following propagation steps should
never go beyond the line passing through the one-pixel-out neighbours, that is, outside
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the LDI, since it then would not follow a straight line any more. Propagation outside the
LDI should be handled by propagation through other pixels, not through c.

If there are obstacles in the neighbourhood of c, the LDI should also be influenced
by them. If we keep the allowed direction interval (DI) that is valid in each propagation
step, the DI of each step can be found as the intersection of the DI in the previous step
and the LDI. This is illustrated in Figure 23 for a certain path without any obstacles. Each
step is numbered, and the bounds are shown and marked with the corresponding number.

Figure 23. An example of how the DI is updated. 

This updating is needed to ensure that propagation indeed is limited to straight lines, and
not able to take turns around obstacles. We need to accept that pointers to one and the
same pixel may occur more than once in the Contour List, as exemplified in Figure 24,
below. If we updated a pixel, and included it in the Contour List, only if its distance value
was less than the old one in the pixel tested, we would cut off some propagation paths.
If, for example, the black propagation path reaches the pixel before the dotted one, prop-
agation will not be possible in the area between the two lower bounds in the figure. Thus,
we must update on less or equal distance.

Figure 24. Sometimes, we need to have two pointers to the same object pixel at the same 
time, since the direction interval is depending on the path. In the figure, the bounds for 

the two paths are drawn with corresponding patterns (black and dotted).
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Unfortunately, this means that we can get any number of pointers to one pixel in the Con-
tour List. Practical experiments indicate that the numbers of pointers to each pixel on the
propagation contour grows approximately as a linear function of the distance from the
originating pixel. This makes the algorithm very slow, especially for images with large
open spaces. Hence, we must use another representation of the propagation front.

In the final constrained Euclidean distance transformation algorithm, pixelwise
propagation is abandoned, and instead we use pixel blocks. Each entry in the Contour
List refers to a number of pixels, located in a straight line along minor. Such a pixel block
represents an interval of allowed propagation directions. There is one direction interval
stored per block instead of one per pixel.

See Figure 25 for an example. The interval shown in the figure is the largest possible
for the given pixel block. The direction interval of the pixel block is the union of the di-
rection intervals of all the pixels in the pixel block.

A pixel block must work within one octant only, so that minor and major will be
uniquely defined for the whole block. Thus, the end points of the pixel block may be lo-
cated within the octant or on the edges of the octant.

Figure 25. Instead of processing one pixel at a time, we use “pixel blocks”.

When a pixel block is processed, the result is a number of pixel blocks, typically one,
possibly several or none, depending on obstacles and other propagation fronts. They are
located one step beyond the pixel block that was processed, as illustrated in Figure 26.

v̂

v̂ v̂
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Figure 26. When a pixel block (grey) is processed, a number of pixel blocks one step 
ahead are produced. In the figure, the result is two blocks, because of an obstacle.

The processing of a pixel block is fairly complicated. We must check for obstacles not
only among the pixels one step ahead, where the new pixel block(s) will be located, but
also one step outside the new pixel blocks. This will be discussed in more detail in the
next chapter.

The pixel blocks must be initiated properly when the object pixels are processed. In
a 3·3 neighbourhood, each octant falls between two neighbours. If either or both of the
two neighbours are updated from the object pixel, a pixel block for that direction should
be created. If there are no obstacles and no other object pixels in the neighbourhood of
an object pixel, so that all eight neighbours can be updated, eight pixel blocks, covering
a full octant each, are generated.

Obstacles in the neighbourhood will have the most impact on the resulting pixel
blocks. A single obstacle pixel will not only prevent itself from being updated, but it will
also prevent other neighbours from being updated and causing direction intervals of a
number of pixel blocks to be modified or eliminated. This is illustrated in Figure 27.

      

Figure 27. In the first iteration of the algorithm, the object pixels are processed. The fig-
ure shows two object pixels (black). One neighbour in each example is an obstacle (grey 

with a grey border showing the constraints for the moving object center). The pixel 
blocks close to obstacles get limited direction intervals or are not generated at all.
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We even have to test some pixels outside the 3·3 neighbourhood, since they may influ-
ence some direction intervals. We will return to this when discussing the processing of
a pixel block, where the reasons for this will become apparent.

Circular propagation

When generating non-constrained distance maps with contour processing methods, cir-
cular propagation minimizes the execution time. If the propagation contour does not co-
incide with the equidistance contour (which is circular for Euclidean distances), some
areas are unnecessarily updated twice or even more. However, in normal cases this has
no significant impact on the execution time. 

In [8], circular propagation is achieved by using an upper limit for the distance from
the object pixels to the propagation contour. Pixels above the limit are delayed until all
other parts of the propagation front have caught up. In [11] the pixels are reached in per-
fect order of increasing distance using a “bucket” structure. However, the bucket ap-
proach is only applicable to non-Euclidean metrics.

If we use pixel blocks, as suggested above, we can no longer use circular propaga-
tion. This means that we are facing a loss of speed. However, the problem with multiple
entries per pixel in the propagation front, as described above, is much worse than the
speed loss from non-coinciding propagation and equidistance contours. Therefore, the
algorithm described here will employ pixel blocks but not use circular propagation.

If we want to combine circular propagation with pixel blocks, we could use tech-
niques similar to the ones described in [4] to have pixel blocks along circle segments.
When a pixel block is processed, a circle plotting algorithm is used for finding all pixels
at a given distance within the direction interval. However, the details of such an algo-
rithm are left for future work.
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4. Creating new links, allowing for turns

We now know how to restrict the propagation to line-of-sight. However, we must be able
to turn around corners, which means that a new link in the vector chain should be created.
Therefore, in addition, each pixel must hold not only the vector that is the next link in a
vector chain, but also the total length of the vector chain from that pixel to the object pix-
el at the end of the chain. If we make a turn, we should create a new link in the vector
chain. We must also be certain that new pixel blocks are created along with the new link,
hereby supporting propagation in all directions necessary in the shadow of an obstacle.

A new kind of neighbourhood will be used. This neighbourhood consists of three
different kinds of neighbours: forward neighbours, backward neighbours and side
neighbours. First, we look at what this means for pixelwise operations.

Definitions: A forward neighbour is a pixel within the neighbourhood of the center
pixel c that satisfies both the following conditions:

- It is located at c- major or c- major- minor

- It falls within the appropriate direction interval.

A backward neighbour is a pixel located at c+ major or c+ major+ minor relative to
the center pixel c. A side neighbour is a pixel within the 8-neighbourhood of the center
pixel c that is neither a forward nor backward neighbour.

Propagation to a forward neighbour takes the vector to the center pixel and adds it to an
offset vector. See Figure 29. The vector from the forward neighbour will refer to the
same originating pixel as the vector from the center pixel. Propagation to a side neigh-
bour creates a new vector, pointing from the side neighbour to the center pixel, thereby
creating a new link in a vector chain.

Figure 28. The (grey) center pixel is surrounded by different kinds of neighbours, which 
are treated differently when the distance map is generated. Striped pixels may be for-
ward neighbours (but not always). White pixels are side neighbours. Backward neigh-

bours (white, grey-border) are not meaningful to include.

The vector chain starting in the forward neighbour will have the same number of links
as the vector chain from the center pixel. The vector chain starting in the side neighbour
will have one link more than the vector chain from the center pixel.

v̂ v̂ v̂

v̂ v̂ v̂
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Figure 29. When a forward neighbour (striped) is updated, an offset vector is added to 
the vector from the center pixel (grey) backwards in the vector chain, producing a longer 

vector pointing to the same originating pixel.

Figure 30. When a side neighbour (white) is updated, it is assigned a vector to the center 
pixel (grey).

Every time a pixel is processed, we must determine which pixels are forward neighbours
and which are side neighbours. We don't need to check the backward neighbours at all,
however, for the following reasons.

Theorem: A backward neighbour can never be updated from the center pixel neither as
side neighbour nor as a forward neighbour.

Proof: Since the propagation must take place in straight lines, the propagation to the cen-
ter pixel must have passed through at least one of the two backward neighbours, which
therefore must refer to the same originating pixel as the center pixel and can therefore
not be updated. If one of the backward neighbours has not been updated to refer to the
same originating pixel in an earlier iteration, it is because the propagation to that pixel
was cut off by an obstacle, and therefore it should not be updated now, or because it re-
fers to some other originating pixel. 

The only case left is if a backward neighbour can be updated as a side neighbour,
creating a new link in the vector chain. Denote the backward neighbours b1 = c+ major

and b2 =c + major+ minor. When one of the backward neighbours was the center pixel, it
had the opportunity to update the other one as a side neighbour.

The path would be o-b1-b2 or o-b2-b1 as shown in Figure 31. Let the vector from o
to c be o-c = (x,y), where x and y can be assumed to be positive (since they refer to the
local coordinate system defined by major and minor). Then, the length of o-c is ||o-c|| =

(x2+y2)1/2. Thus, we have

||o-c|| = (x2+y2)1/2

v̂

v̂ v̂

v̂ v̂
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||c-b1|| = ||b2-b1|| = 1

||c-b2|| = 

||o-b2|| = ((x-1)2+(y-1)2)1/2

||o-b1|| = ((x-1)2+y2)1/2

We see that the path o-c-b1 is longer than o-b2-b1 and o-c-b2 is longer than o-b1-b2.
Therefore, neither of the backward neighbours can be updated as a side neighbour and
does not have to be tested. This completes the proof.

Figure 31. The paths from the originating pixel to b1 or b2 through the center pixel c are 

longer than the paths to either of b1 or b2 through the other one.

Figure 32. The neighbourhood for a pixel block.

For a pixel block, the neighbourhood is similar, as shown in Figure 32. The shaded pixels
in the middle are the center pixels, the actual pixel block. The white pixels are side neigh-
bours. The densely striped pixels are forward neighbours. The sparsely striped pixels can
be either forward or side neighbours. Pixels with shaded border are backward neigh-
bours, not interesting to check, and can be excluded from the set of pixels actually in-
cluded in the processing.

Definitions: A forward neighbour to a pixel block is a pixel that is a forward neighbour
to any of the pixels within the pixel block. A backward neighbour to a pixel block is a
pixel that is a backward neighbour to any of the pixels within the pixel block. A side
neighbour to a pixel block is a pixel that is 8-neighbour to any of the pixels within the
pixel block and is neither a forward nor backward neighbour nor a member of the pixel
block.
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The motivation for excluding the backward neighbours in the pixelwise case (see theo-
rem above) can be extended to the pixel block case.

Let us take a look at an example, Figure 33. A propagation front reaches the point
where side neighbours are located within a “shadow”. These side neighbours should be
updated from the propagation front (the pixel block in the figure).

Figure 33. A pixel block (grey) that should update side neighbours (white, solid border), 
thereby generating new links in the corresponding vector chain. The two side neighbours 
marked with asterisks (*) are side neighbours in the “shadow” of an obstacle (brick pat-

terned).

For the two side neighbours together, three pixel blocks are generated. See Figure 34.
One pixel block is a minimal one, with the direction interval limited to only vertically,
straight upwards in the figure. It includes only the pixel closest to the obstacle. This pixel
block is not strictly necessary, since the second one will cover the same area and more.
The second one includes both side neighbours, and has a direction interval covering the
entire octant. The third one includes only the side neighbour farthest from the obstacle
and covers a part of an octant. It may cover a full octant, but it is unnecessary.

Figure 34. In the example, three pixel blocks are generated at the corner. The thin line 
shows the edge of the forward region of the original pixel block.

Note that if a direction interval is very narrow, it may be too narrow to hit any pixels at
all in forthcoming iterations. In such a case, we might fail to reach some pixels through
the optimal path. A slightly longer path will be found for these pixels. These errors have
been verified experimentally. We note that they are quite uncommon and do not cause
any significant errors.
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Basically, this problem is related to the problems noted by Danielsson [1], where it
is noted that the scanning EDT is not totally error-free. In both algorithms, the problem
is that for some cases the propagation should ideally pass through an area where no grid
points exist, since the area is less than one pixel distance wide. Since the propagation of
distance values must be done between neighbour grid points, this becomes impossible,
and a suboptimal (though very close to optimal) result is found.

With some extra effort, this problem can be solved. However, since the errors are
miniscule and do not result in any illegal paths, this is left for future work.

The processing of a pixel block

When processing a pixel block, we must take a number of special cases into account.
The neighbourhood of a pixel block is denoted as shown below. The center pixel at

the steepest slope is denoted c1, while the one at the opposite end is c2. All pixels that can
be side neighbours are given the symbols n1...n6. (Note that the pixels n3 and n4 can be
either forward or side neighbours, depending on the DI.)

Figure 35. Notation for different members of the neighbourhood of a pixel block.

Before processing the forward neighbours (n4 to n3), we must check the pixel closest to
the forward neighbours (n5 in the previous figure) if it is an obstacle pixel. In that case,
the direction interval must be modified. This will also occlude the pixel n4 (unless n4 is
located horizontally or vertically from the originating pixel). See Figure 36.

Figure 36. If the pixel below the forward neighbours (striped) of a pixel block (grey) is 
an obstacle pixel (brick patterned), the direction interval will be reduced to the lower 

border shown by the line in the figure.

We should process the forward neighbours beginning at the least sloping end, with the
pixel n4 in the figure above, and process every forward pixel in turn until we reach n3.
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See Figure 37. If the other order was used, we would have to check for obstacle pixels
one step ahead in every step. If either of n3 and n4 are not forward neighbours, they are
still checked for being obstacle pixels, but they may not be updated as forward neigh-
bours.

Figure 37. The processing order of the forward neighbours.

When we find an obstacle pixel among the forward neighbours, we must do the follow-
ing things, illustrated in Figure 38.

I. The direction interval of the pixel block consisting of the previous forward neigh-
bours must be modified.

II. The first non-obstacle pixel must be treated as a side neighbour, since it is hidden
behind the obstacle pixel.

III. The direction interval of the next pixel block consisting of other forward neigh-
bours must be modified.

Figure 38. The case where obstacle pixels occur among the forward neighbours. The 
pixel block (a) consisting of the pixels before an obstacle (b) must have its direction in-
terval reduced to be bordered by the lower line shown. The first pixel after the obstacle 
(c) must be treated as a side neighbour since it is in the “shadow” of the obstacle. The 
pixel block consisting of the forward neighbours after that one (d) must have its direction 

interval reduced to be bordered by the upper line shown.
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When we process the side neighbours, we must test some neighbours to make sure that
the direction intervals are initiated correctly.

If the side neighbour is a 4-neighbour (n2, n4, n6), we must test two of its neighbours

if they are obstacle pixels, namely o- minor and o- minor- major, where o is the originating
pixel from where the 4-neighbour was updated. This is analogous to the discussion about
the processing of the object pixels, above. See Figure 39.

Figure 39. When a 4-neighbour side neighbour is updated (black arrow), we must test if 

either of the brick patterned pixels are obstacle pixels (o- minor and o- minor- major). In 

that case, the direction interval will be reduced to only a straight line.

If the pixel is an 8-neighbour but not a 4-neighbour, that is, a diagonal neighbour (n1, n3,
n5), we must test the two closest 4-neighbours. If any of them are obstacles, we may not
update the pixel at all. This follows from having 8-connected obstacles. We must also
test o- major-2· minor.

Figure 40. We must also test if the pixel at o- major-2· minor is an obstacle. In that case, 

the direction interval will be reduced as indicated by the line in the figure.

So far, we have only discussed how direction intervals are influenced by encountering
obstacles. When discussing the LDI, it was noted that the LDI regardless of obstacles is
a rather small interval for a given pixel and its vector (the one-pixel-out rule mentioned
earlier). When only taking obstacles into account, consider the case where two propaga-
tion fronts meet, partially eliminating each other. The pixel blocks will be smaller, but
the DIs will be unchanged. Thereby, a propagation will not pass some areas, never
checking these areas for obstacles, but according to its DI it still is allowed to propagate
into areas beyond the unknown areas. Does this mean that we might get vectors that pass
straight through obstacles?

We will now make a distinction between the formal LDI and the practical LDI. The
formal LDI is limited by both the one-pixel-out rule and by obstacles, and the practical
LDI is only limited by obstacles in the neighbourhood.
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See Figure 41. The propagations from two object pixels (black) meet, and they each
cover the part of the image above and below the black line (the equidistance contour),
respectively. The grey pixels show some pixel blocks generated under the propagation
from the lower one of the object pixels within a certain octant. The striped pixels show
the DI of each pixel block that does not correspond to the pixel block. A DI may become
larger than its pixel block in this way if the practical LDI is used rather than the formal
LDI.

Figure 41. Is the direction interval allowed to reach into areas where the pixel block 
doesn’t reach?

Suppose that the formal LDI is needed for correct results. That would imply that the di-
rection interval must be limited when the propagation front meets another propagation
front. That would be necessary if the following problem could occur:

We have two propagation processes P1 and P2, originating from the pixels o1 and o2,
respectively. See Figure 43. We also have an obstacle that is located along a straight line
from o1 to a pixel p. Then, is it possible that P1 can

1) reach from o1 to p without ever touching the obstacle and 
2) update p to point to o1?
If that situation is possible and the practical LDI is used, we would get errors, vector

pointing across obstacles. We would also be able to eliminate the problems by checking
the upper limit of the forward area for each step. However, we can show that this is not
possible!

Definition: The region belonging to the originating pixel o is a part of the image
where, for all pixels,

- the path to the closest object pixel passes through o, and
- o is the next point where that path turns.

All pixels within the region belonging to o should have vectors pointing to o when the
generation of the constrained distance map is finished. See Figure 42.
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Figure 42. Three regions belonging to three of the pixels (thick border) in a simple con-
strained Euclidean distance map. The brick-patterned region is an obstacle.

This is not the same as the Voronoi polygons around the object pixels in a non-con-
strained image. Voronoi polygons are rather the special case of regions belonging to the
object pixels in an image with no obstacles.

Typically, the area belonging to o is located on one side of o, the side away from the
closest object pixel. Most pixels in a constrained Euclidean distance map will not have
any region belonging to it at all. Note that the border between two regions belonging to
two different originating pixels are not necessarily a straight line. An area belonging to
a pixel is not necessarily convex. The border of the region is the points where the distance
to the closest object pixel is the same using the path through o as using some other path.

Theorem: If the point p is in the region belonging to the originating pixel, all pixels with-
in a straight line from p to o are also in the region belonging to o.

Proof: The theorem is easily proved by inspecting the distance values from p to two orig-
inating pixels. If p is closer to one of them, we immediately find that all pixels on a
straight line between p and the originating pixel are also closer to that originating pixel.

Figure 43. Two originating pixels o1 and o2, the pixel p and an obstacle between o1 and 

p. We show that it is not possible that p is in the region belonging to o1 while the obstacle 

is in the region belonging to o2.

p
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Corollary: The DI only have to be decreased when obstacles are encountered, that is,
according to the practical LDI.

Proof: The theorem above implies that the propagation P1 will be able to propagate along
a straight line from o to p if p is in the region belonging to o. Because of the sampling
grid, this is true unless the region is too narrow. If so, the propagation will not reach p at
all, and the error will not occur (though the path from p will not be the optimal, only very
close to it). If the region is wide enough, P1 will find any obstacles and limit the direction
interval accordingly. (If there is an obstacle between o and p, p is naturally not in the re-
gion belonging to o.)

We conclude that the practical LDI may be used instead of the formal LDI, that is,
direction intervals only have to be decreased with respect to obstacles. The result is a
simplified, faster algorithm, generating the same result as an algorithm using the formal
LDI.

Additional data associated with pixel blocks

As noted above, the direction space is partitioned into eight octants. We note that each
pixel block need to have its octant number stored explicitly, else we will get problems
with pixel blocks consisting of only a single pixel at a diagonal.

A pixel block must also know its originating pixel. If we try to find that pixel by fol-
lowing the vector stored in any of the pixels in the pixel block, we may find the wrong
one in the case where another propagation front has reached the pixel block and updated
some of the pixels. We can not trust the vectors in the image to be the same when some
pixel block is processed, as was stored when that pixel block was created.

Some additional notes on the processing of pixel blocks

A forward neighbour with a vector pointing to the same originating pixel as the pro-
cessed pixel block may be updated on equal distance value, not only on a lower one,
since pixel blocks from one pixel will share pixels along horizontal, vertical and diagonal
lines from the originating pixel.

On the other hand, we should not update side neighbours on equal distance. It would
be unnecessary, and would sometimes result in multiple pixel blocks propagating over
the same area, improving nothing. The previous note makes this particularly important,
since two pixel blocks pointing to the same originating pixel may share a pixel, and
would create two identical pixel blocks. This would be the case for the two pixel blocks
close to the obstacle as shown in figure 34.

Last, we note a simple trick for efficient processing. In each iteration, we should first
check all forward neighbours for all pixel blocks, and second check all side neighbours
for all pixel blocks. Last, all the old pixel blocks are removed. This will reduce the num-
ber of unnecessary side checks, especially at the edge between two pixel blocks referring
to the same originating pixel.
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5. The algorithm

In this section, the Constrained Euclidean Distance Transform, the algorithm resulting
from the discussions above, is presented and described in detail. First, the data structures
to be used are described. Second, we give an outline of the algorithm. Last, the algorithm
is described in pseudo-code.

Data structures

We must use a queue or list structure which should hold pointers to the active Contour
Set, the propagation front. Each entry of the list holds two pointers, each pointing to one
of the two extreme pixels in the pixel block. Each such entry should also hold the maxi-
mum and minimum slope, describing the direction interval and thereby what neighbour
pixels to treat as forward neighbours.

We also hold information about the general direction, one of eight possible octants,
that the pixel block is located in relative to its originating pixel. This information is need-
ed explicitly in the case where a pixel block is consisting of only one pixel, and that pixel
is located diagonally, vertically or horizontally from the originating pixel. In other cases,
the octant is defined implicitly by other data.

Finally, we should save the location of the originating pixel pointed to by c1 and c2

(as defined by Figure 35) at the moment when the pixel block is generated. Later, when
the pixel block is processed, the vectors in c1 or c2 may be changed by other propagation
fronts. Therefore, we should avoid depending on the vectors in c1 and c2.

In the image itself, each pixel must hold the vector to the previous link in its vector
chain. It should also hold the total distance value. If we didn't keep the distance, we
would have to track the whole vector chain each time we need to know the distance val-
ue.

We should note that there are some numerical limitations on the precision. There is
no apparent way to compare the lengths of two vector chains exactly. The total length of
a path is the sum of the length of a number of vectors vi = (vxi, vyi).

We may use floating point variables for this, but since we know the range (from 1 to the
largest distance expected), it should be possible to keep the errors under control and do
it much faster with fixed point variables. A N2 look-up table with integer indexes for
square roots is also important for achieving high speed.

The data structures are:

Contour List:
c1 = (x1,y1):integer vector

L(Path) = ∑
i ∈ Path

vxi
2  + vyi

2
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c2 = (x2,y2):integer vector
lmax: fraction
lmin: fraction
z: number of octant
n: integer vector

Image:
v = (vx, vy):integer vector (relative)
d: fixed-point

The “fraction” data type is two integers, numerator and denominator of a fraction.

When two fractions are compared, it is done like:

Since we only use non-zero denominators, this holds with equivalence.
lmax and lmin are fractions that specify the direction interval within which the “for-

ward neighbours” are located, as described in section 4. The direction of a vector v is
simply calculated as v· minor/(v· major).

The “fixed-point” data type is a sufficiently long integer, treated as a real number
with fixed point. The precision chosen for this data type sets the precision of the whole
algorithm. It can be replaced by floating-point variables, but that would slow down the
computation of the distance map.

Algorithm outline

This section describe the algorithm briefly, for those of you who do not enjoy pseudo
code.

First iteration: The object pixels are processed. Their 8-neighbours are checked and
possibly updated and pixel blocks are created in the directions where any neighbour was
updated.
Following iterations: Each pixel block from the previous iteration is processed:

Forward neighbours:The pixels n3 to n4 including the pixels between are tested for
being forward neighbours, that is, if they are within the forward region of the pixel block.
All forward neighbours are tested and possibly updated. All consecutive groups of up-
dated pixels form new pixel blocks. The forward regions of the new pixel blocks must
fall inside the forward region of the original pixel block.

l = n

l
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d
1

n
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Side neighbours:The pixels n1 to n6, excluding the pixels between n3 and n4, are
checked for update as side neighbours and pixel blocks are created accordingly.

The algorithm is run until no pixel blocks remain. In the case of path planning where the
end points are known, we could introduce another stopping rule. If we determine the
minimum distance in the contour in each iteration, we can compare that value to the dis-
tance value in all end points. If no end point with a higher value exists, we may stop.
However, it introduces even more calculations to the algorithm, and may not be worth-
while.

Pseudo-code algorithm

Below follows a compact description of the algorithm of “pseudo-code” type. The fol-
lowing notation is used:

Pixels in the image are specified by absolute coordinates, and are denoted
ci = (xci, yci) for center pixels and n = (xn, yn) for a neighbour pixel.

The vector in a pixel n is found by indexing the image like v[n] = v[xn, yn], but is
sometimes expressed like v[n] = vn = (vxn, vyn) for briefness. The components of a vector
v are relative.

The neighbourhood of a pixel block is denoted as in the previous section.
The function L(v) returns the length of the vector v, that is L(v) = (vx2+vy2)1/2

Li is the Contour List processed in iteration i.

Pixel block:
c1 = (xc1, yc1),
c2 = (xc2, yc2),
lmaxc, lminc,
zc,
oc,
dc1 = d[c1], dc2 = d[c2]
Neighbour pixel:
n = (xn, yn),
vn = (vxn, vyn) = v[n],
dn = d[n]
New pixel block:
b1, b2

lmaxb, lminb,
zb,
ob

Suggested values for the neighbour pixel:
vs = (vxs, vys),
ds
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Other:
e: offset vector from center pixel to neighbour.
open: a logical variable
lmint: a temporary variable for the lower direction bound

From zc, we can get the vectors major and minor, horizontal or vertical unit vectors, dif-
ferent for each octant as shown in figure 44. With these, the pixels s1...s6 can be ex-

pressed as functions of c1 and c2. For example, s1 = c1 - major + minor. Whenever any

of the pixels s1...s6 is mentioned, a sum of c1, c2, major and minor is implied. The num-
bering of octants used for zc is shown in the figure below.

Figure 44. The numbering of octants used for the variables z.

Initialization:
All obstacle pixels get the distance value d=0 and a vector v = (0,0)
All background pixels get the distance value d=∞ and a vector v = (0,0)
All object pixels (typically only one or very few) get the distance value d=0 and a

vector v = (0,0).

Algorithm:
[First, process the object pixels]

for all object pixels c:
side-check1(c-(1,0),(1,0),1,-1, 0) [side-check1 checks the 4-]
side-check2(c-(1,1),(1,1), ,0, 1) [neighbours, side-check2 the]
side-check1(c-(0,1),(0,1),1,1, 2) [8-but-not-4-neighbours]
side-check2(c-(-1,1),(-1,1), ,2, 3)
side-check1(c-(-1,0),(-1,0),1,3, 4)
side-check2(c-(-1,-1),(-1,-1), ,4, 5)
side-check1(c-(0,-1),(0,-1),1,5, 6)
side-check2(c+(1,-1),(-1, 1), ,6, 7)

if (1,0) = v[c - (1,0)] [if the first side-check1 succeeded]
if open

b2 := c - (1,0)
else

Create new entry in L1
open := true
b1 := c - (1,0)
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b2 := c - (1,0)
zb := 7
ob = c
if d[c - (1,-1)] = 0 or d[c - (0,-1)] = 0 [obstacle in c - (1,-1) or c - (0,-1)]

lmaxb := 0/1
else

lmaxb := 1/1
lminb := 0/1

[The main loop - check an entry at a time.]
while Li is not empty

[First, check all forward neighbours and generate new pixel blocks]
for all entries in Li

get c1, c2, lmaxc, lminc, zc, o from Li.
open := false
lmint := lminc

set major and minor according to zc

if d[o-c2+ major- minor]=0 [test for obstacle]

lmint := max{lmint, (vs· minor + 1)/(vs· major -1)}
for n := s4 to s3, step - minor [a range of pixels along minor]

vs := oc - n
if d[n] = 0 and open=true [next forward neighbour is an obstacle]

lmaxb := min{lmaxc, (vs· minor - 1)/(vs· major + 1)} [obstacle corner]
ds = L(vs) + d[oc]
if (ds < dn or (ds ≤ d and vn=vs))

and lmint < vs· minor/(vs· major) < lmaxc [note lmint!]

n := s
dn := ds
if not open

Create new entry in Li+1

b2 := n
zb := zc

ob = oc

lminb := lmint [DI of the new pixel block]
open := true

b1 := n
lmaxb := lmaxc [DI of the new pixel block]

else  [n is not updated]
if dn=0 [no update because of obstacle, adjust distance interval]

if open
lmaxb = min{lmaxc, (vs· minor - 1)/(vs· major +1)}[obstacle corner]

lmint = max{lmint, (vs· minor + 1)/(vs· major -1)} [obstacle corner]
else [a pixel that is in a “shadow”]

open := false
side-check1[n, major, 1 + d[n + major], getz(0), getz(7)

open := false
[Second, check all side neighbours and create new pixel blocks in other directions]
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for all entries in Li

get c1, c2, zc from Li.
open := false
side-check2(s1, c1 - s1,  + dc1,getz(3), getz(2))
side-check1(s2, c1 - s2,1 + dc1,getz(2), getz(1))
side-check2(s3, c1 - s3,  + dc1,getz(1), getz(0))
if c1 ≠ c2  open := false
side-check1(s4, c2 - s4,1 + dc2,getz(0), getz(7))
side-check2(s5, c2 - s5,  + dc2,getz(7), getz(6))
side-check1(s6, c2 - s6,1 + dc2,getz(6), getz(5))

delete Li
[end of algorithm]

[subroutines]

getz(t) = {zc odd: (zc + 8 - t) mod 8
zc even: (zc + t) mod 8

[side-check 1, used for testing diagonal (8-but-not-4-)neighbours]

side-check1(n, vs, ds, zold, znew)
if ds < dn

n := s
dn := ds
if zold < 0 [z < 0 : don't create any pixel block!]

set minor according to zold [ major = v]
if not open

Create new entry in Li+1
open := true
b1 := n
zb := zold

if d[n- minor]=0 or d[n- minor + v]=0 [check for obstacles]
lmaxb := 0/1

else
lmaxb := 1/1

lminb := 0/1
else [if open]

if d[n- minor]=0 or d[n- minor + v]=0 [check for obstacles]
lmaxb := 0/1

else
lmaxb := min{lmaxb, 1/1}

lminb := max{lminb, 0/1}
b2 := n
ob := n + vs

Create new entry in Li+1

set minor according to znew [ major = v]
open := true
b1 := n

2

2

2

v̂ v̂

v̂ v̂

v̂ v̂

v̂ v̂

v̂ v̂
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b2 := n
zb := znew

ob := n + vs

if d[n- minor]=0 or d[n- minor + v]=0 [check for obstacles]
lmaxb := 0/1

else
lmaxb := 1/1

lminb := 0/1
else [n is not updated]

open := false

[side-check 2, used for testing 4-neighbours]

side-check2(n, vs, ds, zold, znew)
if ds < dn and d[n+(vx,0)]≠0 and d[n+(0,vy)]≠0[note the obstacle checks!]

n := s
dn := ds

set minor according to zold [ major not needed]
if not open

Create new entry in Li+1
open := true
b2 := n
zb := zold
lminb = 0/1

if d[n- minor]=0
lmaxb = 1/2

else
lmaxb = 1/1

else [if open]
lminb = max{lminb, 0/1}
if d[n- minor]=0

lmaxb = min{lmaxb, 1/2}
else

lmaxb = min{lmaxb, 1/1}
b1 := n
ob := n + vs
Create new entry in Li+1

set minor according to znew [ major not needed]
open := true
b1 := n
b2 := n
zb := znew

ob := n + vs
lminb = 0/1

if d[n- minor]=0
lmaxb = 1/2

else

v̂ v̂

v̂ v̂

v̂ v̂

v̂

v̂

v̂ v̂

v̂
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lmaxb = 1/1
else [n is not updated]

open := false

Examples

In this section, we show a number of images with obstacles and the constrained maps
resulting from applying the algorithm on these images.

Figure 45. The constrained Euclidean distance map of a very small image. Obstacles are 
grey. For each pixel, the vector and the distance value is shown. Note that the origin of 
the coordinate system is in the upper left corner, and that the x axis is pointing down-

wards.

Figure 46. An image with obstacles (black) and a single object pixel (circle).



162 Constrained EDT

Figure 47. One of the vector chains generated by applying the Constrained Euclidean 
distance transform on the image in the previous figure. (The vectors are slightly jagged, 
since the image is cut from a screen dump, and therefore is bit-mapped. In reality they 

are, of course, absolutely straight.)

Figure 48. An image with obstacles (black) and a a number of object pixel (circles).

Figure 49. Some of the vectors and vector chains generated by applying the Constrained 
Euclidean distance transform on the image in the previous figure.
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6. A simplified algorithm

In this section, a simplified version of the Constrained Euclidean Distance Trans-
form is presented. This version gives larger and more frequent errors than the one pre-
sented above, but it still generates legal paths, optimal within a pixel distance. This
version is included mainly to illustrate the variety of options available when implement-
ing a constrained Euclidean distance transform and is not a recommended algorithm for
practical use. Hence, the entire algorithm will not be described in detail here.

If we use the following definitions for obstacles and the moving object instead for
the ones made earlier in this paper, the algorithm will be a lot simpler.

Definition: A single obstacle pixel is point-shaped, side length zero.

Definition: The object that is to be moved through the image is point-shaped, side length
zero.

Definition: The obstacles are 4-connected. A path may not pass between two connected
obstacle pixels.

Definition: The background is 8-connected. This follows from the previous definition.

Normally, we would want obstacle pixels to be larger than a point, typically covering a
square, like in the earlier definition. We can, however, easily transform a “square pixel”
image to a “point pixel” image simply by expanding the obstacles one step “south” fol-
lowed by one step “east”, as shown in the figure below. This will map each obstacle pixel
to four pixels in a square. Apart from having the grid translated one-half pixel distance
horizontally and vertically, the two representations are equivalent for a single object pix-
el. Beware, however, that this transformation may alter the topology of the image, since
objects can be joined in the operation. 8-connected obstacles become 4-connected and 1
pixel wide cracks disappear.

Figure 50. A simple transformation to turn an image with square-shaped pixels into an 
image with point-shaped ones.

With these definitions, we don't have to test for obstacles as before. We just have to keep
track of the maximum distance interval, the LDI. When an obstacle is encountered, the
obstacle pixels will not be updated. The pixel blocks generated that cause propagation
beyond the obstacle will get direction intervals limited by the LDI of the pixels used.
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Figure 51. When an obstacle is encountered, the pixel blocks generated on each side of 
the obstacle will have direction intervals that is limited by the edges of the obstacle. With 

point-sized obstacle pixels, these limits are easily found as the obstacle pixels them-
selves.

With these definitions of the moving object and the obstacles, we can avoid obstacles by
using the formal LDI, as mentioned previously. We do not have to check for obstacles in
neighbours of the pixels that we check. We still may not update an obstacle pixel, of
course. If the obstacle pixels hold the distance value zero, we do not have to make any
distinction between obstacles and other pixels that should not be updated.

The formal LDI may be introduced by the following change:

lminb := lmint [DI of the new pixel block]
open := true

b1 := n
lmaxb := lmaxc [DI of the new pixel block]

is changed to

lminb := max(lminc, (vs· minor - 1)/(vs· major))[DI of the new pixel block]
open := true

b1 := n
lmaxb := min(lmaxc, (vs· minor + 1)/(vs· major)) [DI of the new pixel block]

A large number of obstacle checks should be removed.

If we modify the algorithm described above according to these new definitions, the al-
gorithm will be simpler, with far less special cases. However, the algorithm will quite
often return suboptimal paths. The reason is that the corners, where the paths should
make turns, are no longer unique. See Figure 52. The path will turn in different pixels
depending on the direction of the path. The result is a close approximation to the optimal
path.

v̂ v̂

v̂ v̂
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Figure 52. With the definitions above, the corners are no longer uniquely defined. The 
bold path is the one found by the simplified algorithm. The thin path is the shortest path.

This will cause errors as large as -1 pixel distance in a single turn, but still the algo-
rithm holds most of the features of the algorithm suggested previously. The errors are
reduced if resolution is increased, which is not the case with non-Euclidean algorithms.

It is questionable whether this algorithm has any significant speed advantage over
the algorithm described above. In an experimental implementation, hardly any speed dif-
ference was observed. The algorithm could be of some interest for systems where the
cost of accessing the image is significantly larger than arithmetic operations.

2
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7. Conclusions

In this paper, we have presented the Constrained Euclidean Distance Transform, an al-
gorithm for generating Euclidean distance maps in 2-dimensional images sampled with
the Cartesian grid, in which obstacles are allowed. The algorithm can be used for finding
the shortest path between two points in an image with obstacles.

Other algorithms for this problem generally belong to one of two classes. The algo-
rithms in the first class operate on sampled images and find paths that strictly follows the
sampling grid, moving from some pixel in a path only to one of its neighbours. Algo-
rithms doing this in constant time (O(N2)) for constant image size exist. The algorithms
in the other class operate on a parametric description of the obstacles, typically polygo-
nal, and generate path descriptions in the form of a chain of vectors. The execution time
of such algorithms are very data-dependent. The Constrained Euclidean Distance Trans-
form differs from older algorithms in that it operates on a sampled image, but the result-
ing path is a number of vectors.

The Constrained Euclidean Distance Transform has the following features:
• High precision, exacts results in almost all cases.
• The processing time is proportional to the number of pixels in the image.
• 1 pixel wide obstacles are allowed.
• Compact, easy-to-use output; a vector chain.

The algorithm is a contour processing algorithm, where the propagation front is stored
in a list, the Contour List. Along with the pointers to the pixels in the propagation front,
other data is stored in the Contour List. The most important information added is the al-
lowed direction interval, which describes the area where the actual propagation is al-
lowed to take place in a straight line. Each index in the Contour List describes not only
one pixel in the propagation front, but rather a number of consecutive pixels in the prop-
agation front, a pixel block.

Possible extensions to the algorithm include:
• higher dimensions, finding paths through 3D-space or allowing the object to be

moved to rotate.
• making the algorithm totally error-free.
• speeding up the algorithm by using circular propagation fronts.
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1. Introduction

Erosion and dilation are the two fundamental operations of mathematical morphology.
Their applications include suppression of salt-and-pepper-noise, smoothing of jagged
edges, PCB inspection and clustering (e.g. Rosenfeld (1976)). In this paper, we present
new algorithms for performing these operations with higher speed.
Basic operations:
The dilation of X (the image) by B (the structural element) is written X  B. The erosion
of X by B is written X  B. Erosion and dilation are dual operations. Denoting the com-
plement of X as Xc, erosion and dilation has the following relations:

X  B = (Xc  B)cX  B = (Xc  B)c

Because of this duality, algorithms in this paper are written as dilation algorithms. The
erosion version is easily derived by dilating Xc. For formal definitions and other theo-
rems, see Dougherty (1987) and Serra (1982).
Variables used in this paper:
Propagation distance d is the radius of the structure element B. In this text, B is always
symmetrical and circular or approximately circular. Thus, the erosion/dilation operation
moves the border of all objects in the image the distance d.
Image size is n·n. This is the number of pixels in the binary source image.
Influenced area A is the total area (number of pixels) influenced by the erosion or dila-
tion operation.
Active contour length l is the border length at some moment during the operation.
Maximum contour length lmax is the maximum value of l at any moment during the op-
eration.

In a sampled image, an n·n array, the influenced area A is the same as the number of
influenced pixels. Here, l is the number of pixels along the borders at some stage in the
operation and d is the number of pixel distances to propagate. The symbols are illustrated
in figure 1.

Figure 1. The erosion operation erodes a binary image from the total shaded area to the 
dark shaded area. The image size is n·n pixels. The distance between the outer (initial) 

border and the inner (resulting) border is d pixel distances.

d n

n

l

A
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Traditionally, erosion and dilation is performed with morphological operators applied in
parallel over the whole image, as described by Rosenfeld (1982). The computational
complexity is in O(n2·d). A more efficient method for sequential computers is to perform
a distance transformation on the binary image (e.g. Laÿ (1987)). Thresholding the result-
ing distance map at the appropriate distance value results in the desired eroded or dilated
binary image. The operation has a computational complexity in O(n2). Van Vliet (1988)
suggested an even more efficient method, namely contour processing. The propagation
front is stored in a list, and only the propagation front is processed in each iteration. The
computational complexity for contour processing erosion or dilation is in O(A), but the
initialization demands a scan over the entire image, which is an operation in O(n2). How-
ever, only simple metrics like City Block or Chessboard are supported by this method.

Table 1 gives an overview over the algorithms mentioned above. We assume that a
single-processor system is used. With parallel hardware, both parallel and distance map
based algorithms can be speeded up.

The memory demand does not include the memory space occupied by the binary
source and destination images. The computation time for Contour Processing does not
include the initialization step, which of course is an O(n2) operation with a very low con-
stant factor.

Algorithm Computation Memory Image scans

Parallel O(n2·d) 0 d
Scanning DT O(n2) O(n2) fixed
Contour proc. O(A) O(lmax) 1

Table 1. Comparison of some common erosion or dilation algorithms by computational 
complexity and memory demand.
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2. Distance transformations

A distance transformation generates a greyscale image from a binary image, where each
pixel in the resulting greyscale image, the distance map, holds the distance to the closest
set (object or feature) pixel in the binary image. Usually, algorithms using integer arith-
metics are used (e.g. Borgefors (1986)).

A special kind of distance map is the Euclidean distance map, generated by a Eu-
clidean distance transformation, as suggested by Danielsson (1980). In this case, the re-
sulting image holds vectors rather than scalar distance values. Each vector points to the
closest object pixel.

Distance maps are usually generated by neighbourhood operations. We distinguish
three different classes of algorithms: parallel, raster-scanning and contour processing al-
gorithms.

In this paper we will use contour processing algorithms. Contour processed distance
transforms in its basic form has been suggested by Piper and Granum (1987), which per-
forms propagation with square propagation front. Verwer (1989) used bucket sorting to
process the propagation front in perfect order. A simple method for achieving approxi-
mately ordered propagation as well as algorithms for Euclidean distance mapping was
suggested by Ragnemalm (1990).
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3. Contour processed distance transforms over limited distance

Since distance map generation can be speeded up by contour processing, erosion and di-
lation by thresholding of distance maps can also be speeded up by using contour process-
ing distance transformations (not to be confused with the contour processed erosion and
dilation, mentioned in section 1). In this case, however, the performance can be im-
proved considerably by halting the propagation of distance values after a number of it-
erations. With circular propagation, only the areas that will be influenced by the erosion
or dilation will be processed.

The distance transformation has a computational complexity in O(A). The distance
map must be initiated and thresholded, each having computational complexity in O(n2).
These terms have very small constant factors, and are insignificant in algorithms gener-
ating complete distance maps. In this case, where we intend to cover only a small part of
the image, we should pay some attention to the efficiency of these steps.

In the initialization, we only put object pixels on the contour list that have at least
one background pixel as a 4-neighbour, rather than queuing all object pixels.

The efficiency may be improved further by embedding the thresholding in the prop-
agation process. When a pixel is given a distance value below the threshold, we may set
the corresponding binary pixel immediately. For scanning distance transformations, this
is of no significance since all pixels are given distance values and therefore tested. For a
contour processed distance transform over limited distance, however, the thresholding
operation is reduced to an operation in O(A), just like the distance mapping operation
that it is now a part of.
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4. Contour processed distance transformation with no distance 
map

So far, we have stated that erosion and dilation can be performed in short time using dis-
tance transformations. However, this introduces a higher demand for memory in the form
of a complete greyscale (or vector) image. In this section we introduce a new method that
combines high speed with lower memory demand.

Distance information is included in the propagation front list (contour list), and the
algorithm operates directly on the binary image. A distance transformation is performed,
but no distance map is generated.

This method demands perfectly ordered propagation in the sense that the pixels must
be accessed in increasing distance order. The binary image will be updated during the
propagation process. In each stage of the operation, the binary value of each pixel in the
binary image will tell if it is in or outside the region processed so far. Thus, it tells if it is
on a higher or lower distance from the object pixels than the propagation front. When the
propagation front reaches the erosion/dilation distance d, the operation is finished. Note
that the contour list holds pixels that have not been processed yet.

An important problem is how to access the pixels in perfect order. For integer dis-
tance values, including Chamfer distance, this can be solved by using bucket sorting. The
contour list is divided into a number of buckets, each corresponding to one distance val-
ue, as suggested by Verwer (1989). This makes insertion and retrieval simple operations.

Figure 2 illustrates the handling of pixel pointers in the bucket structure. Each bucket
is a set of pixel pointers, for example a linked list. The buckets are processed in order of
increasing (distance) value. When a pixel pointer is fetched from a bucket, the pixel is
inspected. If it is 1, then the pixel has already been reached by another part of the prop-
agation process, and the pointer is discarded. Otherwise, the pixel is assigned to 1, and
its neighbours are inspected. Pixel pointers to all neighbours that are 0 are put in appro-
priate buckets. These buckets will always have higher numbers (distance values) than the
current bucket.

Figure 2. Bucket sorting applied to distance transformations. The buckets are processed 
in order of increasing distance values.

With integer values and bucket sorting, we no longer need any distance values stored in
the contour list, since the distance value is given by the bucket in which the pointers are
stored. Thus, the distance values are available implicitly from the bucket structure. For

Empty buckets

Process pixel, 
inspect neighbors

New pointers
Pointer to

center pixel
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Euclidean distance, though, a two-component vector must be put in the Contour List to-
gether with each pixel pointer.

Note that the bucket sorting approach can be applied to Euclidean distance, but pref-
erably after a modification. To get integer indexes for the buckets, we let each bucket
correspond to the square of some Euclidean distance value, calculated from the vectors
as vx2+vy2. A much larger number of buckets is needed. For example, if we need to prop-
agate up to the distance 128, 1282 = 16384 different distance values are possible. More
generally speaking, in an n·n image, (n-1)2·2 different values are possible. Even though
not all these values does actually occur as distance values (i.e. they can not be formed as
the sum of two squares), there is no efficient way for our algorithm to exclude them. This
implies that we would need a number of buckets of the same order as the image size, a
memory cost of the same order as a distance map.

However, since we know that all pointers used are within a fixed distance (i.e. 
pixel distances), we may reuse buckets. For example, between the distances 127 and 128,
1282 - 1272 = 255 buckets are needed. When we store a pointer to a pixel assigned the
distance d, it is stored in the bucket numbered (d2 mod b), where b is the number of buck-
ets available.

The entire algorithm runs in O(A) time. In Table 2 this algorithm is compared to the
one described in Section 3 and the conventional raster scanning algorithm. The table is
similar to Table 1, but the computation part is divided into initialization, distance trans-
formation (DT) and thresholding.

Algorithm Init. DT Thresholding Memory

Scanning DT O(n2) O(n2) O(n2) O(n2)
Limited CPDT O(n2) O(A) O(A) O(n2)+O(lmax)
DM-free O(n2) O(A) O(A) O(lmax)

Table 2. Comparison of distance mapping based erosion or dilation algorithms.

The Euclidean version of the algorithm follows below as pseudo code. Non-Euclidean
versions can be derived from this, but in such a case, the modulo operation is not as es-
sential and could optionally be left out.

Dilation by Euclidean distance transformation without distance map,
pseudo code for the algorithm:
p is a pixel pointer (px, py)
b(p) is a pixel in the binary image b.
d is the propagation distance (structural element radius)
o is an offset vector (ox, oy).
v is a vector (vx,vy)
c is the current bucket number
B is the number of buckets available

2
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(Note that all bucket entries hold both a pixel pointer and a vector.)

begin
for all p where b(p)=1 do

if b(0,1)=0 or b(1,0)=0 or b(0,-1)=0 or b(-1,0)=0 then
(p, (0,0)) is put in bucket 0

c := 0
while c < d do begin

for all p,v in bucket c do
if b(p) = 0 or v = 0 then begin

b(p) := 1
for all o ∈  {(0,1), (1,0), (0,-1), (-1,0), (0,1), (1,0), (0,-1), (-1,0)} do

if b(p+o)=0 then
(p+o, v+o) is put in bucket (vx+ox)2+(vy+oy)2 mod B

end
discard contents of bucket c
c := c+1
end

end.

Experimentally, the speed of the algorithm was close to the algorithm described in sec-
tion 3.
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5. Performing several consecutive erosions and dilations

The morphological operations opening and closing are defined below. Opening consists
of an erosion followed by dilation. Closing consists of dilation followed by erosion. In
this section we discuss the possibilities to optimize these operations for shorter execution
time than what two independent erosions or dilations would demand.
Definition: We define opening and closing as:

Opening: XB = (X  B)  B
Closing: XB = (X  B)  B

Opening and closing are clustering operations. The operations are illustrated in figures
3-5. All erosions and dilations in the figures are computed with Euclidean metric.

Suppose we use the algorithm in section 4 for performing the erosions and dilations
in the opening and closing operations. The erosion/dilation algorithm halts after process-
ing the bucket with the distance corresponding to the erosion/dilation depth d. All buck-
ets above this are normally ignored, but in this case we may reuse them to achieve an
even faster algorithm.

We collect all the pixel pointers in these buckets, and put them all in bucket 0. These
pixels are all pixels just beyond the contour. When this is done, we can start the second
part of the opening or closing operation without scanning the image for edge pixels. Be-
low is an outline of the opening algorithm.

Figure 3. Original image.

   

Figure 4. Eroded 5 steps and dilated 5 steps, respectively, Euclidean metric.
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Figure 5. Left: Erosion 5 steps followed by dilation 5 steps. Right: Dilation 5 steps fol-
lowed by erosion 5 steps. (Opening and closing, respectively.)

Algorithm Opening
1. Initialize contour list (bucket 0) by a full image scan.
2. Run DM-free erosion to distance d.
3. Initialize contour list by collecting pixels in unused buckets from step 2.
4. Run DM-free dilation to distance d.

The resulting algorithms can, from a computational complexity point of view, be consid-
ered one-pass opening and closing algorithms. They are fast algorithms that allow the
Euclidean metric to be used in the erosions and dilations.
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6. Conclusions

Thresholding of distance maps is an efficient method for performing erosion and dilation
with Euclidean or approximately Euclidean metric. In this paper we have presented even
faster algorithms based on generation of distance transforms by contour processing. Two
new algorithms were suggested.

First, a contour processed distance transform may be halted after a specified number
of iterations, just like a parallel algorithm. Therefore, the processing can be halted as
soon as the area that is to be influenced by the erosion or dilation has been processed,
and no other areas will be influenced. The algorithm will run in a time ∈  O(A). The
amount of memory needed will be ∈ Ο( n2 + lmax).

The second method needs no the distance map, but is still a distance transformation
algorithm. Like the previous algorithm, it halts after a number of iterations determined
by the demanded erosion or dilation depth. The algorithm can use both Euclidean and
non-Euclidean metric. In the non-Euclidean case, distance values are implicitly stored in
the contour list, as the bucket number of the bucket that the pixel pointers are put in. The
algorithm runs in a time ∈  Ο(A) (not counting an initial scan for finding edge pixels),
with a memory requirement is ∈ Ο( lmax) (not counting the binary source image).

A method for running this algorithm more than once without re-initialization was
investigated. This method is useful for computing opening or closing.
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Ge honom en slant eftersom han måste tjäna något på det han lär sig!

Give him threepence since he needs make gain by what he learns!

Euclid, said to a slave when a student asked what he would get by learning geometry
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Abstract
Arcelli and Sanniti di Baja have developed an excellent method for smooth-
ing jagged edges and suppressing salt-and-pepper noise from binary imag-
es. The method is more robust than methods using ordinary morphological
operations. In this paper, we suggest a method for performing this algorithm
in a both more time-efficient and memory-efficient way, using Euclidean
metric and local operations.
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1. Introduction

When an image has been made binary by thresholding, further analysis can be disturbed
by the presence of noise. Typically, the noise tends to break up the edges of the objects
in the image, or, in the case of salt-and-pepper noise, cause occasional pixels to be set in
reset areas or reset in set areas. The noise will influence the topology of the objects in the
image, thereby making analysis of the topology of objects difficult.

If the noise cannot be suppressed by other means, picture editing operations on the
binary image can be needed. Such operations can be either context dependent or context
independent. This paper will deal with general context independent methods that are not
tailored for any particular application or situation.

The purpose is to remove small protrusions and dents from object borders as well as
removing salt-and-pepper noise. One way to do this is to use a sequence of morpho-
logical operations, erosions and dilations. Serra (1982) treats the subject of morpholog-
ical operations extensively. Fast algorithms for performing morphological operations
have been suggested by Ragnemalm (1992) and Van Vliet and Verwer (1989).

Definition: An image consists of set pixels (objects) and reset pixels (background).
The set pixels form the subset F = {1} and the reset pixels form the subset F' = {0}.

Definition: Opening of an image A is denoted O(A). Closing of the image A is de-
noted C(A).

Serra (1982) used the notation AS and AS for opening resp. closing of the image A
by the structural element S. We have chosen a different notation since the structural ele-
ment is not in focus here, but rather the sequence of operations.

Since the opening operation removes sparse set pixels as well as protrusions, while
the closing operation removes sparse reset pixels and dents, applying both in sequence
will often give an acceptable result. The two possibilities are opening of closing,
O(C(A)) and closing of opening, C(O(A)). See also Serra (1982), page 418.

The operations O(C(A)) and C(O(A)) are not equivalent. If the image contains areas
that are a more or less random mix of set and reset pixels, this entire area will be set by
the opening of closing operation, while it will be reset by the closing of opening opera-
tion. This indicates that these operations are not so generally applicable and robust.

The problems are illustrated in Figures 1 and 2. If we try to smooth the first image
in Figure 1 with C(O(A)), the result is the first image in Figure 2. If we try to smooth the
first image in Figure 1 with O(C(A)), the result is the second image in Figure 2. As Figure
2 shows, none of them are edge smoothing operations, but rather clustering of white and
black areas, respectively.

One might argue that the result of these operations are correct if the threshold for the
thresholding operation that generated the binary image was rather high. For example, if
pixels were classified as black only if that could be done with high confidence, then the
clustering of black pixels can be justified. However, such an algorithm would not be con-
text independent.

If the thresholding operation that classifies the pixels into black and white is unbi-
ased, the result in Figure 1 (third image) is more desirable.
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Arcelli and Sanniti di Baja (1988) developed a picture editing algorithm that solves
this problem in a far more robust way, using distance transformations. It is outlined in
section 3. The last image in Figure 1 shows the result of that algorithm. In section 4, we
will suggest a faster version of this algorithm.

Parallel algorithms can be used for performing morphological operations like ero-
sion, dilation, opening and closing. Such operations are very slow on general, single pro-
cessor computers. However, they can be run in much less time by performing distance
transformations followed by thresholding. Van Vliet and Verwer (1988) and Ragne-
malm (1992) describe even faster algorithms for performing morphological operations.
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2. Distance transformations

Distance transformations (DT) are useful tools for manipulation of binary images. The
operation takes a binary image as input and generates an image where the value of each
pixel tells the distance to the closest set pixel (feature pixel) of the binary image. The re-
sult is a distance map.

Many different distance metrics are possible. The simple City Block distance and
Chessboard distance metrics were used by Rosenfeld (1966). The weighted Chamfer
metrics, introduced by Montanari (1968) and refined by Borgefors (1986), are highly
popular, since they give good approximations to the Euclidean distance for a low compu-
tational cost.

The best precision is achieved with Euclidean distance transforms, first described
by Danielsson (1980). A Euclidean distance transform manipulates vectors rather than
scalar distance values, and generates Euclidean distance maps. A signed Euclidean dis-
tance map uses vectors with signed components. This not only gives higher precision,
but also the information about where the propagation originated.

Rosenfeld (1966) described the highly efficient sequential method for computing
distance transforms. Danielsson's Euclidean algorithms were also sequential, but used a
modified raster scanning pattern. Other versions of the sequential Euclidean distance
transform have been suggested by Ye (1988) and Ragnemalm (1989).

More recently, contour processed (ordered propagation) distance transformations
have been developed. Piper and Granum (1987) presented the basic method. Verwer et.
al. (1989) introduced bucket sorting for better performance in the worst case. Ragne-
malm (1990) presented algorithms for Euclidean distance. These algorithms propagate
distance values in an ordered fashion. It is the kind of propagation method used in the
algorithm presented in this paper.
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3. Edge smoothing by raster-scanning DT

In this section we briefly describe the picture editing algorithm suggested by Arcelli and
Sanniti di Baja (1988) as a reference for the new algorithm and for introducing symbols.

A DT is performed over both F and F'. The distance values are signed, with the sign
indicating whether it is part of F or F'. We choose to let positive distance value denote F
and negative denote F'.

Using a distance threshold d, we can now identify the pixel sets EF and EF', where EF

 F and EF'  F'. EF is the set of pixels within F with a distance to the closest pixel in F'
lower than d. EF' is the set of pixels within F' with a distance to the closest pixel in F lower
than d. We form the union of them as E = EF ∪  EF'.

The value of the distance threshold d is tuned according to the desired resolution. A
high threshold will identify larger areas as uncertain, thus belonging to the set E, and
smooth larger dents and protrusions. The set E is the set of pixels that are considered un-
certain.

When the set E is identified, all pixels in E are assigned the distance value = ∞. In
practice, this means a distance value larger than the diagonal of the image.

Another DT is performed over E. The sign from the previous DT is kept, so each
pixel in E is assigned the distance to the closest pixel in E', with the sign denoting if the
originating (i.e. closest) pixel is in F or F'.

The resulting edited image A+ consists of the sets F+ = {1} and F+' = {0}. All pixels
in the DT with positive sign are in F+, while all pixels with negative sign are in F+'. Thus,
the image A+ is generated by taking the sign bit from the last DT.

Figure 1 gives an example. The original image is an edge with an area where pixels
are randomly set or reset. The middle image shows the set E' (that is, white pixels belong
to E).

      

Figure 1. “Edge”, original image, propagated areas, smoothed



190 Fast edge smoothing

                   

Figure 2. “Edge”, closing of opening, opening of closing

It should be noted that while the original algorithm was designed using the chessboard
distance metric, modifying it for more exact metrics is a trivial task. Using Euclidean dis-
tance transformations for the task is slightly less trivial. However, the new algorithm, de-
scribed in the next section, does not only use Euclidean distance, but introduces some
other techniques for optimizing the performance of the algorithm.
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4. An algorithm using ordered propagation

The edge smoothing algorithm invented by Arcelli and Sanniti di Baja (1988), outlined
in the previous section, can be combined with the techniques used by Ragnemalm (1992)
in order to achieve a much faster algorithm, which also needs less memory.

The new algorithm uses the propagation method similar to the one that was used for
performing erosion and dilation by Ragnemalm (1992). It is a contour processing (or-
dered propagation) method, where pointers to the current propagation front is stored in
a list, the Contour List. A propagation method based on contour processing is described
by Van Vliet and Verwer (1988), and distance mapping algorithms using the technique
have been proposed by Piper and Granum (1987), Ragnemalm (1990) and Verwer et. al.
(1989).

Following the approach of Verwer et. al. (1989), the Contour List is divided into a
number of buckets, one for each possible distance value. For Euclidean metric, the
squared distance value is used. See also Ragnemalm (1992).

The propagation method suggested by Ragnemalm (1992) was a DT algorithm that
did not generate any distance map. Instead, the distance information was stored in the
Contour List, and the successive erosion (or dilation) of the binary image involved pro-
vided the extra information needed for making the propagation correct and minimal. We
will use the same technique here.

Note that we are using the Euclidean metric. To make this possible, we need to use
vectors rather than distance values, as suggested by Danielsson (1980). This is actually
an advantage for this particular application, since the vectors are pointing at correspond-
ing originating pixels for the propagation. This information is needed in the last phase of
the algorithm.

The sets F and F' are defined by the binary source image A. In this case, however,
we need an extra binary image B. This is because we must be able to distinguish the sets
F, F' and E. B is eroded in both directions from the edges in A. After the erosion is com-
pleted to distance d, the image holds E' (that is, E is the set of reset pixels in B).

Then, B is dilated from its edges. Suppose a pixel in position (x,y) in image B is
reached by the dilation. Then we assign B(x,y) := 1. We also have the vector (u,v) avail-
able, which points to the originating pixel for the dilation to (x,y), so the originating pixel
is in position (x+u, y+v). We assign A+(x,y) := A(x+u, y+v). This will give each pixel in
A corresponding to a pixel in E the value of the closest pixel in E'. The resulting image
A+ can preferably be in the same memory space as A, so A will be overwritten by A+.

The middle image in Figure 1 shows, as mentioned above, the set E'. That is, it
shows the image B after the erosion process.

The algorithm is further speeded up by avoiding a full scan through B for edge de-
tection. Instead, all unused pointers left in the Contour Set after the end of the erosion
process can be collected into bucket 0 as an initialization of the dilation process. This
method is described by Ragnemalm (1992), where it is used for opening and closing op-
erations.

The algorithm is described in pseudo code below.



192 Fast edge smoothing

A[x,y] The binary value of the pixel on position (x,y) in the image A.
B[x,y] Ditto for the image B.
vi The vector in the Contour List element i.
pi Pointer to a pixel from the Contour List element i.
d The distance value chosen for propagation limit.

begin {start of main algorithm}

{scan A for edges}
for all pixels p do

if a 4-neighbour n exists for which A[p]≠A[n] do
Make(p, n-p)

{initialize B}
for all pixels p do B[p] := 1

{erosion of B}
for b := 0 to d2 do

for all elements i in bucket b do
if B[pi] = 1 and A[pi + vi] = A[pi] then begin

B[p] := 0
for all 8-neighbours j of the pixel pi do

if B[pj] = 1 then Make(pj , vi + pj - pi)
end

{collect all old pointers}
for b := d2 +1 to (d+1)2 + 1 do

for all elements i in bucket b do
Make(i, (0,0))

{dilation of B, modify A}
b := 0
while the Contour List is not empty do begin

for all elements i in bucket b do
if B[pi] = 0 then begin

B[pi] := 1
A[pi] := A[pi + vi]
for all 8-neighbours j of the pixel pi do

if B[pj] = 0 then Make(pj , vi + pj - pi)
end

b := b + 1
end

end {of main algorithm}

subroutine Make(p, v)
allocate a new Contour List entry k.
put k in bucket (vx2 + vy2)
vk := v
pk := p
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The following features have been left out from the pseudo code in order to simplify it.
They are, however, important for the performance of the algorithm.

Since we have pointers to the originating pixel available at all stages in the propaga-
tion processes, it is possible to process only 2 or 3 neighbours for each pixel, as suggest-
ed by Ragnemalm (1990).

The number of buckets can be very large when using the squared distance. This un-
necessary memory consumption can be avoided by using a modulo operation when ac-
cessing buckets, as suggested by Ragnemalm (1992).

The resulting algorithm scans the entire source image only once, to find the edges.
All following computations are local, done only in the E set. Each pixel in the E set is
visited twice, once in each propagation process. Since E is typically a rather small part
of the image, we may consider the new algorithm to be essentially a one-pass algorithm.
This should be compared to the 5 passes required for the algorithm by Arcelli and Sanniti
di Baja (1988).

The memory demand is also lower than in the original algorithm. The original algo-
rithm demand a greyscale image to store the distance transform. This is no extra expense
in the case the binary image A is stored as a greyscale image, but it is if A is stored with
1 bit per pixel. Thus, for a source image of N·N pixels, we typically need N·N·8 bits of
extra memory.

Our new algorithm requires enough memory to hold the Contour List plus 2 bits per
pixel, original image included. The total extra memory is then N·N bits plus the Contour
List. In a N·N image, the length of the edges are typically proportional to N, so the Con-
tour List is usually very small. However, as mentioned by Van Vliet and Verwer (1988),
the edges can be in O(N·N) in the worst case. (The O set should not be confused with the
operation O, used in section 2.)

Finally, we give one more computer generated example, in Figure 3. The figure
shows an image with a wider collection of artifacts, including protrusions, dents, salt-
and-pepper noise, thin cracks and thin connections. The example uses a bigger structural
element (propagation distance) than the previous example.

      

Figure 3. A more general smoothing example.
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5. Conclusions

We have presented a fast version of the smoothing algorithm by Arcelli and Sanniti di
Baja (1988), which is an algorithm for performing context independent smoothing of bi-
nary images. As shown in our examples, this algorithm give much better result than
methods using consecutive erosions and dilations, in the sense that it does enlarge or
shrink the areas processed, but rather cut uncertain areas in half between the white and
black sets.

The algorithm is computed after a single scan of the image (for detecting edge pix-
els), followed by local operations. Thus, the algorithm runs in very short time in the typ-
ical case, since it only needs to process a small part of the image as soon as the initial,
very fast scan is completed.

The memory demand is low. It needs enough memory to hold the Contour List,
which is typically of a size in O(N) (if the image to be smoothed is a N·N image). It also
needs an extra binary image of size N·N. This should be compared to the demand of the
full greyscale distance map that the original algorithm needs, demanding 8 bits or more
per pixel.
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Abstract
The Euclidean distance transform measures distances in digital images

exactly. However, due to the discrete grid, difficulties occur when using the
Euclidean distance that do not occur when using simpler – and less accurate
– distance transforms (e.g. city block and chessboard). In this paper we dis-
cuss the problem of characterizing and extracting the local maxima in the
Euclidean distance transform. The local maxima are necessary and suffi-
cient to exactly reconstruct the original shape. They do not usually form a
connected set, and are thus only a subset of the skeleton (or medial axis) of
the shape. An algorithm for extracting the local maxima is presented.
Reconstruction of the shape from the local maxima is achieved using a re-
verse Euclidean distance transform. The resulting shape is exactly the orig-
inal one, but the distance values are different from the original distance
transform. This new type of Euclidean distance transform promises to be
useful in some applications.
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1. Introduction

One of the most important applications for distance transformations of binary images is
skeletonization, that is to extract a description of the shape using a small number of pix-
els. Two different types of structures are commonly used.

The first type of structure is obtained by extraction of local maxima from a distance
map. This returns a pixel set which, along with the corresponding distance values from
the distance map gives a complete description of the shape(s). Rosenfeld introduced this
structure and used the name distance skeleton for the set of local maxima [12]. Many pa-
pers have been written on distance skeletons for different distance metrics. Danielsson
described algorithms for the Euclidean distance metric [4].

The set of local maxima is usually not connected. To get a connected set, that is a
connected skeleton, one has to add a number of linking pixels, using rules that are depen-
dent on the distance transform used. The original shape can be recovered by merging a
number of digital disks, one for each pixel in the set of local maxima, where the radius
of each disk is the distance value of its central pixel. As it is impossible to distinguish
between the local maxima and the linking pixels in the computed skeleton, the disks will
also be applied to the linking pixels. These extra disks will be completely included in the
set of disks from the local maxima.

The other type of structure is the skeleton (or medial axis) that is the result of thin-
ning operations. Thinning operations are classically performed with parallel neighbour-
hood operations, that deletes edge points in a connectivity preserving fashion [5]. Hence,
this operation is topology-preserving. There is, however, usually no possibility of recon-
struction. For this type of skeleton also, many different algorithms have been suggested.
A special case of thinned images is produced by inspecting the Voronoi edges in a Eucli-
dean distance map, as suggested by several authors [6, 8]. An even more ingenious meth-
od, using “snakes”, is suggested by Leymarie et. al. [7].

In this paper, we will discuss the first of these two data structures. We will limit the
discussion to finding local maxima, and will not try to link them. These discussions are
closely related to those in [4], but go deeper and give further details. We also propose a
slightly different algorithm. The reconstruction of the shapes can be done in several
ways. We propose a new reverse Euclidean distance transform. The resulting shape is ex-
actly the original one (if an error free Euclidean distance transform is used), but the dis-
tance values are different from the original distance values. This might be an advantage
rather than a drawback, as it provides a further characterization of the shape. 



2. Distance maps 201

2. Distance maps

A distance transformation (DT) is an operation that generates a distance map (DM) from
a binary image. In the DM, each feature (object) pixel gets the distance to the closest non-
feature (background) pixel of the binary image.

On all but massively parallel machines, DMs in general are preferably generated us-
ing sequential operations, as described already in [12], or with contour processing tech-
niques [9, 10, 13]. In these cases, the computational complexity is linearly dependent on
image size, which is the optimal case. (Borgefors et. al. has described an algorithm for
massively parallel machines, also with linear complexity [2].)

Euclidean distance maps (EDM) and Euclidean distance transformations (EDT)
were first described by Danielsson [4]. In an EDM, each pixel does not hold just a single
distance value, but rather a two-component vector. If the EDM is signed, [15], the vector
points to the closest background pixel.

Most sequential EDTs suggested are not totally error-free, though the errors are very
small. The one from [4] uses two major scans over the image, where each scan goes for-
wards and backwards over each row. The small errors can give incorrect reconstruction
of the original shape, where the difference is a single edge pixel. The problem is unlikely
to have any major impact on practical applications. However, in this paper we assume
that we use an error-free EDT, like those suggested in [10, 14].
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3. Extraction of local maxima

Rosenfeld et. al. [12] uses a straight-forward algorithm for detection of local maxima.
This is possible for “simple” metrics like the city block distance and chessboard distance,
but it is not applicable to the Euclidean distance. In fact, it is not applicable to the weight-
ed distance transforms either. There the local distances between horizontal/vertical and
between diagonal neighbours are different, [2]. (A popular weighted DT uses the values
3 and 4 respectively.) Arcelli and Sanniti di Baja has characterized local maxima in
weighted DMs, [1].

In this section, we will describe how the local maxima can be extracted from an
EDM. In order to do this, we must first discuss the concept of digital disks.

We use the following definitions:
The distance between two square pixels is the Euclidean distance between their cen-

tres.
A circular disk (cdisk) is a continuous circular disk with some radius d, centered

around a point with integer coordinates (and therefore centered around the pixel in that
location).

A pixel is inside a cdisk with radius d if and only if its centre is at a distance less than
d from the centre of the disk. Thus, a pixel can be inside a cdisk even if parts of the pixel
reach outside the cdisks perimeter. Expressed in another way, a cdisk encloses a pixel if
and only if the pixel is inside the cdisk.

A digital disk (ddisk) is the set of pixels inside a circular disk with radius d, that is,
the set of pixels with centres on a distance < d from the central pixel.

These definitions are exemplified by Figure 1, which also hints the difficulties intro-
duced by the discrete grid. Each pixel in an EDM holds a vector with a length equal to
d, where d is the distance to the closest background pixel (centre to centre). In other
words, for each pixel in an EDM, a cdisk with radius d centered in the pixel will only
enclose object pixels, and will have one or more background pixels centered on its pe-
rimeter, exactly at the distance d.

The length of a vector (x,y) is d = . Hence, the squared length d2 of a vector
in an EDM is always an integer, since the vector components are integers.

The strict definition of local maxima is the minimal set of pixels where the union of
all the corresponding cdisks enclose all object pixels, but no background pixels. (In prac-
tice it is difficult to guarantee that the set of detected local maxima is minimal.)

The set of points enclosed by a circular disk, the ddisk corresponding to some cdisk,
is the same for a range of cdisk radii. Hence, for each cdisk, there exists only one ddisk,
but for each ddisk there exist several corresponding cdisks. This is true even if we only
consider distance values that are square roots of integers. However, all cdisks from an
EDM has one or more background pixels on the perimeter of the disk. This means that
if we limit the set of possible cdisks to the set that can correspond to distance values in

x
2

y
2

+
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an EDM (that is, with radii that squared are the sums of the squares of two integers), we
have a one-to-one mapping between cdisks and ddisks.

Consider two pixels a and b, with associated cdisks with radii da > db centered
around a and b respectively. If the cdisk of a encloses all pixels enclosed by b, then b is
not a local maximum. Note that this does not imply that the cdisk of a must completely
cover the cdisk of b. The ddisk of a, however, completely covers the ddisk of b.

We can now present our algorithm for extracting local maxima. For each object pix-
el, the eight neighbouring pixels are inspected to check if any of them define a disk that
completely covers the ddisk of the centre pixel. However, it is possible that none of the
eight neighbours do so, but that nevertheless a pixel farther away does define such a disk.
In that case, we will include one extra pixel in the set of local maxima. These cases cor-
respond to the rare cases where the EDT as suggested by Danielsson produce errors [4].

The extra pixels will of course not change the result of the reconstruction algorithm,
as the pixels they can add to the shape are also included in other disks. In fact, they will
make the set of local maxima more connected than it otherwise would be. The only prob-
lem that could 

Figure 1. A circular disk (cdisk) with radius 2. The corresponding digital disk (ddisk) 
consists of the nine pixels enclosed by the cdisk (shadowed area).

occur is that the end points of skeletal branches might not be correctly identified. An end
point should preferably be a true local maximum. However, as stated above, these points
are very rare.

Now, we are ready to formulate our definition, used for extracting local maxima:
Definition: A pixel is a local maximum in the EDM if the set of points enclosed by its
associated disk is not completely covered by any of the disks defined by any of the pixel's
8-neighbours.

Danielsson [4], in fact, suggested this rule, but formulated it differently. The rule
will not produce a minimal set of locally maximal points, even if we disregard the extra
pixels introduced by not checking pixels farther away than the 8-neighbours. If a ddisk
is not covered by any other single ddisk, but can be covered by the union of two or more
other ddisks, the corresponding pixel could be removed from the set of local maxima.
This case, however, is not detectable in any efficient way.

In order to implement this rule, we need look-up tables that determine when one disk
covers the disk of a neighbour. For each distance value that can occur in an EDM, con-
sider a disk with that radius. The table should give the radius of the smallest disk that
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covers that disk, centered either on a horizontal or vertical neighbour or centered on a
diagonal neighbour. We refer to these radii as hlut and dlut, respectively. Table 1 gives
the look-up table for small radii. The principle is illustrated in Figure 2.

Note the many blank entries in the hlut and dlut tables. They are for radii that can
not occur in an EDM. These blank entries do not occur in any regular order, but with in-
creasing frequency at higher radii. Because of the lack of order in which these blank en-
tries occur, we can not easily make the look-up tables smaller by skipping them.

Table 1. Look-up tables hlut and dlut for extraction of local maxima, for disks (that is 
EDT values) with squared radii up to 80.

Figure 2. Illustration of an entry in Table 1. For a disk with squared radius 8 (shaded), 
we get hlut[8]=13 and dlut[8]=16. A disk centered on a horizontal neighbour (left) must 
have a squared radius ≥ 13 to cover the smaller disk. For a diagonal neighbour (right), 

the number is 16.

Given these look-up tables, the local maximum extraction algorithm is very simple.
Figure 3 shows the result on an example image.

This extraction method is basically the same as the SKED algorithm suggested by
Danielsson [4]. Our version uses a different kind of look-up table. Danielsson uses a
look-up table indexed by the two vector coordinates, and four vectors per index, while
we index with the squared distance value and have two integers per index. In both cases,
we need a look-up table of the size O(N2) for an N2 image.

d2 hlut dlut d2 hlut dlut d2 hlut dlut d2 hlut dlut d2 hlut dlut

1 2 4 18 29 32 35 - - 52 68 73 69 -- -
2 5 8 19 - - 36 49 53 53 68 80 70 -- -
3 - - 20 29 34 37 50 53 54 - - 71 - -
4 8 9 21 - - 38 - - 55 - - 72 89 97
5 10 13 22 - - 39 - - 56 - - 73 89 100
6 - - 23 - - 40 52 58 57 - - 74 97 100
7 - - 24 - - 41 58 61 58 72 80 75 - -
8 13 16 25 32 36 42 - - 59 - - 76 - -
9 16 20 26 37 45 43 - - 60 - - 77 - -
10 17 20 27 - - 44 - - 61 74 81 78 - -
11 - - 28 - - 45 58 64 62 - - 79 - -
12 - - 29 40 45 46 - - 63 - - 80 97 101
13 18 25 30 - - 47 - - 64 80 89
14 - - 31 - - 48 - - 65 82 89
15 - - 32 41 49 49 61 68 66 - -
16 25 26 33 - - 50 65 68 67 - -
17 26 29 34 45 52 51 - - 68 85 90



3. Extraction of local maxima 205

      

Figure 3. Result of extraction of local maxima.
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4. Reconstruction by reverse distance transformation

In this section, we will describe methods for reconstructing the original binary shapes
from the local maxima, or, indeed, from a connected distance skeleton (if such a structure
have been computed) .

The first algorithm suggested for solving this problem was Danielsson's SKED-1 [4].
The algorithm uses the same look-up table as the SKED algorithm (mentioned in the pre-
vious section). The SKED-1 does not just reconstruct the binary shapes, but the entire
EDM.

Now, we suggest an alternative algorithm for reconstructing the original shapes. It
does not reconstruct the original EDM. Instead, we generate a distance map where all
vectors point to local maxima in the EDT rather than to the background, that is, the di-
rection of the vectors is reversed compared to the original EDM. Because of this, we call
the algorithm a reversed EDT. The distance values tell the distance to the perimeter of
the cdisks rather than to background pixels.

We name the algorithm Reverse Euclidean Distance Transform (REDT). It scans the
image similarly to an EDT. Here we use scans identical to the 3-scan EDT suggested by
Ragnemalm [11]. See Figure 4.

For each pixel, some of the eight neighbours are inspected at each scan. If any neigh-
bour is a local maximum, a vector from the centre pixel to that neighbour is constructed,
and the length of that vector is subtracted from the distance in the neighbour. This dif-
ference is a candidate distance for the pixel being processed. If the neighbour is not a lo-
cal maximum, but holds a vector pointing to such a pixel, a vector to that local maximum
is constructed and subtracted from the distance value in it. This difference is another can-
didate value for the centre pixel. If the processed pixel itself already holds a vector to a
local maximum, the sum of that vector and the distance value in that local maximum is
added and also sums to a candidate value.

The centre pixel then is assigned the highest of the candidate values, along with the
associated vector. If the neighbour is neither a local maximum nor holds a vector to a
local maximum, it will not generate any candidate value.

The REDT algorithm in pseudo-code becomes:

Figure 4. Neighbourhoods for a 3-scan EDT. They are also used for the REDT algo-
rithm.
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Algorithm REDT
dc and vc are the candidate distance value and corresponding vector
dt and vt are temporary variables for possible new dc and vc

V(p) is the vector in the pixel p
D(p) is the distance value in the pixel p
L(v) is the length of the vector v

for y:=1 to N do for x:=1 to N
for all p := (x+i,y+j), (i,j) ∈  {(0,0) (1,-1) (0,-1) (-1,-1) (-1,0)}  Check_Candidate(p)

V(x,y) := vc

D(x,y) := dc

for y:=N to 1 do for x:=1 to N
for all p := (x+i,y+j), (i,j) ∈  {(0,0) (-1,0) (-1,1) (0,1) (1,1)}  Check_Candidate(p)

V(x,y) := vc

D(x,y) := dc

for x:=N to 1 do for y:=1 to N
for all p := (x+i,y+j), (i,j) ∈  {(0,0) (1,1) (1,0) (1,-1)}  Check_Candidate(p)

V(x,y) := vc

D(x,y) := dc

procedure Check_Candidate(p)
if p belongs to the set of local maxima

vt := (i,j)
dt := D(p) - L(i,j)
if dt > dc then dc := dt; vc := vt

else if p+V(p) belongs to the set of local maxima
vt := V(p) + (i,j)
dt := D(p + V(p)) - L(vt)
if dt > dc then dc := dt; vc := vt

Finally, we will briefly mention some practical aspects on the implementation of the
REDT algorithm, that are not obvious from the pseudo-code above.

First, since there is no way to use only integer numbers while maintaining the preci-
sion achieved by using vectors, we use fixed point numbers in the experimental imple-
mentation. This is fast and practical for the problem, since we know the range of possible
numbers well. We don't need the flexibility of floating point numbers.

Second, to avoid computing the square root for finding the length of a vector, we use
a look-up table of vector lengths. It is indexed with the two components of a vector, and
gives the length as a fixed point number. This look-up table must have the size N/2 by
N/2 for N·N images, if the shapes can be contained inside the image.
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5. Conclusions

We have discussed the extraction of local maxima from the Euclidean distance map,
leading to the suggested extraction method, which is simple once appropriate look-up ta-
bles have been constructed.

For the reconstruction problem, we have described a new method, which generates
a kind of distance map that provides other information than the normal Euclidean dis-
tance map does, since the vectors point to the local maxima (or connected skeleton) rath-
er than the edge of the object. The distances produced by this algorithm refer to the
distance to the edges of the continuous disks, disks resulting from the local maxima ex-
traction procedure.

Correct reconstruction is ensured if an error-free EDT is used. The original EDT al-
gorithms [4] does not produce completely error-free distance maps, which may cause the
reconstruction to include a few extra pixels at the border in some rare cases.

We have not yet constructed a connected Euclidean skeleton. Some linking pixels
must then be added to the set of local maxima. However, for data compression and re-
construction purposes the local maxima are sufficient.
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The original sequential Euclidean Distance Transformation is not separa-
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parallel architectures. The results include a 4-scan algorithm for 3-dimen-
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1. Introduction

The Euclidean Distance Transform (EDT), invented by Danielsson (1980), allows the
generation of distance maps with no significant errors. Later versions of the algorithm,
by Yamada (1984) and Ragnemalm (1990), generate completely error-free Euclidean
distance maps. The superior precision of the EDT over other distance transformation al-
gorithms is possible due to the use of vectors instead of scalar values for the propagation
of distance values. Pseudo-Euclidean algorithms, suggested by Montanari (1968) and
Borgefors (1986) can get close to Euclidean metric, but they always have errors propor-
tional to distance.

The generalization of distance maps, and Euclidean distance maps in particular, to 3
or arbitrary dimensions has received relatively little attention. Algorithms for 3D with
some generalization have been described by Mohr and Bajcsy (1983) and Borgefors
(1984).

In this paper, a number of new algorithms for EDT in 3 and higher dimensions are
presented. We will not describe the processing of EDT in detail, but rather define algo-
rithms with the neighbourhoods (masks) used. The full algorithms for Euclidean distance
transformation are described in more detail by Danielsson (1980) and Ye (1988). We
limit the discussion to raster scanning, sequential algorithms, as proposed by Rosenfeld
(1966).
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2. Separable Euclidean distance transforms

We define a separable EDT algorithm as an algorithm where the scans can be applied
independently, in any order. A non-separable EDT algorithm uses scans that are depen-
dent of each other, combining several masks in one scan. The terms separable and non-
separable are equivalent to the terms single-scanning resp. double-scanning, as used by
Ragnemalm (1989).

In the original 8SSED algorithm, as proposed by Danielsson (1980) and illustrated
in Figure 1, each line is scanned back and forth, thereby making two scans of each line
for each scan through the image. Hence, this algorithm is not separable. The same holds
for the algorithms in 3 and higher dimensions by Mohr and Bajcsy (1983) and Borgefors
(1984).

Figure 1. The original 2-dimensional EDT.

In Figure 1, each mask pair 1a, 1b resp. 2a, 2b result in propagation in half of all possible
directions. Each pixel holds a two-component vector. These vectors, pointing to the cen-
ter pixel (0,0), are the offset vectors used in the algorithm. These vectors will be omitted
in the following figures.

One separable Euclidean distance transform for 2-dimensional images is the three-
scan EDT suggested by Ragnemalm (1989) and illustrated in Figure 2.

Figure 2. 3-scan EDT.
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Separable algorithms are useful for implementation on parallel architectures, but they are
also quite useful on single processor systems. In this paper, we will present separable al-
gorithms for 3 and arbitrary dimensions. We will put the following constraints on our
algorithms.

• We use only immediate neighbours, that is, for the voxel in position (x1,x2,x3…)
we may use neighbours at positions (x1+d1, x2+d2, x3+d3…) where di ∈  { -1, 0, +1 }.

• We use separable algorithms, since they can be implemented in parallel.
• We try to minimize the number of scans.
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3. The direction space

In a separable Euclidean distance transform, each scan will support propagation over
some part of the direction space, and the union of these parts should cover the entire di-
rection space completely. This necessary requirement is discussed by Ragnemalm
(1989) for the 2-dimensional case.

In 2-dimensional images, the direction space is simple; a 1-dimensional unit circle.
It is very simple to analyze algorithms to see what parts of the direction space are sup-
ported by each scan, and then confirm that the entire direction space is covered. Such a
coverage check is easily done e.g. in Figure 2 above.

The direction space for 3-dimensional images is a 2-dimensional space, a unit
sphere. In order to analyze and visualize this space, a straightforward approach could be
to map the directions on this sphere. However, a segmented sphere is hard to represent
on a 2D plane.

Instead, we will use a different method which we call Unfolded Cube Graphs. In this
case, the direction space is mapped on a cube, which we can display unfolded in 2D. This
kind of graph is more suitable than graphs using spheres, not only because it is easier to
map on a 2D plane, but also because of the close relation between the Cartesian grid and
the direction segments to be supported.

Figure 3 illustrates how the Unfolded Cube Graph works. The needle in the figure
defines a direction from the center of the cube. This direction is mapped on a point in the
Unfolded Cube Graph.

Figure 3. The Unfolded Cube Graph.
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4. From direction space to algorithms

With the Unfolded Cube graph as a tool, we will now search for 3D operators useful for
a 3D version of EDT. As previously stated, we are only interested in algorithms using
neighbourhoods which are subsets within the 3·3·3 neighbourhood. It is of no use to in-
clude voxels forward in the scanning directions since they do not contribute to the direc-
tions supported. Hence, the largest reasonable mask within 3·3·3 is the one shown in
Figure 4.

It is not difficult to find that the Unfolded Cube Graph for such a mask, displaying
the parts of the direction space where propagation is supported by the mask, is the one
shown in Figure 5. This Unfolded Cube Graph, as well as the following ones, can be
found directly from the mask, but have also been verified with computer experiments.

Figure 4. The largest mask within a 3·3·3 neighbourhood useful for separable EDT al-
gorithms.

Figure 5. The Unfolded Cube Graph corresponding to the mask in Figure 4.

The fewer scans we need, the faster the algorithm will run. By inspecting the Unfolded
Cube Graphs, we have found a solution using only four scans, illustrated in Figure 6. The
four scans are symmetrical. The Unfolded Cube Graph for one scan is shown in Figure 7.

Figure 6. The four masks in the 4-scan algorithm, the algorithm with the smallest possi-
ble number of scans.
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Figure 7. The corresponding Unfolded Cube Graph for one of the masks in Figure 6. 
(Bottom left.)

While it is possible to make mask sets of other shapes, it is not possible to make a 3D
algorithm of this kind with fewer than 4 scans. We will give a brief outline of a proof of
this statement.

Consider an arbitrarily small circle in the center of each of the six sides of the cube
in the Unfolded Cube Graph. All circles (as well as the rest of the direction cube) must
be covered by at least one of the scans used. See Figure 8.

Figure 8. The centres of each side of the cube.

In Figure 8, we can see that one single scan like the one in Figure 4 will cover 1 + 1/2 +
3/8 = 1 7/8 circles out of the six circles. Hence, it is impossible to fill the entire Unfolded
Cube Graph with only three scans.

We claim that larger neighbourhoods than 3·3·3 are not of practical interest. To mo-
tivate this claim, we examine the 5·5·5 case. The largest neighbourhood is shown in Fig-
ure 9. The mask demands significantly more processing time compared to the mask in
Figure 4, but the gain in direction space is marginal. See Figure 10. In particular, the
proof above still holds for this mask, so it is still impossible to make an algorithm with
less than 4 scans.

Figure 9. The largest useful mask within a 5·5·5 neighbourhood.
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Figure 10. The Unfolded Cube Graph corresponding to the mask in Figure 9.

The 4-scan algorithm is related to the 3-scan algorithm in 2 dimensions [7]. Apparently,
these optimal cases can not be generalized into arbitrary dimensions. For each space, we
can find an optimal case. In this paper, we will not try finding it for higher dimensions
than 3D.
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5. Arbitrary dimensions

The optimal solutions for 2D and 3D (3-scan and 4-scan, respectively) have proven dif-
ficult to generalize to higher dimensions. However, we have found sub-optimal algo-
rithms for which this is possible.

While pixels in 3D are generally called voxels, and Borgefors (1984) suggests the
name rexel for a pixel in 4-dimensional space, there appears to exist no name in the lit-
erature for pixels in arbitrary dimensions. We suggest the name hoxel (high order pixel).

We will describe one algorithm which is easy to generalize due to symmetry, and
which can be modified for various neighbourhood sizes. We call it the Corner EDT.
Though this is far from the optimal solution, it is reasonably fast. Its simplest 3D version
consists of eight masks, each with the shape shown in Figure 11.

Figure 11. One of eight masks needed for 6-neighbour Corner EDT.

This is the minimal, 6-voxel neighbourhood version of the Corner EDT. It is easy to
modify it to 18- or 26-voxel neighbourhoods. In all these cases, the Unfolded Cube
Graph will be identical. It is shown in Figure 12.

Figure 12. Unfolded Cube Graph for Figure 11.

The masks for each scan consists of the center voxel and each voxel on step backwards
along each scanning direction. These masks can be realized in any dimension. In 2D, we
need four masks (and four scans), in 3D we need eight masks, in 4D 16 masks etc. The
number of neighbours in each mask grows obviously from 2 to 3 to 4 etc. In n dimen-
sions, we need 2n masks, each with center hoxel and n neighbours.

For each n-dimensional space, a number of different algorithms are possible, all
with the high precision that the EDT gives, but still with a few small errors. The more
neighbours we use, the fewer errors will we get. The extreme cases are n neighbours as
mentioned above, which is the fastest, but with the lowest precision (a higher number of
hoxels with a small error), and 3n-1 neighbours, which gives the highest precision. Since
the precision of the first, simplest case is good enough for any reasonable application,
we no not describe the other cases in detail.
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We end this section with a more compact definition of the n-neighbour Corner EDT.

n-dimensional Corner EDT, n neighbours

We have a set of scan directions:
(di, i∈ {1..n})  ∈   {-1, +1}

For each set of di possible (2n different ones), we have one scan, where for each center hoxel
(x1… xn), the following neighbours are used:

 (x1, x2,…, xi-1 , xi + di, , xi+1…,xn))

i 1=

n

∑
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6. Performance

To evaluate the performance of different algorithms, we should examine key operations
like the number of memory accesses and the number of arithmetic operations.

An even simpler measure is the number of masks, which is the number of times the
center pixel will be updated. As long as the mask sizes are reasonably small, this is an
acceptable simplification.

Another simple measure is the total number of members in all masks. For small
masks, this is not so accurate since the processing of the center pixel takes more time
than the processing of the neighbours.

Below, a small collection of Euclidean distance transformation algorithms is listed,
with the number of scans (number of masks) and the total number of members in all
masks used. The calculation of the number of mask members is left out due to space lim-
itations. Algorithms marked with (S) are separable.

Algorithm Scans Pixel accesses

2 dimensions:
8SSED 4 14
3-scan EDT (S) 3 14

3 dimensions:
6-neighbour EDT 8 22
26-neighbour EDT 8 46
6-neighbour Corner EDT (S) 8 32
26-neighbour Corner EDT (S) 8 64
4-scan (26-neighbour) EDT (S) 4 52

Arbitrary (n) dimensions:
2n-neighbour EDT 2n 3·2n - 2
3n-neighbour EDT 2n 2·3n - 2n

2n-neighbour Corner EDT (S) 2n 2n·(n+1)
3n-neighbour Corner EDT (S) 2n 4n

It is evident from the table that the non-separable algorithms have a considerable advan-
tage over Corner EDT on single processor architectures. The algorithms using the small-
est number of scans possible (3-scan and 4-scan in the table), however, have much better
performance and are good choices for single processor and parallel systems alike.
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7. Conclusions

We have presented separable algorithms for computing EDT in 3 or higher dimensions,
as well as some principles behind the algorithm design. For this task, we use a new tool,
the Unfolded Cube Graph, to visualize the 2-dimensional direction space for 3-dimen-
sional images. This graph proved to be very suitable for the kind of analysis needed.

Among the results are a 4-scan algorithm for 3-dimensional images and an algorithm
for arbitrary dimensions.
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1. Introduction

In the analysis of binary images, a critical step is to transform a binary shape into a com-
pact form more suitable for feature extraction. This is often done by thinning operations,
Medial Axis Transformation (MAT), resulting in a skeleton of the shape. The skeleton
can be used either as a compressed form of a shape or as a step in the process of analyzing
the shape.

The kind of skeleton discussed in this paper is the discrete skeleton, defined as a set
of pixels which is a subset of the original discrete shape. This limits the precision to what
the discrete grid allows, and makes it hard to make a good error measure for the opera-
tion. The alternative is to generate a skeleton of some continuous structures. This can be
a subset of the Voronoi diagram, as proposed by Ogniewicz and Ilg (1990), or curve seg-
ments, as proposed my Leymarie and Levine (1992).

The term skeleton has been used both for the set of local maxima, which the set of
pixels from which the shape can be reconstructed (see section 4), and for the connected
skeleton, a one pixel wide structure along the medial axis of the shape. Our goal is to pro-
duce the latter structure, but we will use the former as a tool in the process. In the follow-
ing, the word skeleton will be reserved for the connected skeleton.

Blum (1967) defines the medial axis as all points where the equidistance contour
(contour on a fixed distance to the border, wave front) has a corner. In the continuous
case, the medial axis is a connected set of infinitely thin lines or curves. This is the ideal
skeleton, of which the discrete, pixel-based skeleton is an approximation. See Figure 1
for an example. The task of thinning binary shapes in order to produce such a discrete,
connected skeleton is a subject that has been treated in hundreds of papers since the
1960's. For a recent survey, see Lam (1992).

               

Figure 1. A continuous shape and its medial axis (left) and a discrete approximation with 
its discrete skeleton (right).
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2. Properties of digital skeletons

The desirable properties of skeletons are usually derived from Blum's definition for the
continuous case. Blum's definition does not work as it is in the discrete space, since any
object has lots of discrete corners rather than the smooth shapes used in Blum's model.
Instead, we use a set of properties that should be met by our thinning algorithm, adapted
from Hilditch (1969):

1) Thinness; one pixel wide
2) Position; located on the medial axis
3) Connectivity preserving
4) Stability; end point preserving
Verwer (1988) orders these properties in the order 3, 1, 4, 2, where the first is the

most important. To the list of desirable properties, we add two that are usually consid-
ered slightly less important:

5) Reconstructivity
6) Rotation invariance
Explanations and discussion:
1) The skeleton should be only one pixel wide, to make it easy to track branches.
2) The skeleton should be located in the center of the objects, in order to represent

the position of the object in a reliable way. This property is equivalent to the rotation in-
variance property if the Euclidean metric is used.

3) The topology of both the object and the background should be preserved. An ob-
ject is not allowed to break up into several skeletons, and the number of holes (genus)
should be preserved.

4) Once an end point has been established, it should be preserved. This property is
fundamental, since if it is not fulfilled the skeleton will be reduced to a point or set of
loops with no branches.

5) Reconstruction of the original shape is usually accomplished by drawing a disk
centered in each skeleton pixel, with a radius equal to the maximum distance from the
pixel to the border of the original shape (a value provided by a distance transformation).
In such a case, the thinness and reconstructivity properties are incompatible, since any
pixel in a 2 pixel wide shape can only reconstruct itself. However, there are algorithms
that use non-symmetrical disks around the pixels, i.e. in Dougherty and Giardina (1987).
In such a case, both 1 pixel width and reconstructivity can be accomplished.

6) For a given shape, the skeleton should have the same structure (with deviations
within one pixel distance due to the discrete grid) for all rotated versions of the shape.
Perfect rotation invariance is impossible, due to the discrete grid. It is also impossible to
meet if the object has edge noise, in which case the problems are due to under sampling.
Nevertheless, the property is essential for robust shape analysis.

Our algorithm fulfils all properties except one of either 1) or 5), since they are in-
compatible as long as we do not consider reconstruction using non-symmetrical disks, as
mentioned above. One of these two properties must be left unfulfilled.
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3. Skeletons and distance transformations

Most thinning algorithms use simple metrics like City Block or Chessboard distance, e.g.
Hildich (1969). The skeletons produced by such algorithms are highly rotation sensitive.
A common demonstration if the rotation dependency is to apply these algorithms on a
square in different rotations, especially comparing the result at 0 and 45 degrees. See Fig-
ure 2.

Figure 2. Many skeletonization algorithms are highly sensitive to rotation.

These problems can be reduced by using more accurate metrics. This is usually accom-
plished by making a distance map, produced with a distance transformation (DT), of the
object to be skeletonized, and then extract the skeleton from the distance map. We can
then use accurate metrics like Chamfer metrics (e.g. Verwer (1988)) or the Euclidean
metric (e.g. Leymarie and Levine (1992), Klein and Kübler (1987), Ogniewicz and Ilg
(1990), Arcelli and Sanniti di Baja (1992)).

Thus, many skeletonization algorithms are based on DTs. Some authors even sug-
gest skeletonization to be the by far most important application of DTs, almost implying
equivalence between the two concepts. There are, however, many other applications for
DTs.

A distance transformation is an operation that takes a binary image as an input, and
generates a greyscale image, the distance map, where each pixel is assigned the distance
to the closest background pixel (0 in the case of background pixels). There is a dual case,
where the distance denotes the distance to the closest object pixel, and all background
pixels get the distance 0, but this case is not useful for skeletonization and therefore not
treated further in this paper.

The Euclidean distance transform (EDT), invented by Danielsson (1980), uses vec-
tors instead of scalar distance values. This allows the generation of error-free or practi-
cally error-free distance maps by means of fast propagation methods.

The most obvious and apparently robust starting point for generating a rotation in-
variant skeleton is to extract it from the Euclidean distance transform. However, it is
hardly possible to accomplish this by merely applying some simple rule on a small neigh-
bourhood.

In this paper, we will present a new algorithm that produce skeletons using the Eu-
clidean distance transform. This is done with high speed, a time proportional to the size
of the image. It starts by finding a set of pixels to use as anchor points. The following
sections discuss two different methods to generate this set.
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4. The set of local maxima

The set of local maxima was introduced by Rosenfeld (1966) under the name distance
skeleton. Montanari (1968) proposed an algorithm for the pseudo-Euclidean case.
Danielsson (1980) described an algorithm for extracting local maxima from Euclidean
distance maps. A related algorithm was suggested by Borgefors et. al. (1991).

It should be stressed that extracting local maxima is not a trivial operation. It can eas-
ily be extracted from a distance map using simple metrics like City Block by simply
comparing the distance values within a neighbourhood. This is not possible when using
Euclidean or pseudo-Euclidean metrics. Both the EDT-based algorithms mentioned
above use some kind of look-up table to determine whether a pixel is a local maximum
or not.

Using the definitions from Borgefors et. al. (1991), the set of local maxima from the
Euclidean distance map is defined as the set of pixels whose associated disk (with the
distance value in its center pixel as radius) is not completely covered by any other disk.
The disk used is the discrete disk, as exemplified by Figure 3. One discrete disk may cov-
er another even though the corresponding continuous disk does not.

Figure 3. A larger (white) digital disk completely covers a smaller (grey) disk. The cor-
responding continuous disk (circle) of the larger disk does not necessarily cover the 

smaller one.

This definition will not produce the truly minimal set of local maxima, since a disk may
be covered by two other combined disks, and therefore not necessary for the recon-
struction, but still be included in the generated set.

The set of local maxima is usually not connected, so using it directly for skeletoni-
zation is not topology preserving. It also often result in structures more than one pixel
wide, which adds a pre- or postprocessing step to our algorithm to get a 1 pixel wide skel-
eton.
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5. The α-skeleton

The α-skeleton was suggested by Kruse (1991) as a skeletonization method. In contrast
to the local maxima extraction, the method is very elegant and simple to implement, but
we find that it is not as robust as the local maxima.

For each object pixel, the Euclidean distance map holds a vector from the pixel to
the closest background pixel, i.e. the border. We call such a vector the EDT vector of the
pixel. This means that along the MAT, we can find neighbour pixels with EDT vectors
pointing to different sides of the object.

For each pixel in the shape, calculate the angle formed by its EDT vector and the
EDT vector of any neighbour within a given neighbourhood (2·2). The pixel is a member
of the α-skeleton if this angle is larger than the threshold angle α. This test can be for-
mulated as follows (adapted from Kruse (1991)):

Let Ni be the EDT vector of each of four pixels located in a 2·2 neighbourhood, as
in Figure 4.

Figure 4. The 2·2 neighbourhood being used.

We find an I such that
N1·NI = min(N1·Ni; i= 2,3,4)
Let Nj be the one of these two vectors with the largest norm:
Nj := max(|N1|,| NI|)
In the case when |N1|=| NI|, we choose Nj := N1. Then, Nj is a member of the α-skel-

eton if and only if

where α is the chosen threshold.
This method detects a set of pixels along the medial axis of the object. This structure

is always one pixel wide. For an intuitive argument for this, see Figure 5. We see that
both when the width is an even or odd number of pixels, the skeleton is one pixel wide.

NN

NN1
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2

N1 NI⋅
N1 NI
------------------- α( )cos<
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Figure 5. Two shape segments of different width (odd and even width, resp.), both result-
ing in a 1 pixel wide structure.

However, it is not guaranteed to be connected, and it does not give the possibility to re-
construct the shape. It also has problems with noise in some cases. According to Kruse
(1992), this noise can be reduced by using a distance threshold, discarding all pixels un-
der the threshold. With this modification, the α-skeleton has proven useful in certain in-
dustrial applications.

An example of this noise problem is given in Figure 6. A pixel that may be assigned
any of several vectors in the EDT computation may be classified as a skeleton pixel or
not, depending on which vector is chosen. With α≈90˚, the pixel in the figure from which
the vectors starts will be classified as a α-skeleton pixel if either of the two lower vectors
are assigned to it, but not if any of the two upper vectors are chosen.

These problems are most noticeable close to the border, which is why the threshold-
ing method mentioned above helps. The problem will not be eliminated, but there will
be fewer cases where it makes a difference, and the differences will be smaller, less ap-
parent to the human eye.

Figure 6. A case where the α-skeleton (in this case with α≈ 90˚) gives an unpredictable 
result.
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6. Thinning with anchor points

Both local maxima extraction and α-skeleton extraction produce a set of pixels on the
medial axis representing the shape. However, neither of them produce connected sets.

It is possible to link a disconnected set by procedures like ridge riding. Here, we will
use another approach, namely eroding the object from the edges while preserving anchor
points (local maxima or α-skeleton) and connectivity.

The erosion (or rather thinning) is done with an ordered propagation method, where
the pixels are accessed in order of increasing distance. Since we have the EDT available,
used for generating the set of local maxima or the α-skeleton, we can scan the EDT and
sort the pixels according to distance. We use bucket sorting by this, putting pointers to
each pixel in a bucket with the appropriate distance value.

Below, we will refer to the pixels at one and the same Euclidean distance as a layer.
Note that this is usually a small set of pixels, sparsely distributed along the equidistance
curve of the object.

For each possible distance value, we inspect each pixel with that distance (in that
layer) to see

1) if it is an anchor point or
2) if the topology would change by removing it.
If neither of these conditions is met, the pixel is zeroed.
The test for connectivity, to avoid topology changes, is made using the masks shown

in Figure 7 (adapted from Danielsson (1990)). If all neighbours marked 1 are set and all
neighbours marked 0 are reset, the center pixel, marked X, can be reset. The figure shows
the mask set used for 8-connected objects. Similar sets exist for 4-connected objects.

Figure 7. The 20 masks used for determining whether a pixel can be removed without 
changing the topology of 8-connected objects.

Pixels meeting condition 1) are removed from the bucket immediately, but, of course,
not removed from the binary image. For all pixels meeting only condition 2), the test is
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repeated until there are no changes. If we only test once, false branches may occur, as
exemplified by Figures 8 and 9.

Figure 8. A simple example where the repeated inspection of some pixels are necessary.

The pixels along the border in Figure 8 can typically be accessed in order according to
the numbers shown (due to the initial scanning of the image). All the pixels 1 through 14
can safely be removed without changing the topology. However, in the 4-connected case,
the pixel 15 can not be removed since pixel 16 would then be disconnected. See Figure
9. Pixel 16 is removed immediately afterwards. This would cause an unwanted branch if
we only inspected the border once. Instead, we inspect the remaining pixels again, and
repeat this until no more changes occur, in which case we may continue to the next layer
(distance value).

Figure 9. The shape in Figure 8 after pixels 1 to 14 have been removed.

Note that the amount of extra work is minimal, since most pixels are removed in the first
pass over a layer, and in most cases there will be no change in the second pass.

Basic thinning algorithm:
Scan the EDT, put pointers to each pixel except anchor points in a bucket according to the
squared distance value.
for all buckets

repeat
for all pixels in the bucket

if the pixel is not needed for connectivity
clear the pixel from the image
remove the pixel from the current bucket.

until no pixels were removed during the last loop
remove all remaining pixels from the bucket

Since all pixels must be queued in the bucket structure simultaneously, this method uses
more memory than necessary. If the memory consumption must be reduced, the algo-
rithm can be integrated to a more memory efficient one. This algorithm follows below
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in pseudo code. For each layer (pixels at the same Euclidean distance to the border), we
do three tasks: EDT propagation to the following layers, anchor pixel extraction and con-
nectivity test. When these three tasks are done for one layer, the algorithm process the
next layer. The EDT step will generate the EDM for a 3·3 neighbourhood around all the
pixels in the layer. Since our anchor pixel extraction methods use either a 3·3 neighbour-
hood (local maxima) or a 2·2 neighbourhood (α-skeleton) this is enough.

Integrated thinning algorithm:
put (pointers to) all object pixels on edges in bucket 1
set the vectors in the EDM for all pixels in bucket 1
b := 1
while nonempty buckets exist do begin

for all pixels p in bucket b
propagate EDT to 8-neighbours of p (make pointers in higher buckets)

for all pixels p in bucket b
test if p is an anchor pixel
if p is an anchor pixel, remove it from bucket b

repeat
changed := false
for all pixels in bucket b

test if b is necessary for connectivity
if it is not necessary

remove p from bucket b
clear the pixel p in the binary image
changed := true;

until changed = false
b := b + 1

end

If we use the set of local maxima as anchor points and want a 1 pixel wide skeleton rather
than a set from which reconstruction is possible, we must add a pre- or post-processing
step where we thin the set of local maxima. This thinning should also be done in order
of increasing distance, in order not to displace the skeleton from the medial axis. We did
this as a post processing step, removing all the eight end point eaters from the mask set
in Figure 7, but adding the four 1-pixel end point eaters in Figure 10.

Figure 10. Four 1-pixel end point eaters, replacing the 8 end point eaters (Figure 7) in 
the post processing thinning step.

This post processing is also necessary for the generation of 8-connected skeletons using
the α-skeleton, since the α-skeleton is often a 4-connected structure (when it is connect-
ed at all). For generating 4-connected skeletons, however, our experiments indicate that
the α-skeleton has no need for this post processing.
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Finally, let us make a few comments on efficient implementation of the algorithms
described above.

The number of buckets needed for bucket sorting Euclidean distances is very large.
Therefore, it can be worthwhile to use the bucket number modulo the number of buckets
available, as suggested by Ragnemalm (1992). This reduces the number of buckets to a
number proportional to the side of the image (n1) rather than proportional to the total im-
age size (n2).

The EDT part of the algorithm can be speeded up by using directed masks, as sug-
gested by Verwer (1988) and Ragnemalm (1990). This typically reduces the number of
pixels inspected for each center pixel to 2 rather than 8, but adds the overhead of the di-
rection handling.

The check for topology preserving involve a large number of masks for each pixel
(Figure 7). Rather than applying these masks by accessing the image 4-6 times per mask,
we can form an 8-bit word with the binary value of each neighbour. Then each mask can
be tested for with one bitwise AND and one equality test operation.

For example, assume that we have the neighbours stored in a 8-bit word named sum,
where the least significant bit is the uppermost, and we then continue clockwise. This
give the neighbours the values shown in Figure 11. Then, the upper left mask in Figure
7 can be tested for with the following condition:

if sum AND (4 + 16 + 64 + 128) = (4 + 16) then... { reset the pixel }

Figure 11. Pixel values used for implementing the masks in Figure 7.
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7. Picture editing

Ablameyko et. al. (1989) propose a method for forcing topology changes to a binary im-
age, i.e. splitting or merging objects. When merging, objects closer to each other than a
given distance should be joined. When splitting an object, it is done in places where the
object is thinner than a given distance. The operations are related to closing and opening
operations, respectively, but make smaller changes to the objects. The result should be
the same shapes as before the topology change except for a 1 pixel wide area that cause
the splitting or joining. See Figure 12.

Figure 12. Forcing topology changes to an image without changing the shapes in other 
ways.

The thinning algorithm described above can be used for this task. For joining objects, we
can use the following procedure:

1. Dilate the input image A the desired distance d. An efficient erosion or dilation
algorithm suitable for the purpose is described by Ragnemalm (1992). This gives us the
dilated image B.

2. Thin the image B using the image A as anchor points. In this case, we should ob-
viously not use the post-processing step where the anchor points are thinned.

The result is an image that is the union of the image A and pixels needed for preserv-
ing topology changes caused by the dilation. The algorithm can be modified to splitting
by using erosion followed by thinning of the background.

We get the following advantages over the algorithm of Ablameyko et. al. (1989):
• Higher precision. We use the Euclidean metric. However, it is not very hard to

modify Ablameyko’s algorithm in to use Euclidean metric too.
• Fewer image scans. Using ordered propagation enables us to avoid many image

scans. The dilation need one single image scan. The thinning needs one image scan un-
less we can keep the final Contour List after the dilation. However, we also need to gen-
erate the B image as a separate image.

• The shapes of the original objects are preserved. In the Ablameyko’s algorithm, the
shapes were smoothed in the process, which is a side-effect that may not be desirable.
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8. Computer generated examples

In the following figures, the algorithm has been run on a test image (Figure 13) with an
assortment of shapes. 8-connective skeletons are generated.

The rotation invariance is demonstrated by the triangular shapes, three of approxi-
mately equal size but with different rotation and one larger triangle. In order to demon-
strate the correctness with respect to topology, the shapes in the upper left corner of the
image were included. Finally, an arbitrary shape with a longer medial axis is included
(lower right).

Figure 13. Original binary image with an assortment of shapes.

The left image in Figure 14 shows the local maxima extracted (using EDT) from the test
image. Note that the structures are not 1 pixel wide and not connected. The right image
in Figure 15 shows the result after applying our algorithm with the local maxima as an-
chor points, and post processing to achieve 1 pixel width.

  

Figure 14. Local maxima extracted from previous image, and the skeletons generated 
from the local maxima.
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Figure 15 shows the corresponding image pair, but for the α-skeleton. The left image
shows the α-skeleton of Figure 13. Again, the structures are not connected, but they are
always 1 pixel wide. The right image shows the result after applying our algorithm with
the α-skeleton as anchor points. This image has been post processed like the previous
one, but this time to prune it to 8-connectedness. As mentioned in the previous section,
this would not be necessary when generating a 4-connected skeleton.

  

Figure 15. α-skeleton with α=90˚, and the skeletons generated the from α-skeleton.

Skeletons generated from local maxima tend to have some short random branches. These
branches occur when single local maxima appear some distance from the medial axis,
and are generated from sampling noise at the edges.

Skeletons from α-skeletons, on the other hand, has a different noise problem, as
mentioned in section 5. It will cause some branches to arbitrarily appear or disappear
when the branch has angles close to the chosen angle α. In our example, this problem
does not manifest.

We conclude that both methods give good results. All requirements on the skeletons
are fulfilled to reasonable extent.
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9. Conclusions

A new thinning algorithm was presented. First, we generate the Euclidean distance map
of the binary input image. Second, we extract anchor points from the distance map. Ei-
ther of two different extraction methods can be used, local maxima or α-skeleton.

The input image was then eroded using an ordered propagation method, preserving
connectivity and anchor points. The resulting skeleton is rotation invariant and connec-
tivity preserving. We may get either a 1 pixel wide skeleton or a skeleton from which it
is possible to reconstruct the original shape (granted that the distance is kept for each
skeleton pixel).

This algorithm can also be integrated so the entire process is done in one propagation
process.

References

H. Blum (1967), “A transformation for extracting new descriptors of shape”, in: W. Wa-
then-Dunn, ed., Models for the Perception of Speech and Visual Form, Cambridge,
MA, MIT Press, pp 362-380.

G. Borgefors, I. Ragnemalm, G. Sanniti di Baja (1991), “The Euclidean Distance Trans-
form: Finding the local maxima and reconstructing the shape”, Proceedings, 7th
Scandinavian Conf. on Image Analysis, pp 974-981.

P.E. Danielsson (1980), “Euclidean Distance Mapping”, Computer Graphics and Image
Processing 14, 227-248.

P.E. Danielsson (1990), Bildbehandling 1990, course material for the course “Bildbe-
handling” at Dept. of EE, Linköping University.

E.R. Dougherty, C.R. Giardina (1987), Matrix Structured Image Processing, Prentice-
Hall, Englewood Cliffs, New Jersey.

C.J. Hilditch (1969), “Linear Skeletons from Square Cupboards”, Machine Intelligence
4, Univ. Press, Edinburgh, pp 403-420.

B. Kruse (1991), “An exact sequential Euclidean distance algorithm with application to
skeletonizing”, Proceedings, 7th Scandinavian Conf. on Image Analysis, pp 982-
992 (revised version of an Internal Report, Teragon Systems, 1987).

B. Kruse (1992), personal communication.
F. Leymarie, M.D. Levine (1992), “Simulating the Grassfire Transform Using an Active

Contour Model”, IEEE Trans. on Pattern Analysis and Machine Intelligence 14, pp
56-75.

F. Klein, O. Kübler (1987), “Euclidean distance transformations and model-guided im-
age interpretation”, Pattern Recognition Letters 5, pp 19-29.

U. Montanari (1968), “A Method for Obtaining Skeletons Using a Quasi-Euclidean Dis-
tance”, Journal of the ACM 15, pp 600-624.

R. Ogniewicz, M. Ilg (1990), “Skeletons with Euclidean metric and correct topology and
their application in Object Recognition and Document Analysis”, Proc. 4th Int.
Symposium on Spatial Data Handling, Zürich, pp 15-24.



242 Thinning with anchor points

I. Ragnemalm (1990), “Contour processing distance transforms”, in: Cantoni et. al. eds.
Progress in Image Analysis and Processing, World Scientific, Singapore, pp 204-
212. (A related paper is published in CVGIP/IU.)

I. Ragnemalm (1992), “Fast erosion and dilation by contour processing and tresholding
of Euclidean distance maps”, Pattern Recognition Letters 13, pp 161-166.

A. Rosenfeld, J.L. Pfaltz (1966), “Sequential Operations in Digital Picture Processing”,
Journal of the ACM 13, pp 471-494.

B.J.H. Verwer (1988), “Improved Metrics in Image Processing applied to the Hilditch
Skeleton”, Proc. 9:th International Conf. on Pattern Recognition, Rome, pp 137-
142.

S. Ablameyko, C. Arcelli, G. Sanniti di Baja (1989), “Using Distance Information for
Editing Binary Pictures”, Proc. 6th Scandinavian Conf. on Image Analysis, Oulo,
pp 401-407.

L. Lam, S.-W. Lee, C.Y. Suen (1992), “Thinning Algorithms - A Comprehensive Sur-
vey”, IEEE Trans. on Pattern Analysis and Machine Intelligence 14, pp 869-885.

C. Arcelli, G. Sanniti di Baja (1992), “Ridge points in Euclidean distance maps”, Pattern
Recognition Letters 13, pp 237-243.



243

Towards a minimal shape 
representation using maximal disks

Not yet published.

9



244



245

Towards a minimal shape 
representation using maximal disks

Ingemar Ragnemalm Gunilla Borgefors
Dept. of Electrical Engineering, Swedish Defence Research Estab.

University of Linköping, Box 1165,
S-581 83 Linköping, S-581 11 Linköping,

SWEDEN SWEDEN

Abstract:
From a distance map of a digital shape, a set of maximal disks can be ex-
tracted from which it is possible to recover the shape completely. The set
should ideally be as small as possible, but the commonly used algorithms
do not produce the minimal set. Our experiments show that the number of
disks in the minimal set can be substantially reduced for most shapes.
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1. Introduction

In a distance map, produced by a distance transformation, each pixel tells the distance to
the closest background pixel. This implies that the biggest disk that can be drawn com-
pletely within the object, centered on a given pixel, is the disk with a radius equal to the
distance value in that pixel. 

It is possible to find a subset of these disks, from which the complete shape can be
recovered. This operation is used in binary image processing in order to generate a com-
pact representation of the shapes in the image, which can be used for shape analysis or
compression. It was first introduced by Rosenfeld [8] and developed further by Mon-
tanari [5].

The subset was originally called distance skeleton, since it is located on the medial
axis of the shapes. It is, however, not topology-preserving, so it is not a skeleton in the
usual sense. Later, it has been called the set of local maxima, which refers to how the set
can be extracted from distance maps with simple metrics. With more accurate metrics
(Euclidean or pseudo-Euclidean metrics), though, that name is misleading. See further
below. In this paper, we choose to call it the set of Necessary Maximal Disks (NMD), and
the pixels to be identified, previously called local maxima, are the centres of necessary
maximal disks (CNMD).

The NMD gives us a complete description of shapes in the image, with the possibil-
ity to reconstruct the shapes. Hence, it can be used for data compression. Since the set
gives information about what the most significant parts of the shapes are, it is useful for
shape analysis. We can also use the set as a first step when generating connected skele-
tons [7].

In this paper, we state that the common methods for extracting the NMD result in
sets that are far bigger than the minimal ones, and propose a method for finding sets that
are minimal or close to minimal. We will concentrate on the Euclidean metric in this pa-
per, but the results are relevant for any discrete metric.
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2. Digital disks

The NMD is found by first applying a distance transform on the binary image, producing
a distance map where each feature pixel is assigned the distance to the closest non-fea-
ture pixel. Many authors have discussed the distance transform concept. [1-9]

We let each pixel in the distance map define a disk. We distinguish between the con-
tinuous disk (cdisk) and the digital disk (ddisk). The cdisk is a continuous shape centred
on a pixel centre. For each cdisk, there exists a ddisk, which is the set of pixels inside the
cdisk, that is, if the cdisk has radius d, the ddisk is the set of pixels with centres on a dis-
tance < d from the central pixel. See Figure 1.

The metric, i.e. distance transform, defines the shape of the cdisk. For City Block
distance, the cdisks are diamond-shaped. For Chessboard distance, cdisks are squares.
For weighted (Chamfer) distances, the cdisks are polygons of higher order. Finally, for
Euclidean distance, the cdisks are circular. Figure 1 shows examples for these four cases.

a)                     b)   

 c)                    d)  

Figure 1. The continuous disks and digital disks defined by a pixel with distance value 4 
in the distance map (radius 4). a) City Block distance. b) Chessboard distance. c) Cham-

fer 3-4 distance. d) Euclidean distance (see also Figure 2).

A pixel and its distance value define the location and size, respectively, of a cdisk, which
in turn defines a ddisk. Using distance values from a distance map, all such ddisks are
completely within the object and touches the border in at least one point.

The smallest ddisks from a Euclidean distance map are shown in Figure 2. When de-
signing algorithms for extraction of maximal disks from distance maps with high preci-
sion (Euclidean or pseudo-Euclidean), we must be aware of the irregular shapes these
disks have. For pseudo-Euclidean metrics, the NMDs are defined in [1,9] (although not
by that name).
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Figure 2. Digital disks for Euclidean distance. The numbers are the squared radii for 
each disk.
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3. The standard set of necessary maximal disks

The NMD is a set of disks, from which it is possible to reconstruct the original shape.
We want this set to be as small as possible. Thus, we reformulate the sentence above and
define the following:

Definition 1. The Minimal set of Necessary Maximal Disks (MNMD) for a distance
map of a shape is the minimal set of disks, from which it is possible to reconstruct the
original shape.

For practical reasons the standard methods define the set of maximal disks in a dif-
ferent, somewhat weaker, way:

Definition 2. A maximal disk, defined by the location and distance value of its cen-
tre pixel, belongs to the Standard set of Necessary Maximal Disks (SNMD) if its ddisk
is not completely covered by any one other ddisk centered on one of the neighbours of
the centre of the disk.

This is the definition used by Borgefors et. al. [2], but reformulated to the terminol-
ogy used in this paper. With this definition, it is possible to extract the NMD from the
distance map with fast algorithms.

In simple metrics (i.e. City Block or Chessboard distance), these pixels can, as the
name local maxima implies, easily be found as the local maxima in the distance map, and
thus be extracted by a simple operator. This simple method does not work for weighted
metrics or the Euclidean metric. See [1,2,9]. Also, it is not suitable to extract SNMD by
checking whether the cdisk of one pixel is covered by the cdisk of a neighbour. The rea-
son for this is that though the ddisk of the centre pixel completely covers the cdisk of the
diagonal neighbour, this is not the case for the cdisks, as illustrated in Figure 3.

In the Figure, we see two cdisks and their ddisks. The larger ddisk covers the smaller
one completely, but the larger cdisk does not cover the smaller one. Thus, the smaller
disk would be extracted as a necessary disk if we only checked whether the cdisk was
covered. The resulting NMD would be unnecessarily large.

Figure 3. One ddisk may cover another ddisk even if the corresponding cdisk does not 
cover the smaller cdisk.

Instead, lookup tables are used. Danielsson [4] uses a 2-dimensional lookup table, which
is also used in the reconstruction process. The extraction method proposed by Borgefors
et.al. [2] uses a 1-dimensional lookup table. Similar problems appear for many weighted
metrics, making the task of extracting the SNMD as hard as in the EDT [9].
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When we want to reconstruct the original shape from the maximal disks, the task is
essentially to paint the digital disk for each maximal disk, but since large areas - actually
most areas - are covered by more than one disk, we should do it in a more efficient way.
We can use propagating methods, similar to those used for distance transformation [2],
called a reverse distance transformation. Note that the time required for reconstruction
with such methods is constant (proportional only to the image size), independent on the
number of maximal disks.
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4. Optimizing the set of maximal disks

The standard set of necessary maximal disks (SNMD) generated by the methods de-
scribed above have one serious drawback. The definition of SNMD (Definition 2 above)
removes any pixel with a ddisk covered by one other ddisk if that ddisk is defined by a
feature pixel among the 8-neighbours of the pixel in question, but not when a ddisk is a
subset of the union of several other ddisks, even though the ddisk is not necessary for
reconstruction in such a case.

The reason for this drawback is, of course, that it is not possible to, in an efficient
way, detect when a ddisk is covered by several others, and we have no method to find
the absolutely minimal set. The question we may ask ourself is: Is it worthwhile to find
a smaller set? Is the optimal set much smaller than the set we can extract with the known,
efficient methods, or is the difference marginal?

In order to answer these questions, we will now describe a method to find a set that
is much closer to the true minimum. It will usually find the minimum, but we can not
guarantee it. The method is not fast compared to the common extraction methods. We
call the set extracted by this method the Optimized set of Necessary Maximal Disks (ON-
MD), not to be confused with the minimal set (though they are usually identical).

Let us look at a simple example, Figure 4. Since we concentrate on Euclidean dis-
tance maps in this paper, we use the squared Euclidean distance, even though the shape
of the disks do not differ from Chessboard when applied to the small shape in Figure 4.

Figure 4. A small rectangle, Euclidean distance map (squared distance) and the CMDs 
of the SNMD (shaded).

In the Figure, 12 pixels form the SNMD (shaded in Figure 4). Eight of these, all but the
four end pixels, have ddisks that are completely covered by the ddisks of its two horizon-
tal neighbours. Therefore, we can weed out most of them. The maximal disks remaining
after optimization (the ONMD) are shown in Figure 5.

Figure 5. Centres of disks in the optimized set of maximal disks for Figure 4.
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To find this smaller set, we use the following algorithm:

Algorithm to find the optimized set of necessary maximal disks:
1. Initially, extract the standard set of necessary maximal disks (SNMD as defined above). We
call this set I.
2. Initiate a new image, B, to zero. For each pixel in I, add 1 to the value of all pixels in B cov-
ered by the corresponding ddisk.
3. For each pixel in I, in order of increasing distance value, inspect all pixels in B covered by
the ddisk. If all pixels hold values ≥ 2, remove the pixel from I and decrement all pixels in B
covered by the ddisk.

This is the basic algorithm for finding the ONMD. Note that for Euclidean metric, when
we have to scan over all pixels in a ddisk, we can not do this with the usual circle drawing
algorithms used in Computer Graphics. Those common circle drawing algorithms gen-
erally take the enclosing rectangle as input. We have to be able to distinguish between
all different ddisks possible, as shown in Figure 2, e.g. disks 10, 13 and 16, which an en-
closing rectangle is insufficient to do. For other metrics, the disks have other shapes, as
previously illustrated in i Figure 1, which will demand other kinds of routines.

In step 3, we should access the CNMDs in order of increasing distance value. It
should be noted that sorting of distance values, even Euclidean ones, in a digital image
can be done with bucket sorting [6], and is therefore very fast.

To return to the example in Figure 4, the image B generated in step 2 is shown in
Figure 6, where each pixel has a count of the number of ddisks covering it.

Figure 6. Image B, the number of ddisks covering each pixel.

In step 3, all the maximal disks in the I set are tested in an arbitrary order (since all have
the same distance). The rightmost and leftmost CNMD have ddisks that include one of
the corners, where there is a 1, so they can not be removed. Any other maximal disk has
2 or more in all pixels. Figure 7 shows two of the disks (shaded). One CNMD (left) can
not be removed, but the other one (right) can, since there are no 1’s in the ddisk.
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Figure 7. Two of the ddisks tested in step 3 (shaded). The leftmost include a 1, so it must 
not be removed. The rightmost one include only pixels with a count of 2 or more, so we 

can remove it and decrement all pixels inside the ddisk.

According to Figure 7, the four CNMDs closest to the corners in Figure 5 are necessary.
Each one of the two in the middle, however, have been chosen arbitrarily among two,
depending on what order they are visited.

Figure 8 shows a more complicated example. It is an elongated shape with one
rounded end, one rectangular end and a noise pixel on one side. The set of shaded pixels,
both light and dark ones, is the SMD, the initial set I. Framed pixels are CNMDs that
include pixels with count = 1 in the B image, i.e. CNMDs that must be included in the
final NMD. Out of the remaining maximal disks in SNMD, most can be removed, but
during the optimization, more 1's will appear, indicated that some more must be in the
final ONMD (dark shaded pixels without frames). These pixels can usually be chosen
differently.

Figure 8. A shape with its CNMDs. SNMD are shaded pixels, ONMD dark shaded ones.

The proof that these ddisks cover this original shape is left as a cut and paste exercise to
the reader (Figure 9). For this particular example, the number of maximal disks was re-
duced from an SNMD with 24 pixels to an ONMD with 9, which is a significant reduc-
tion. As we will see in the following computer-generated examples, this big reduction is
not an isolated occurrence, but something that is actually possible in most cases.
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Figure 9. The previous figure but with the appropriate ddisks shown.
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5. Expected reduction rates

So, what is the reduction in the general case? The SNMD and MNMD sets are obviously
strongly data dependent in size and placement. This data dependency makes it impossi-
ble to make any exact statements, but we can study some special cases.

We first consider some cases where optimization has no effect, namely when SNMD
= MNMD. The first special case is objects shaped like the ddisks being applied. These
objects will have an SNMD with only a single disk per object, with is already minimal.
A second special case is very thin objects. If an object has width ≤ 2 pixels, both the MN-
MD, SNMD and ONMD are the entire shape, since no bigger disks can fit in it. However,
experiments indicate that very few other shapes have an SNMD that is identical to the
MNMD.

As a third, more interesting special case, consider a straight, elongated object with
width d and length L, where L>>d. The number of maximal disks before optimization is
proportional to L, except for the ends where we get an end point effect depending on the
width and the shape on the ends. With L>>d, as assumed above, we can neglect this end
point effect.

In this case, a horizontal or vertical object with an odd width will get a SNMD with
L pixels (approx.), while an object with even width will get 2L pixels. For a diagonally
oriented object, we get L/  and L, respectively. We claim that the ONMDs of objects
like this are substantially smaller than the SNMDs, and that the reduction will be bigger
for wider objects.

Consider a horizontal object with odd width. It has one maximal disk per pixel dis-
tance of length. See Figure 10.

Figure 10. A horizontal, straight, long object has one maximal disk per pixel distance of 
length. (Pixels in the SNMD are shaded.)

The reduction from the SNMD to ONMD will depend on how big part of the edge that
one disk can cover. In this case, the reduction can be calculated. Figure 11 shows the
cdisk for one CNMD in the shape. It reaches one pixel distance outside the shape, and
has radius d/2 + 1 = r+1 for a shape with width d.

2 2
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Figure 11. How to calculate the width of the edge of a disk in the horizontal case.

The disk will cover the width 2h of the edge of the shape. More exact, the number of pix-
els covered along the edge is 2  h - 1 (where    rounds the argument up to the next in-
teger). From Figure 11, it follows that

(r+1)2  =  r2 + h2    ⇒      h  =    =  

Thus, the number of pixels covered by each disk is 2    -1. This is the reduction
ratio achieved by optimization. We can expect a reduction of the same order for other
directions as well, though it is very difficult to calculate it exactly for most directions.
The calculation above suggests that it will be proportional to .

For simple metrics like Chessboard and City Block distance, we get a different be-
haviour. We will get very high reduction ratios for shapes that are aligned with the disk
edges, but low or no reduction in other cases. Figure 12 shows examples for Chessboard
distance.

Figure 12. For simple metrics, the direction of object edges affect the possible reduction 
of maximal disk.

In the example, the reduction ratio from SNMD to ONMD varies from the object width
d to 1 (no reduction). For City Block distance, we will get similar results, but with the
biggest ratio when Chessboard has the lowest and vice versa. When varying the direction
of the object from horizontal or vertical to diagonal, City Block will gradually give more
reduction while Chessboard will give less. 
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This suggests that we can expect the Euclidean and pseudo-Euclidean disks to give
a less rotation dependent result (just like they do in many other problems), which should
result in a representation that is more significant for the shape. Comparing the effects of
different metrics on this problem is, however, not pursued further here but is left for fu-
ture work.
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6. Computer generated examples

In the following figures, Figures 13-16, the algorithm has been run on a test image with
four triangles with different rotation, and then another test image with four squares. We
have used the Euclidean metric for these experiments. In both cases, the improvement
from optimization is considerable, despite the fact that the objects are rather compact and
thereby close to disk-shaped.

Figure 13. Original image with four triangles.

          

Figure 14. Standard set of maximal disks (SNMD) extracted from Figure 13, and the op-
timized set (ONMD) (49 out of 140 remain).

Figure 15. Original image with four squares.
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Figure 16. Standard set of maximal disks (SNMD) extracted from Figure 15, and the op-
timized set (ONMD) (33 out of 99 remain).

From our experiments, we conclude that the standard set of maximal disks (SNMD) is
usually far from optimal, and though our algorithm is not very efficient, it shows that we
have reason to search for other, more efficient algorithms performing the task of finding
the opimized sets.
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7. Conclusions

We found that the standard set of necessary maximal disks (a.k.a. set of local maxima)
for a shape is very far from the optimal one. An algorithm was proposed that is able to
find a set of necessary maximal disks that is optimal or close to optimal. In our experi-
ments, the generated set was typically between half and a third of the size of the set of
necessary maximal disks generated by the previously known, faster algorithms. We have
shown that we can expect higher ratios for bigger objects.

We conclude that it is possible to find much smaller sets than the previously known
algorithms could find. We have presented an algorithm that finds a set that is much closer
to the minimum. The algorithm can be used for any metric, though our examples only
use the Euclidean metric. The algorithm is slow, but if the objective is compression, this
may be worthwhile. The reconstruction is as fast or faster than using other methods.
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Abstract
Shih et. al. propose a method for optimizing the inner loop of the Euclidean
Distance Transform, using simple and fast arithmetics for the calculation of
distance values during distance propagation. Two parallel and one sequen-
tial algorithm using this method were proposed. In this note, we show why
the sequential algorithm fails, while the two parallel algorithms produce
correct results.
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1. Introduction

A distance transformation is an operation that takes a binary image as input and gener-
ates a grayscale image, a distance map, where each background (object) pixel holds the
distance to the closest object (background) pixel. Using only one scalar value per pixel,
fast distance mapping algorithms using neighborhood operations will always have errors
proportional to the distance [6, 7, 8].

This problem was solved with the Euclidean Distance Transform (EDT), first pro-
posed by Danielsson [1]. The difference from the original distance transforms is that it
uses vectors rather than scalar values. This makes it possible to produce Euclidean dis-
tance maps in short time, but also to create a vector map, additional information that is
useful in many applications [5].

The sequential 8SSED algorithm [1] produces error-free distance maps except for a
few single points where small errors occur. The errors are very small, 0.09 pixel distanc-
es or less, which is usually negligible. The parallel algorithms are error-free, as shown
by Yamada [4]. Considering that the errors in the sequential EDT are so small and do not
grow proportionally to the distance, it is not an approximation to Euclidean distance in
the same sense as the pseudo-Euclidean algorithms [6,7]. Error-free sequential versions
of EDT have also been developed [10].

Shih and Wu [3] propose a different method to produce Euclidean distance trans-
forms, using no vectors but rather the squared distance plus a propagation number. They
propose two parallel algorithms and one sequential algorithm, the Double Two-scan Al-
gorithm (DTA for short). On close inspection, it turns out that DTA produces distance
maps with significant errors. The errors are due to several problems not addressed in [3],
which are discussed below. However, it turns out that none of these problems affect the
parallel algorithms, so they will actually produce the same output as the original PED al-
gorithm [1].

Before discussing the algorithms, we will recall the well-known concept of Voronoi
diagrams. In a Euclidean distance map, each pixel will hold the distance to the closest
object pixel. This means that for any object pixel, we can find a polygon that encloses all
points for which the chosen object pixel is the closest one. This polygon encloses a set
of pixels, possibly only the object pixel itself. In the EDT, this set of pixels should all get
distance values referring to the chosen object pixel. The polygon is the Voronoi polygon
for the object pixel. The set of all Voronoi polygons is the Voronoi diagram of the image.
See e.g. Guibas et. al. [9].
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2. The sequential algorithm

Shih and Wu [3] derive their algorithm using grayscale morphology. We will, however,
describe their methods in a more traditional way, using simple geometrical properties.

The distance transform is done using square distance values (D2(p) below), a common
approach to avoid real numbers during EDT computation. The distance value is updated
using the number of propagation steps (L(p) below).

Definitions:

D2(p) is the squared distance value stored in the pixel p.
L(p) is the propagation number calculated for the pixel p (see below).

D2
cand(n)(p) is a candidate value for D2(p), given by the neighbor n.

When processing a pixel p, we use a set of pixels M - the mask - in a 3x3 neighborhood
around p. In the parallel algorithm the entire neighborhood is applied at once, while in
the sequential DTA algorithm, the neighborhood is split in two parts, applied at different
scans. In the following sections, only DTA will be discussed.

For each neighbor pixel in M, we calculate a candidate value. Let h be a 4-neighbor
to p, that is a horizontal or vertical neighbor, while d is a diagonal neighbor (8-neighbor
but not 4-neighbor). Then, the candidate values calculated for h and d are:

horizontal or vertical neighbor to p:D2
cand(h)(p) = D2(h) + 2·L(p) - 1(1)

if m is a diagonal neighbor to p:D2
cand(d)(p) = D2(d) + 4·L(p) - 2(2)

Then, p is assigned the minimal distance value for all neighbors i:

D2(p) := min(D2
cand(i)(p))(3)

These updating rules are summarized in Figure 1. The figure shows the two recursive
scans, both in the grayscale morphology structuring element representation used in [3]
(matrixes in brackets in Figure 1) and a slightly modified form, replacing l with L(p) to
stress that the propagation count is pixel dependent (lower part of the figure). The ma-
trixes (masks) shown in the figure are the M mask used in each scan, as mentioned above.
It shows the values to be added to the squared distance value of each neighbor of the cen-
ter pixel p to produce a candidate value for p.

L(p) is calculated for each of the two scans as a separate distance map with Chess-
board distance in the directions used in the masks in Figure 1. (See the next section.)
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Fig. 1. The complete 3x3 mask with distance offset.

Calculating candidate values for each pixel in a mask, and writing the smallest to the cen-
ter pixel, is the common approach, used in the original EDT [1]. The difference from
most other EDT algorithms is the calculation of the distance values.
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3. Euclidean distance versus Chessboard distance

The first, and perhaps most evident problem with DTA is the calculation of the L(p) val-
ues. It is done for each scan with a mask with the same shape as the mask being used for
the EDT, but with weight 1 in all positions. This results in a distance map with Chess-
board distances in these directions. This approach does not work since:

• The closest pixel in Euclidean distance is often not the same as in Chessboard dis-
tance.

• For certain kinds of images, the Chessboard distance mapping used will not reach
all pixels. (E.g. an image with only a single object pixel.)

For an example of the first error, see Figure 2. The pixel in the lower left corner is 4
pixel distances from the closest pixel in Euclidean distance, and should therefore be as-
signed the squared distance 16. However, the closest pixel using Chessboard distance is
only 3 pixels away. This causes the updating to be done with L(p) = 3 rather than 4,
which results in a too small value.

In Figure 2, two updating paths are marked with a) and b). For each of these, the fol-
lowing calculations are made to get the candidate value:

a) D2
cand(h)(p) = D2(h) + 2·L(p) - 1 = 9 + 2·3 - 1 = 14

b) D2
cand(d)(p) = D2(d) + 4·L(p) - 2 = 8 + 4·3 - 2 = 18

The b) value correctly refers to the originating pixel, while a) is wrong, since L(p) should
have been 4.

Fig. 2. An example where the L(p) calculation cause errors.

This problem is, however, easily corrected by generating L(p) simultaneously with the
EDM, propagating L(p) values when pixels are updated, and using the values in the
neighbors (that is, L(h)+1 and L(d)+1) rather than the center pixel for calculating candi-
date values. From now on, we will assume that this problem is corrected in all examples.
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4. Propagation limitations imposed by the distance value 
updating method

For finding the next problem, we will need to understand why and when the distance cal-
culation in (1) and (2) works. In the following, we will derive these formulas using fun-
damental geometric properties – essentially just the length of a vector.

Let vm = (mx, my) be the vector from a pixel m to the originating object pixel (dis-

tance zero). The Euclidean distance is then D(m) = (mx
2 + my

2)1/2 and the squared dis-

tance is D2(m) = mx
2 + my

2. Note that while these vectors are present in most other EDT

algorithms, we only have D2(m) available here.
We also know the number of propagation steps L(m), which is the chessboard dis-

tance to the (in Euclidean distance) closest object pixel, that is L(m) = max(|mx|,|my|). In

the parallel algorithm, the propagation number L(p) is the iteration number, while in
DTA, it is stored separately.

Let us take the situation in Figure 3. The pixel p is to be updated by calculating can-
didate values from the neighbors d and h. Any other neighbors may be used as well, but
granted that the originating pixel o is the object pixel that is closest to p, only d and h can
give rise to the minimal candidate value from the 8-neighborhood of p.

With vp = (px, py) being the vector from p to o, we consider only the case where

px > 0, py > 0 and px ≥ py. This is no loss of generality, since the results can be mirrored

to all other directions.

Fig. 3. The p is the pixel to be updated, and d and h are two neighbors one step towards 
the originating object (zero distance) pixel.

For the neighbors h and d, we have the vectors vh = (hx, hy) and vd = (dx, dy). Then, the

candidate value for p calculated from h is:

D2
cand(h)(p) = (hx+1)2· hy

2 = hx
2 + hy

2 + 2hx + 1 = = hx
2 + hy

2 + 

2(hx+1) - 1 = D2(h) + 2(hx+1) - 1 (4)

o
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h

p x
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Since px ≥ py, px = L(p). Since p and h are horizontal neighbors, px = hx + 1, and we get

D2
cand(h)(p) = D2(h) + 2(hx+1) - 1 = D2(h) + 2L(p) - 1

which is equivalent to (1). Since px = hx + 1, we also see that D2
cand(h) = D2(p), so this

is the correct value on D2(p), granted that o is the closest object pixel.
For the diagonal neigbor d, we first consider the special case where px = py:

D2
cand(d)(p) = (dx+1)2 + (dy+1)2 = 2·(dx+1)2 = 2dx

2 + 4dx + 2 == 2dx
2 + 4(dx+1) - 2 = 

D2(p) + 4(dx+1) - 2 (5)

which, with px = dx + 1 and py = dy + 1 is equivalent to (2), and D2
cand(d) = D2(p), so it

is a correct value for D2(p).
When px > py > 0, however, we get:

D2
cand(d)(pxy) = (dx+1)2 + (dy+1)2 = dx

2 + dy
2 + 2dx + 2dy + 2(6)

which is not the same as (2). Hence, (2) will result in too large candidate distance values
anywhere it is used except on diagonal lines from the originating pixels. By subtracting
(6) from (5), we find that the difference is 2dx - 2dy. However, since the generated value

is too large, as long as there is a neighbor in the 4-neighborhood that will deliver the cor-
rect value to the center pixel, the result will be correct. This is not always the case.

The incorrect values generated from diagonal neighbors when not on a diagonal
from the originating pixel imply that an algorithm using this scheme must use the prop-
agation paths illustrated in Figure 4.

Fig. 4. Only the propagation paths in the Figure generate correct values.
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In some cases, this will work, but there are many configurations where this will fail. Fig-
ure 5 shows a simple case. In the Figure, the propagation from an object pixel must pass
through an area closer to another object pixel (that is, through the Voronoi polygon of
another object pixel). If the propagation from the other pixel reaches that area first, the
propagation will be cut off.

The lower part of the figure shows what candidate values are generated. The only
value that is the correct distance value to any object pixel is the 26 referring to the lower
object pixel. For the neighbor above the center pixel, it is questionable what L(p) value
to use, but in neither case (CB: Chessboard distance, or P: number of propagation steps)
the value will be low enough to change the result in this example.

Fig 5. Due to the limited propagation paths, the pixel marked “?” will get the wrong val-
ue. The only path that could generate the correct value passes through pixels that are 

closer to the lower object pixel.

The region that can not be reached will instead get distance values that refer to some oth-
er, more distant object pixel, or get updated according to (2) in cases where it isn’t valid,
and thereby get a too large value.
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5. Propagation limitations imposed by the neighborhoods used

In the previous section, we saw how the algorithm failed to produce a correct result since
it produced incorrect distance values in certain directions. Moreover, the masks pro-
posed, illustrated in Figure 1, are poorly chosen and will by themselves cause even more
errors.

As pointed out in [2], in a Euclidean distance transform, the pixels that should be
reached by the propagation from some object pixel p are the pixels within the Voronoi
polygon around p. Moreover, a distance propagation process is guaranteed to work while
in the proper Voronoi polygon, even if another propagation reaches the area first. Since
Voronoi polygons can sometimes be very elongated in any direction, this guarantee will
only hold if for any direction there exist a scan where the direction is supported to infinite
distance. If this is not fulfilled, the propagation from each object pixel must reach the
paths it needs to use before the propagation from any other object pixel. (See section 5.)

Danielsson [1] used a four-scan algorithm to support propagation in all directions,
and in [2], a three-scan algorithm was proposed. Note that Danielsson’s algorithm uses
masks that are combined two by two into two double scans. Figure 6 shows the masks
used in these algorithms. It is impossible to support all directions with only two masks.

Fig. 6. The masks used for sequential EDT in [1] resp. [2].

The DTA, however, does use only two scans, and does not support propagation to infin-
ity in all directions. This will not only result in the errors mentioned in [2], but will fail
even in trivial cases, as illustrated in Figure 7, a case with only a single object pixel. The
summations above the figure show how each of the updates along the arrows are gener-
ated.
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Fig. 7. Bold numbers are incorrectly generated in the second scan.

This problem can easily be solved by using any of the neighborhood sets in [1] or [2].
Disregarding the other problems discussed above, such an algorithm would only have the
negligible errors where Voronoi polygons have very acute angles, as pointed out by
Danielsson. [1]
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6. The parallel algorithms

As we have seen, the sequential algorithm, DTA, does not work properly and should not
be used. However, the parallel algorithms proposed does not suffer from these problems.
In this section, we will point out under what circumstances they do work, and why.

Two different parallel algorithms were proposed. The first, the 1D algorithm (1DA
for short), first scans each row to produce 1-dimensional distance maps, a trivial though
sometimes very time consuming operation. Second, for all pixels that have received a
distance value (i.e., all pixels for which there is any object pixel on the same row), the
distance is squared. Then, 1x3 masks are applied in parallel over the image, using the
update scheme described in section 2, using only vertical neighbors and using the itera-
tion number as propagation count L(p).

It is of critical importance that this operation is done in parallel, since the method,
like the incorrect sequential algorithm, relies on propagation being able to pass through
pixels for which the originating pixel is the closest one. When implemented in parallel,
however, this is possible.

Figures 8 and 9 illustrate the propagation process. Figure 8 shows the initial, hori-
zontal distance transformation from three object pixels. Note that when two object pixels
are located on the same row, the Voronoi polygon will have a vertical edge between
them, if the polygons touch.

Fig. 8. The initial, horizontal propagation from three object pixels.

The propagation from the pixel on the lower row in Figure 8 will obviously have to pass
through the Voronoi polygon of the middle pixel in order to reach pixels far down to the
left. In the vertical propagation, this propagation will always be one step ahead of the
propagation from the middle pixel, since the pixels are updated in parallel, as illustrated
in Figure 9.

Fig. 9. If the vertical propagation is done in parallel, several propagation processes will 
queue up after each other without overwriting.
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Hence, the 1DA will not suffer from the propagation limitations discussed in section 4,
and since the iteration number is used for the propagation step number L(p), the error de-
scribed in section 3 will not appear.

Since 1DA requires parallel operation to work correctly, it will be far slower than
any sequential algorithm (like 8SSED [1]) when implemented in parallel. However, even
on a parallel hardware, it is not a good choice, since the initial, horizontal distance trans-
form will have to be implemented in hardware, and it will in the worst case (a single ob-
ject pixel at the end of a row) require a number of iterations equal to the width of the
image. For a parallel hardware, older parallel EDT algorithms [1, 4] or the algorithm de-
scribed below are better choices.

The second parallel algorithm, the 2D Iterative Erosions Algorithm (2DIEA for
short) will work for essentially the same reason. The 2DIEA simply applies the update
rules (1) and (2) in a complete 3x3 neighborhood.

The valid propagation paths will still be restricted to the ones shown in Figure 4.
However, this will not cause any errors. See Figure 5. The upper object pixel must be at
least one pixel distance to the right of the lower pixel, which means that the propagation
from that pixel will be at least one pixel distance ahead of the other. Thus, it will be able
to propagate through the Voronoi polygon of the other pixel before that area receives its
final values.



7. Discussion 275

7. Discussion

According to the arguments in sections 3 to 5, we can expect significant errors when us-
ing the sequential DTA algorithm. While some of these problems can be solved, the
problems discussed in section 4 do not appear to have a simple solution. DTA neither
gives us a well-defined metric nor errors with an upper bound. Hence, it should not be
used.

The parallel algorithms, however, do produce Euclidean distance maps, and are
quite useful on massively parallel architectures. While the 1DA has worst cases where it
is unnecessarily slow, the 2DIEA only require the same number of iterations as previ-
ously proposed parallel EDT algorithms [1, 4], but with simpler arithmetics, resulting in
higher speed.

A drawback with 2DIEA in some cases is that it can not produce vectors as output,
which the algorithms by Danielsson [1] and Yamada [4] do. This makes it less useful for
certain applications, while it remains a good choice for applications where only the dis-
tance value is of interest.

However, it is quite possible to modify the previously known EDT algorithms to get
performance that is close to what the algorithms in [3] promise. The essence of these al-
gorithms is then to update the distance values incrementally, which is a known trick to
avoid multiplications. Ye [5] proposes a related method, but using the vector compo-
nents rather than a special propagation step number. This follows immediately from (4)
and (6) when the vector components are known.

An alternative, also proposed by Ye [5], is to use lookup tables to convert vector
components to distance values. Such a lookup table should take each vector component
as index to a 2-dimensional array, returning either the distance or the squared distance.
This will not only remove the need for multiplications, but will also remove the square
root computation, and remove the extra storage needed in both the incremental methods
mentioned above. This is perhaps the most attractive method, keeping the vector images
and producing the distance with no calculations except additions. If the size of the lookup
table is prohibitive, we should use incremental methods like the 2DIEA or as proposed
above.
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8. Conclusions

We have pointed out some problems with the sequential, raster scanning algorithm pro-
posed in [3]. We have also noted that the problems do not affect the proposed parallel
algorithms, and demonstrated why. Still, one of the parallel algorithms proposed is of in-
terest when using massively parallel architectures.

However, even the parallel algorithm is of questionable value, since it does not give
vectors as output, which the original EDT does [1, 4, 5], but rather just a distance value
per pixel. It is usually better to use the lookup table driven method proposed by Ye [5]
to achieve higher speed.
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