
Examensarbete

Evaluation of interprocess
communication methods in a component

based environment
av

Fredr ik Örvill och Magnus Therning

LiTH-IDA-Ex-00/15

2000-02-09

Linköpings universitet
Institutionen för datavetenskap

Final report

Evaluation of interprocess
communication methods in a component

based environment
By

Fredr ik Örvill and Magnus Therning

LiTH-IDA-Ex-00/15

2000-02-09

Supervisor: Patrik Schnell (Nokia), Peter Aronsson (LiTH)

Examiner: Peter Fritzson

Datum
Date

2000-02-09

Språk
Language

�
Svenska/Swedish

�
Engelska/English

�

Rappor ttyp
Report category

�
Licentiatavhandling

�
Examensarbete

�
C-uppsats

�
D-uppsats7

�
Övrig rapport

�

URL för elektronisk version
URL for electronic version

http://www.lysator.liu.se/~gargamel/exjobb/

ISBN

ISRN

Ser ietitel och ser ienummer ISSN
Title of series, numbering

LiTH-IDA-Ex-00/15

Titel
Title

Evaluation of interprocess communication methods in a component based environment

För fattare
Authors

Fredrik Örvill and Magnus Therning

Sammanfattning
Abstract

Modern application development is often built around a component system where the application
programmers never have to bother about interprocess communication. If components reside in
different processes the component system handles the communication between them. This thesis
evaluates several of the available techniques for interprocess communications (IPC) in a prototype
system for distributed components using the Cross-Platform Component Object Model (XPCOM)
as the basis. It also takes into consideration marshalling, the transfer of complex data structures, it
further discusses security, robustness and correctness.

Our work consists of studying the available IPC methods, designing and implementing a prototype
system. The system is implemented in C++ and the evaluation is performed in the Linux operation
system.

Nyckelord
Keywords

COM, DCOM, XPCOM, Marshalling, marshal, IPC, Doors, Shared memory, RPC, Pipe, XDR,
ASN.1, BER, PER, DER, CER, Linux, Nokia

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

i

Abstract

Modern application development is often built around a component
system where the application programmers never have to bother about
interprocess communication. If components reside in different processes
the component system handles the communication between them. This
thesis evaluates several of the available techniques for interprocess
communications (IPC) in a prototype system for distributed components
using the Cross-Platform Component Object Model (XPCOM) as the
basis. It also takes into consideration marshalling, the transfer of complex
data structures, it further discusses security, robustness and correctness.

Our work consists of studying the available IPC methods, designing and
implementing a prototype system. The system is implemented in C++ and
the evaluation is performed in the Linux operation system.

ii

Dedication

To our girlfriends, we love you.

iii

Table of Contents

1. Introduction __ 1

1.1 Objective .. 1

1.2 Disposition.. 1

1.3 Prerequisites .. 2

1.4 Notation.. 2

1.5 Acknowledgements .. 3

2. The Problem ___ 5

2.1 Problem Definition.. 5

2.2 Limitations .. 5

2.3 Environment ... 6

2.4 Distributed Components... 7
2.4.1 Distributed Component Object Model 7
2.4.2 CORBA... 8

2.5 Mozilla .. 8

2.6 Design Patterns.. 8

2.7 Summary.. 9

3. Theoretical Background ___________________________________ 11

3.1 Component Object Model .. 11
3.1.1 The Basics.. 11
3.1.2 In-process Servers ... 12
3.1.3 Out-of-process Servers .. 12
3.1.4 Cross-platform COM .. 15

3.2 Marshalling... 15
3.2.1 Encoding Rules .. 17

3.2.1.1 Basic Encoding Rules... 17
3.2.1.2 Packed Encoding Rules 17
3.2.1.3 Distinguished and Canonical Encoding Rules.... 18

3.2.2 External Data Representation .. 18

3.3 Interprocess Communication ... 18
3.3.1 Remote Procedure Call .. 18
3.3.2 Unix Pipes .. 20
3.3.3 Unix Domain Sockets ... 20
3.3.4 Shared Memory.. 21
3.3.5 Message Queues ... 22
3.3.6 Doors/Linux .. 22

3.4 Authentication and Encryption ... 24

iv

4. Problem Analysis __ 25

4.1 Component Object Model .. 25

4.2 Feasible Features .. 26

4.3 System Functions .. 28
4.3.1 Preconditions For All Functions 28
4.3.2 Register A Server... 29
4.3.3 Unregister A Server ... 29
4.3.4 Creating A Remote Object ... 30
4.3.5 Method Call On A Remote Object.................................... 30

5. Design___ 31

5.1 Overall Design ... 31
5.1.1 Component Object Model .. 31
5.1.2 Marshalling... 33
5.1.3 System ... 34

5.2 Detailed Design ... 35
5.2.1 Cross-platform COM .. 35
5.2.2 Marshalling... 37
5.2.3 System ... 38

5.2.3.1 Object Proxy... 38
5.2.3.2 Server... 39
5.2.3.3 Locating A Server... 40
5.2.3.4 Omissions... 41

5.2.4 Interprocess Communication ... 42
5.2.4.1 Standard Remote Procedure Call 42
5.2.4.2 Unix Pipes .. 43
5.2.4.3 Doors/Linux .. 43
5.2.4.4 Shared Memory.. 44

5.3 System Functions .. 44
5.3.1 Register A Server... 44
5.3.2 Unregister A Server ... 45
5.3.3 Creating A Remote Object ... 46
5.3.4 Method Call On A Remote Object.................................... 47

5.4 Evaluation Suite... 48
5.4.1 Evaluating Time ... 49

5.4.1.1 Time To Connect.. 49
5.4.1.2 Time For Method Call... 49

5.4.2 Evaluating Usability.. 49
5.4.3 Evaluating Other Aspects .. 50

5.4.3.1 Availability .. 50
5.4.3.2 Correctness.. 51
5.4.3.3 Integrity... 51
5.4.3.4 Memory Consumption .. 52

v

6. Implementation Details ____________________________________ 53

6.1 Cross-platform COM .. 53

6.2 Marshalling... 53

6.3 Server Management System.. 54

6.4 Interprocess Communication ... 54
6.4.1 Standard Remote Procedure Call 55
6.4.2 Unix Pipes .. 56
6.4.3 Doors/Linux .. 57
6.4.4 Shared Memory.. 58

6.5 Evaluation Suite ... 60
6.5.1 Evaluation Program One .. 60
6.5.2 Evaluation Program Two.. 60
6.5.3 Evaluation Program Three ... 60

7. Results __ 61

7.1 Marshalling... 61

7.2 Interprocess Communication ... 61
7.2.1 Evaluation Program One .. 61
7.2.2 Evaluation Program Two.. 62
7.2.3 Evaluation Program Three ... 63

8. Conclusions___ 69

8.1 Marshalling... 69

8.2 Interprocess Communication ... 69

8.3 Summary.. 70

9. Further Studies __ 71

9.1 Database.. 71

9.2 Server Management System.. 71

9.3 Marshalling... 71

9.4 IDL compiler tool .. 71

9.5 Servers... 72

10. References ___ 73

Appendix A Abbreviations__________________________________ 75

Appendix B Interface Specification___________________________ 79

Appendix C Interface Implementation_________________________ 87

Appendix D Evaluation Protocols ____________________________ 99

vi

D.1 Evaluation One .. 99

D.2 Evaluation Two .. 100

D.3 Evaluation Three.. 101

vii

Table of Figures
Figure 1: Example of a class with interfaces..3

Figure 2: Acquiring a COM component..13

Figure 3: COM example...14

Figure 4: Calling an out-of-process component...15

Figure 5: IDL compiler tool process ...16

Figure 6: RPC compiler tool process ...19

Figure 7: Calling a remote process via RPC..20

Figure 8: Doors/Linux example ..23

Figure 9: The proposed architecture of our system33

Figure 10: The ServerManager’s connection to the database.....................36

Figure 12: IServerManager ..37

Figure 13: IBuffer ...38

Figure 15: The role of the object proxy ..39

Figure 17: Server schematics ..39

Figure 19: The dynamic approach to SendAndReceive40

Figure 21: The static approach to SendAndReceive41

Figure 22: The improved dynamic approach ...41

Figure 23: SendAndReceive design ..42

Figure 24: CRPRSendAndReceive..43

Figure 25: CPipeSendAndReceive ..43

Figure 26: CDoorsSendAndReceive..44

Figure 27: CShmSendAndReceive ..44

Figure 28: Interaction diagram for registering a server................................45

Figure 24: Interaction diagram for unregistering a server............................46

Figure 25: Interaction diagram for creating a remote object47

Figure 31: Interaction diagram for method call on a remote object48

Figure 27: Evaluation Program one results..62

Figure 28: Evaluation Program two results ..63

Figure 29: Evaluation Program 3A results, large arguments (60kB)64

Figure 30: Evaluation Program 3B results, large arguments (1MB)65

Figure 31: Evaluation Program 3C results, large arguments (16MB)65

Figure 32: All methods total and transfer time ...66

viii

Figure 33: All methods transfer time..67

Figure 34: Standard deviation for total time in evaluation three67

ix

x

1 Introduction

1

“It’s like nothing we’ve dealt with
before.”

- Unknown, TOS

1. Introduction

This chapter serves as an introduction to this master’s thesis. It gives the
background and presents the problem. The limitations to the problem are
stated. Then each of the chapters is introduced as a guide to the reader. It
is concluded with the prerequisites placed on the reader and a mandatory
section of acknowledgements.

1.1 Objective

This thesis was produced with co-operation from Nokia Svenska AB. Nokia
is currently developing a set top box for digital TV where the work in this
thesis would be of major interest.

The purpose of this master’s thesis can be summarised in the following two
goals:

• To study and evaluate several of the available techniques for
communicating between separate processes.

• To develop a framework based on distributed components in which the
evaluation is performed.

To accomplish this, the thesis contains an overview of several of the
techniques available. Then a system design is presented together with a
prototype. Finally the results and our conclusions from the results are given.

1.2 Disposition

Chapter 2 Detailed description of the problem.

Chapter 3 The different technologies used in the thesis are presented.
A short introduction to some of the COM1 implementations is
given. Several methods for marshalling and IPC2 are also
presented.

Chapter 4 This chapter contains an analysis of what the requirements
are on the system. A presentation of the system from a
functional view is given.

1 Component Object Model
2 Interprocess communication

1 Introduction

2

Chapter 5 Here the design of the system is presented. The different
design decisions are also discussed.

Chapter 6 The implementation is described on a somewhat lower level
than in chapter 5. Our evaluation programs and the criteria
for the evaluation are introduced.

Chapter 7 In this chapter the results of the evaluations are presented.

Chapter 8 The conclusions from the results in chapter 7 are drawn in
this chapter.

Chapter 9 All interesting aspects of this work were not done because
the available time was limited. In this chapter some
suggestions for future enhancements are presented.

Chapter 10 References to work that is of interest can be found in this
chapter.

Appendix A List of abbreviations.

Appendix B Specifications of the various interfaces.

Appendix C Detailed information about the classes implementing the
interfaces described in Appendix B.

Appendix D Protocols from the evaluations.

1.3 Prerequisites

To comfortably read this thesis prior knowledge and understanding of COM
is useful. A general orientation in the problems faced when separate
processes communicate is helpful.

Understanding the design is made easier by knowing the basics in object
oriented design.

While the first parts of the thesis try to be as general and as independent of
the used operating system as possible, the later part must inevitably take
the target platform into account. Everything up to the section covering the
details of the implementation should be quite free from references to Linux.
From section 6 and onwards a familiarity with the Linux operating system
might prove helpful.

1.4 Notation

Throughout the report we have followed the following formats for discussing
technical issues.

1 Introduction

3

Names of classes start with the letter C (as in “class”) and are written in
italic text, e.g. CSimpleBuffer

Names of interfaces start with the letter I (as in “interface”) and are written in
italic text, e.g. IBuffer

Names of system and function calls as well as programs are written in italic
text, and in the case of Unix functions and programs the section for the
manual page is put in parenthesis directly after the name, e.g. midl,
ftruncate(2).

When explaining the design diagrams have been used extensively. An
example of a diagram describing a class with interfaces is shown below. To
visualise an interface the Microsoft standard of visualising interfaces has
been used. An example can be found in Figure 1 below.

CClassName
IInterfaceName

ClassInterface

Dynamic Cast Interface

Figure 1: Example of a class with interfaces

1.5 Acknowledgements

In order to finish this work we have depended on the people around us. A
big thanks goes out to all the people who helped us keep on track, and even
to the ones who frequently interrupted us with questions not even remotely
connected to this work.

Without the bountiful help from Nokia in Linköping this thesis would never
have seen the day of light. Especially we are indebted to our supervisor
Patrik Schnell.

A special thanks goes to Henrik Linde and Petter Axling for providing
extensive help with the report.

We also need to thank the examiner and supervisor provided to us from
school.

1 Introduction

4

2 The Problem

5

“Our species can only survive if we
have obstacles to overcome,
without them to strengthen us we
will weaken and die.”

- Captain Kirk, TOS

2. The Problem

This chapter will introduce the problem in more detail and also provide
some necessary background knowledge.

2.1 Problem Definition

As stated in section 1.1 the objective of this work is to accomplish the
following:

• To study and evaluate several of the available techniques for
communicating between separate processes.

• To develop a framework based on distributed components in which the
evaluation is performed.

As was also mentioned Nokia is currently developing a set top box for digital
TV where distributed components will be used as a way of communicating
between different processes. These boxes will be running an embedded
version of the Linux operating system and the Mozilla web browser will be
used to provide an easy-to-configure user interface. Nokia is interested in
obtaining fast interprocess communication in their set top boxes since
consumer electronics call for a usable product at a reasonable price. This
means that even a low gain in time consumption for communication
between processes can be worth a lot in the end. At the same time
development costs for software should be kept low. A framework that
permits this and also makes it easy to maintain the end product is essential.

2.2 Limitations

Because of the current nature of operations for Nokia’s set top boxes the
thesis is limited to considering interprocess communication involving
processes executing on the same CPU1. Involving “true” distributed
components, distributed over several computers, would be too large a task
for a thesis of this size. This limitation is imposed upon the project from
Nokia.

1 Central Processing Unit

2 The Problem

6

Since the environment where the system is to be used is an electronic
device for home entertainment with reduced functionality compared to a
regular computer, we can assume minute control over which processes will
be running. This is ensured from the fact that Nokia designs the box and
also decides what programs to install, the user will not have complete
control over the device, and he will not be allowed to install and run other
programs. Only programs approved by Nokia can be installed and run on
the set top box.

This minute control allows us to neglect issues such as starting servers and
assuring that they continue to run. But it should be noted that in order to
make the system truly useful it has to be taken into consideration.

Issues regarding security, and especially authentication of both servers and
clients, can also be neglected because of the rigorous control over the
system. Communication will only be done between processes executing on
the same computer and attacks on the system from malicious clients are not
likely to happen.

2.3 Environment

The work has been performed using regular PC’s1 running the Linux OS.
RedHat 6.0 was chosen as the distribution because it was widely used
within Nokia in Linköping when this project started, and even though a
newer version was released during the project we stayed with the initial
version. During the work Nokia also released an internal Linux distribution
which is at the moment used for developing the low-level software for the
set top boxes.

The intended target platform is a system based on an Intel Pentium
processor running Linux. The version of the operating system that
eventually will be used is not decided yet.

For the tests we have used the computers we were provided with. The
details of these can be found in Table 1. To ensure as accurate results as
possible the tests were performed with as few processes running as
possible2.

1 Personal Computer
2 Single user mode with only necessary daemons running

2 The Problem

7

CPU Pentium III, 450MHz

Memory 128MB

Operating system
Version

Linux 2.2.12, RedHat 6.0

Table 1: Test Environment

2.4 Distributed Components

In almost all of the bigger systems nowadays there is some level of
distribution in the sense that the system is divided into smaller parts
responsible for separate tasks. These smaller parts are often running as
separate processes in order to make the system more robust. But this also
introduces the problem of how these processes will communicate with each
other. It is only by co-operation that the system solves the problem, each
process on its own will only provide a small part of the solution.

The way the computer industry has been moving the last couple of years,
client-server architecture has become more and more dominant when
designing systems. In this architecture there exists a server which provides
services to clients. Even in complex systems this kind of architecture can be
used, maybe requiring many servers and a client to one process might act
as the server for another.

There has also been a shift in the software industry during the later part of
the ‘80s and the ‘90s to look at problems in an object-oriented way. This has
shown to provide a way of thinking that can produce software that is
relatively easy to develop and maintain.

What distributed components do is to connect the client-server architecture
with object-orientation. A server provides services in the form of
components that a client can obtain and use through some kind of interface.
Using distributed components also provides a way to force separation of
interface and implementation, something which is generally desirable in
object-orientation.

2.4.1 Distributed Component Object Model

COM1 was first developed to provide object linking and embedding. The
technology was adopted by Microsoft and then extended to incorporate
distribution of components as well (DCOM2). Microsoft has extended DCOM

1 Component Object Model
2 Distributed Component Object Model

2 The Problem

8

by building a number of technologies on top of it, most notable OLE21 and
ActiveX.

The technology has proved to be very useful, but its use is mainly
concentrated on the Windows platform.

2.4.2 CORBA

OMG2 defined the first version the CORBA3 standard in 1991. OMG is a
non-profit consortium founded in 1989 with a world-wide presence and
consisting of more than 500 members.

While DCOM is an extension to COM, CORBA was designed as a
distributed objects system from the beginning. The central part is the so-
called ORB4. All requests for new distributed objects as well as invocations
of methods on distributed objects go via the ORB.

CORBA has wide spread use and the standard is still a work in progress.
ORBs are available to a wide range of architectures, including several UNIX
variants, Macintosh, Windows and even DOS5 (DCOM is not available for
DOS).

2.5 Mozilla

Netscape (pronounced Mozilla) is one of the most successful web browsers
available on the market. In 1998 Netscape Corporation released the source
code of its browser and started an effort to continuing development using an
open-source model.

In order to make object linking and embedding available to Mozilla it
employs a cross-platform version of COM called XPCOM6, which runs,
amongst others, Windows, Linux and Macintosh. The current version of
XPCOM, included in Mozilla M11 (milestone 11), does not provide support
for distributed components.

2.6 Design Patterns

Patterns is the term used to denote a solution to a general problem which
has been proven good from experience in object-oriented programming.
Many problems that appear in software architecture are related and what
patterns try to do is to abstract the problem up to a level where a general
solution can be given. This general solution can then be applied to a

1 Object Linking and Embedding 2
2 Object Management Group
3 Common Object Request Broker Architecture
4 Object Request Broker
5 Disk Operating System
6 Cross Platform Component Object Model

2 The Problem

9

specific problem. The effect of this is that developers can discuss problems
and their solutions on a more abstract level by using patterns.

The first catalogue of well-described design patterns for object-oriented
programs was [7], which appeared in 1994. Since then the number of
patterns has expanded dramatically. The concept of design patterns comes
from architecture of buildings and was first described by Christopher
Alexander, (see [11] p xii)

2.7 Summary

Our work consists of the following steps:

1. Study the available component techniques.

2. Study the problems surrounding transferring of arguments
(marshalling).

3. Study and evaluate the usefulness of different interprocess
communication methods.

4. Design a framework that satisfies the requirements.

5. Implement a prototype of the framework.

6. Evaluate the framework and the different interprocess
communication methods.

7. Draw conclusions and present suggestions for future
extensions and enhancements.

2 The Problem

10

3 Theoretical Background

11

“We’re not going anywhere, until we
have some information!”

- Captain Kirk, TOS

3. Theoretical Background

In today’s operating systems processes are shielded from each other. A
process that needs to communicate with another process can not do so
directly, but has to use some form of interprocess communication method
provided by the operating system.

COM1 encapsulates this communication in a completely transparent
fashion: it intercepts calls to a distributed component made by a client and
forwards them to the component in the server process.

This chapter introduces COM and XPCOM2. It also explains the ideas
behind COM and the different parts of COM that are of interest in this
thesis.

3.1 Component Object Model

This section presents the technique and two different implementations. First
Microsoft’s COM for Windows and then XPCOM are presented. Microsoft’s
implementation is presented together with the technology since their
implementation was the first, and still is the de facto standard.

3.1.1 The Basics

COM is a widely used technique to implement programs in small
independent objects. It separates the interface from the implementation in a
very useful way. This separation means that a programmer using a COM
object only needs to know what the interface looks like and does not have to
bother about how the implementation is done.

C++ programmers may think that this is what they have been doing for a
decade. The interesting thing with COM is that a COM object may be
replaced with another COM object that implements the same interface and
possibly others extending it. Programs or COM objects using it do not need
to know about the change, nor do they need to be recompiled.

COM is a client server technology where the server serves the client with
COM components. There is nothing that prohibits the client to be a COM
component itself, but it does not have to. There are two kinds of servers, in-

1 Component Object Model
2 Cross Platform Component Object Model

3 Theoretical Background

12

process servers, where the server is actually loaded into the address space
of the client. The other kind, out-of-process servers, is implemented as a
separate process.

To assist the programmer in her task, an IDL1 compiler tool creates the
basic framework for the COM server. This is explained in more detail later
on.

The use of COM is largely centred around the Windows platform. Few
implementations are available for other platforms, but there is an ongoing
effort to make the technique widely available. The technique has been
proven useful for providing modularity in object oriented designs.

3.1.2 In-process Servers

What was said earlier about loading the server into the address space of the
client may sound just like a description of a DLL2. While this is true, it is not
the whole truth. An in-process server in COM is more than a DLL. It is a
precise way of implementing a DLL so that the interfaces are
interchangeable and extendible.

The way to acquire a COM object from an in-process server is shown in the
upper part of Figure 2 below. The client process starts by asking for a
specific object (identified with a unique ID). The SCM3 locates the server for
the object. The server is then loaded into the client’s own memory space
and a handle for the object is returned. Subsequent calls for getting
interfaces is made through this handle.

Calls for an object’s services are accomplished like regular function calls.
This is possible since a server that resides in the same memory space as
the client implements the object. This makes method calls on in-process
server objects really fast, about one microseconds overhead.

Passing an interface of a component in an in-process-server to another
component running in-process is simple since they are both in the same
memory space.

3.1.3 Out-of-process Servers

COM objects do not have to be implemented as DLLs, they can be ordinary
EXE-files4 as well. The EXEs must be accompanied with a DLL. However,
this DLL can be automatically generated with Microsoft’s IDL compiler tool.
An out-of-process server does not have to run on the same machine as the
client. When an out-of-process server is used, an automatically generated

1 Interface Definition Language
2 Dynamic Link Library
3 Service Control Manager
4 Executable files

3 Theoretical Background

13

proxy DLL is loaded into the client. This proxy DLL provides communication
transparently with the server.

When client and component reside on different machines, COM simply
replaces the local interprocess communication with a network protocol.
Neither the client nor the component is aware that the wire that connects
them has just become a little longer.

The automatically generated proxy acts as the component itself, so that the
client is unaware of whether an in-process or out-of-process server is used.
The proxy only forwards all requests to the real component. These kinds of
method calls take much longer time than calls to an in-process server.

Acquiring a COM component offered by an out-of-process server puts a bit
more stress on the COM system. The procedure is illustrated in Figure 2
below.

Locates,
runs servers

(3) "Here’s your
Connection"

SCM

Local
Object

Local
Object
Proxy

Launch
application

(1) Client:
"Create an
Object"

Application
Client

COM

In-Process
Object

(4
)

C
O

M
: "

H
er

e’
s

yo
ur

 p
oi

nt
er

"

(2) COM: "Find
a Server"

Figure 2: Acquiring a COM component

When the client asks for an object the SCM realises that the object needs
an out-of-process server to be running. It then launches the server or
contacts the SCM of the machine where the server resides. The connection
is then handled by a local object proxy, which in turn is implemented in a

3 Theoretical Background

14

DLL. This DLL is loaded into the client’s memory space and the client is
given a handle to the object proxy. Subsequent calls to the object are then
made through the object proxy.

Figure 3 depicts a memory layout for a client using both an in-process
server and an out-of-process server for its objects.

Inprocess
Object

Bar.dll

Proxy to
Out-of-process

Object

Service Control Manager

The COM Library

ORPC

The COM Library

Out-of-process
Object

Client.exe Foo.exe

Figure 3: COM example

Calls for an object’s services needs some extra handling too. The procedure
is shown in Figure 4. As can be seen object proxies are needed on both
sides of the process boundary in order to make it transparent to both the
client and the server.

Passing an interface of one component to a component running in a remote
server is a problem, since the server needs to load proxy code and
somehow obtain a connection to the actual component that was passed. To
achieve this the interface is marshalled, not the component itself. On the
client side the unmarshalling of the marshalled interface results in a proxy
component.

3 Theoretical Background

15

Process
Boundary

Client

Proxy

RPC Runtime

Transport

Channel

Transport

RPC Runtime

Proxy

Object

COM Library
Channel

COM Library

Figure 4: Calling an out-of-process component

3.1.4 Cross-platform COM

XPCOM is another flavour of COM, and is mainly used in the Mozilla web
browser project. XPCOM is aiming at being a platform independent
implementation of a subset of COM. Since XPCOM is such a limited
implementation the number of prerequisites for a platform to be supported is
minimal, and as a result the number of supported platforms contains,
amongst others, such different platforms as Linux, MacOS and WindowsNT.

The architecture for XPCOM is very similar to Microsoft’s implementation,
but the names have been changed to better suit the Mozilla project. Another
limitation imposed on the programmer is that only the use of C++ is
supported at the moment.

3.2 Marshalling

Marshalling is the process of converting data into a format suitable for
transmission over a communication channel. In the context of this thesis we
are concerned with marshalling of arguments to functions. The converted
data is then transported to the other object/program and marshalled back to
the local representation of the data. Also, pointers must be followed and not
just copied.

3 Theoretical Background

16

To be able to marshal a structure, the structure of the data must be known.
This information is needed both when encoding and decoding. Often, the
structure of the data is described in some language.

If data is to be transported over a network, all data in the structure must be
converted to some intermediate form, since many things can be different in
the target architecture. Both length of data types and byte order can be
different. If the receiver is on the same CPU1, or set of CPUs, the data does
not need to be converted at all, aside from pointers. The pointers must be
followed and the data pointed to must be copied. On the receiving side the
pointers must be updated again to point to the correct data.

To write the code for encoding and decoding the data that is transferred is a
tedious and erroneous task. In order to help the programmer, special
programs have been developed to assist the process. Figure 5 shows the
parts involved in automatically acquiring the files used in the program being
developed. The specification file is written in a special language, IDL2. The
IDL is independent from the implementation language. Then an IDL
compiler tool processes the specification file and generates two things. First
a header file describing the structures involved in the protocol in a way
understandable by the implementation language. Secondly stubs are
created, these are used for the actual encoding and decoding.

tool
Compiler

Header file Stub files

Specification file

Figure 5: IDL compiler tool process

There are several standardised ways of doing marshalling. They mostly
involve packing normal data types into a transport representation and back
to the local representation. They also include ways of defining own complex
data structures and data types.

1 Central Processing Unit
2 Interface Definition Language

3 Theoretical Background

17

For an IDL to be considered useable it has to support the following two
things:

• Structures

• Pointers

All the IDLs presented here supports both.

3.2.1 Encoding Rules

Together with the ASN.11, a standard for describing data formats in an
implementation independent way, a set of encoding rules have emerged.
ASN.1 is a very powerful syntax for describing data formats and in many
people’s opinion it is too powerful to be of practical use. But later years’
advances in encoding of data have made it possible to improve on the
encoding rules. ASN.1 is emerging as the preferred way of describing data
formats.

The power of ASN.1 has as result that the encoding rules have to be
complex and quite verbose. It also results in that when encoding a piece of
data the encoder always has to choose between two or more ways to do the
encoding. As can easily be understood this makes the encoding hard to do
by hand for a programmer. By now there exists several good tools to assist
in this.

3.2.1.1 Basic Encoding Rules

BER2 was the first and most basic of the encoding rules that surfaced
together with the ASN.1 standard. It uses a concept called TLV3 in which a
parameter’s value is proceeded by its type and length. BER is a very
verbose format of passing information, and it was long thought that in order
to ensure extendibility of a format this type of verbose format was needed.

3.2.1.2 Packed Encoding Rules

PER4 was developed to address the verbosity of BER. PER is both more
compact and more efficient in encoding. A computer actually uses less CPU
cycles to produce a PER encoding compared to a BER encoding [3]. This is
mostly an effect stemming from usage of restrictions on the values being
transmitted. This imposes a need on both sides of the communication line to
know more about the information being transmitted, but through careful
engineering extendibility was achieved.

1 Abstract Syntax Notation One
2 Basic Encoding Rules
3 Type, Length, Value
4 Packed Encoding Rules

3 Theoretical Background

18

3.2.1.3 Distinguished and Canonical Encoding Rules

In BER there is always an option on how to do an encoding in ASN.1.
Whenever there is an option in what way to encode, DER1 resolves it in one
direction and CER2 in the other. This makes DER and CER roughly
equivalent. For the application considered in this work they are similar
enough to be treated as one.

According to [3], CER is technically superior to DER. Despite this DER has
become the de facto distinguished/canonical encoding for BER.

3.2.2 External Data Representation

XDR3 [1] is a standard for both description and representation of data. It is
useful for transferring data between different computer architectures. The
major difference between ASN.1 and XDR is that XDR uses implicit typing,
while ASN.1 uses explicit typing. That is, in XDR the sender and receiver
must know both types and ordering of the data.

XDR uses a language to describe data formats. Besides the standard data
types, own structures and types can be defined in this language. The
language supports use of recursive structures as well as pointers.

3.3 Interprocess Communication

The operating system must provide some way for processes to share data
and communicate. IPC4 can be done in many different ways. Therefore the
operating system may provide several ways to share data and to
communicate with other processes.

IPC can be achieved by letting processes share memory or by giving the
processes some form of data channel to communicate through.

3.3.1 Remote Procedure Call

RPC5 [4] is one of the most used way for achieving communication between
two processes executing on separate computers. RPC was originally
developed by SUN and it is used in their NFS6.

It uses XDR for representing the data being transferred. The IDL for XDR is
extended to also accept declarations of procedures. By doing this it is

1 Distinguished Encoding Rules
2 Canonical Encoding Rules
3 External Data Representation
4 Interprocess Communication
5 Remote Procedure Call
6 Network File System

3 Theoretical Background

19

possible to get the compiler tool (rpcgen) to produce stubs for both the
server and the client.

The process for developing a program using RPC is shown in Figure 6.

square_xdr.h

square.h

runtime
library

client server

square_clnt.c square_svc.c

RPC specification file

executable

client client stub server stub server

executable

cc cc

rpcgen

square.x

client.c server.c

#include #include

Figure 6: RPC compiler tool process

The architecture for RPC can be seen in Figure 7, the similarities to Figure
4 are easy to see. The only thing COM has added is two new layers, the
object proxy and the actual COM library.

3 Theoretical Background

20

Routines
Client

Runtime
RPC

Client
Stub

Network
Routines

Routines
Server

RPC
Stub

Server

Runtime

Network
Routines

process

kernel

Client Process Server Process

process

kernel

Figure 7: Calling a remote process via RPC

COM uses a derivative of RPC called ORPC1 to achieve distribution of
objects. ORPC is implemented as a layer on top of standard RPC.

3.3.2 Unix Pipes

Using pipes and sockets is the oldest way of achieving IPC in Unix. The
original Unix pipes were unnamed and therefore hard to use as IPC
between unrelated processes. In System III of Unix (1982) a named pipe
(FIFO2) was introduced to remedy this problem. Both pipes and FIFOs are
half-duplex, however, there are some flavours of Unix that provide full-
duplex pipes. A pipe behaves like a single communication channel and all
processes that connect to it get access to everything that is written to it.

Pipes are created using the pipe(2) function call. Usually this call returns
two file descriptors, one for reading and one for writing.

FIFOs are sometimes referred to as named pipes, since the only difference
between a pipe and a FIFO is that each FIFO has a pathname associated
with it. To create a FIFO the system call mkfifo(3) is used. After creation the
FIFO can be open using the open(2) system call. Since a FIFO is half-
duplex it can only be opened in either read- or write mode, not in both.

3.3.3 Unix Domain Sockets

What is usually referred to as sockets is actually an API to several protocol
families. One of the most used, TCP/IP3, allows connections between

1 Object Remote Procedure Call
2 First In, First Out
3 Transmission Control Protocol/Internet Protocol

3 Theoretical Background

21

computers via a network, but there are others available and the most
interesting in connection with this work is a protocol family called Unix
domain sockets. It only allows connections to sockets on the same machine
and hence they are a lot like named pipes, but there are some important
differences. All sockets are bi-directional and they are connection-oriented;
each connection to a socket results in a new communication channel.

A Unix domain socket is created by providing bind(2) with a filename. For a
client to connect to an existing socket is done through the connect(2) call.

But because of the extra functionality sockets can be expected to be
somewhat slower than pipes. This was also confirmed by looking at the
source code of Linux; it contained a lot more code to be executed than the
implementation of pipes did. Because of this we decided early on to not
include Unix domain sockets in the evaluation.

3.3.4 Shared Memory

The fastest way for two processes to communicate would obviously be if
they shared a portion of their memory with each other. There are several
ways to achieve this in a Unix environment. Two major systems exist,
POSIX1 and System V shared memory. They are very similar to each other
in concept. They both provide shared memory by memory-mapped files and
shared memory objects. They also provide ways of synchronising access to
the shared memory. A third way of sharing memory is to map a file directly
using mmap(2).

Mapping a file into the memory of a process is accomplished by using the
mmap(2) system call. First, a file is opened (possibly creating it at the same
time), then the file descriptor is used as an argument to mmap(2).
Subsequent reads and writes to the memory space mapped to the file will
be translated into operations against the file in question, thus the need to
use read(2), write(2) and lseek(2) is eliminated.

Mapping in the way described above requires that a file is created before
mapping. This is sometimes unnecessary, e.g. when sharing memory
between related processes. By mapping the file /dev/zero (in SVR42) or by
giving mmap(2) a special flag (in 4.4BSD3) one obtains a piece of mapped
memory that can be shared across a fork(2).

The POSIX way of doing shared memory is a little different from the use of
mmap(2). POSIX offers the use of a memory object which can be shared.
Creation of the object is done through shm_open(2). This object is then
mapped into memory using mmap(2). Memory-mapping files is described
above.

1 Portable Operating System Interface, with an X thrown in to make it sound cooler [18]
2 Unix System V Revision 4
3 Berkley System Distribution version 4.4

3 Theoretical Background

22

The concept in System V is almost the same as in POSIX, but the names of
the function calls differ. To obtain a memory object which can be shared the
shmget(2) function is used. To map the object into memory shmat(2) has to
be called. Another difference between the two presented ways of achieving
shared memory objects is that POSIX allows the size of the object to be
changed (through a call to ftruncate(2)) while the size is fixed from creation
in System V.

3.3.5 Message Queues

Message queues can be looked upon as linked lists of messages.
Messages can be put into the queue removed from it. Each message is a
record with a priority. Message queues have kernel persistence in that they
will keep on existing even though the creator of it has terminated, it will even
keep its messages for reading by another process later. As with shared
memory there exist two major systems, POSIX and System V.

The System V way of using message queues involves opening or creating a
queue using msgget(2). To put a message onto the queue msgsnd(2) is
used and to receive a message one uses msgrcv(2). POSIX provides
similar calls, mq_open(2) to open or create a queue, mq_send(2) to put a
message on the queue and mq_receive(2) to receive a message.

The main differences between these two systems are the limits imposed on
the programmer. System V has system wide limits regarding both maximum
number of queues and the maximum number of messages. POSIX on the
other hand only puts limits on the maximum number of queues a single
process can have open at once.

This method to achieve IPC was not included since Linux only provide
System V message queues. The limits would make the system utterly
useless.

3.3.6 Doors/Linux

Doors/Linux is an implementation of the Solaris Doors API1. It is essentially
an RPC mechanism. Doors are made visible to the applications
programmer as standard UNIX file descriptors. To make a door visible to
other applications, a process may attach an existing door descriptor to an
existing file. For another process to use the door, it opens it and then calls
door_call(3x) using the door descriptor.

1 Application programming interface

3 Theoretical Background

23

(1
)

do
or

_c
re

at
e(

)

(4
)

do
or

_r
ev

ok
e(

)

(2) door_call()

(3
)

do
or

_r
et

ur
n(

)

Client Server

Door
Module

Linux Kernel

file

Figure 8: Doors/Linux example

The Doors API was engineered with performance optimisations in mind.
The result is a fast way to do interprocess communication. This is achieved
by letting the kernel decide if the arguments should be copied or mapped
directly into the target process. If they are mapped into the target process’s
memory space, the pages are only copied if a process attempts to modify it.
Also, server threads will be created in the calling process in proportion to
the load on the server (at most one thread per concurrent request). The
server has control over how many threads are created via
door_server_create(3x).

Doors is implemented by use of shared memory and is therefore faster than
for example pipes, where the kernel have to copy the data between the
processes.

An example of how a connection is established and how a call is made is
illustrated in Figure 8. The client locates the door through the normal UNIX
file system. Here is a normal life of a door:

1. The server creates the door. The client opens (open(2)) the
door by locating it in the file system

2. door_call by the client to the server

3. door_return back to the client

4. door_revoke by the server. The door is now closed and is no
longer valid.

Points 2 and 3 are normally repeated many times before the door is
revoked.

3 Theoretical Background

24

A complete definition of the Solaris Doors API and a more detailed
description of the Doors/Linux implementation can be found at [12].

3.4 Authentication and Encryption

Before a program sends sensitive data it must assure itself that the receiver
is in fact the one intended and not someone else. In order to assure this a
client might ask a server to authenticate itself when the connection is
established. It might also be in the interest of a server to force its clients to
authenticate themselves, perhaps in order to limit the services offered to
clients of lesser security clearing.

There are several strategies and algorithms usable for authentication. They
share the common trait to be quite complex.

Together with authentication comes the subject of whether the transmission
itself is secure. Authentication of both sides involved in the communication
ensures both sides are in fact whom they say, but it does not prevent
someone to tap in on the transmission and eavesdrop. To prevent
eavesdropping, the data needs to be encrypted in one way or another.

Encryption algorithms are publicly available in abundance. Implementations
are available commercially as well as freely.

The subject of authentication, as well as that of encryption of data will not
be considered in this work as was mentioned in section 2.2. It was deemed
as too big a task to include these two areas in the research. A well-designed
system should however not necessitate large changes in order to add it, this
is left as an exercise for the reader.

4 Problem Analysis

25

“I hope you will look beyond what
powers moves my hands and look
at what thought inspires them to
move.”

- Captain Jared, DS9

4. Problem Analysis

This chapter starts with an analysis of the problem and discusses roughly
what parts are needed in order to make the system work. Then what can be
considered an almost perfect distributed component system is described.
Finally a description of the functions put into the system resulting from this
research are described.

4.1 Component Object Model

As stated in section 3.1 multiple implementations of COM1 exists today. The
goal of this research is not to implement it yet one more time, but instead to
examine different methods of IPC2 in a COM environment. This leads us to
assume that there will be a fully functional implementation of COM available
and all that is done is extensions to it.

The changes to the used COM implementation are kept to a minimum. This
is mainly done out of convenience. We do not want to depend on the
availability of the source code for the implementation we decide to use. The
implementation we use might also be in a stage of development during the
time this research is done, and by just extending it we can change to newer,
and preferably, better versions without too many hassles.

A full implementation of COM is not needed since no communication with
other computers is needed. Even though the extension we make will make it
possible to use out-of-process servers we do not follow any Microsoft
standards since these standards only cover the usage of ORPC3 for IPC
and the source code for Microsoft COM is not available.

Looking at Figure 2 one can see that something corresponding to SCM4 is
needed. SCM works as a database where both in-process servers and out-
of-process servers register themselves with the IDs of the components they
offer. In the COM implementation we use, there will most certainly already
be some kind of database available for registering servers. Whether it can
handle both in-process and out-of-process servers depend on how much of

1 Component Object Model
2 Interprocess communication
3 Object Remote Procedure Call
4 Service Control Manager

4 Problem Analysis

26

the COM standard it implements. No matter what the case is we will extend
the system with one more database. This is in order to let running servers
register themselves together with the ID of their component and the
preferred method of IPC. The IPC method is an extra field that is not
present in whatever database that is used with the used COM
implementation. Adding the field would mean a major change to the
database and hence changes to the source code are needed. Adding a
second database makes the whole system larger but instead changes to the
underlying COM implementation are not needed.

The system must also offer an interface that simplifies accesses to the
database.

The system will cater servers and clients. It must be simple for a server to
use the system and offer its component to clients. It must also be simple for
a client to obtain a component offered by a server. Two separate interfaces,
one for servers and one for clients are needed to satisfy the needs of them
both.

4.2 Feasible Features

The making of a system of distributed objects is a complex task. Many
aspects have to be weighed in. Security versus efficiency is one of the more
difficult ones to resolve. It is however an easy task to list a set of features
that are desirable from a user’s (programmer’s) point of view. In this section
these features are listed and described in detail.

The most important feature is that of transparency. The programmer should
never have to take into consideration whether the object’s server is located
in a remote computer, locally or even loaded into the client’s memory space.
This is accomplished by using one single method of acquiring an object.
The system has to take care of all of the details regarding locating a server
and then establishing a connection with it. It is also important to provide the
programmer of the server with a tool that relieves her (or him) of the tedious
task of writing code for object proxies if that is necessary.

In the available implementations of COM it is possible for the programmer of
the client to control what kind of server he or she wants. The different
servers are:

4 Problem Analysis

27

in-process server - dynamically loaded library

in-process handler - dynamically loaded library with an object
that handles some of the functionality of the object, the rest is
handled by a remote server

local server – a server running in a separate process on the
same machine as the client

remote server – a server running on a different machine from the
client

These four types of servers cover all the possible scenarios regarding the
server’s location. There are however some extra features that might be
desirable to have some control of. It should be noted that controlling things
regarding the server’s location and implementation should be optional. A
programmer should not have to consider it if he or she does not want to.

Other features that a client process might want to control are the use of
encryption of arguments. Sending sensitive data from the client to the
server process on a remote machine for processing in clear text is not a
realistic option in many applications. Encryption of arguments can be done
using a number of different algorithms. These algorithms often differ in level
of security and speed, where a higher level of security often results in lower
speed. It is not hard to conceive a scenario where the client process might
want to choose the encryption algorithm to use when communicating with a
certain server.

On the server side it is desirable to have the means to limit the services
offered to clients who are trying to establish a connection. It is not hard to
imagine a scenario where a server is keen to offer services to clients
located on the same local area network as itself, while clients connecting
from other parts of the Internet are considered to be insecure and therefore
not offered the same services. Making it impossible for computers located
outside the local area network to connect the machine running the server
might not be a realistic solution to this problem. Having the clients
authenticate themselves in some way could solve the problem. There exists
a plethora of authentication schemes and it should be possible for the
server and client to agree on what scheme should be used before the
connection is usable.

When connecting to a remote server the way of communicating is
somewhat limited. The COM standard says that a superset of RPC1 (called
ORPC2) should be used. There might however be other ways to send data
between the client and the server. When it comes to local servers, RPC is
definitely not the most efficient way to transmit arguments. Other schemes

1 Remote Procedure Call
2 Object Remote Procedure Call

4 Problem Analysis

28

to achieve call to local servers are abundant and include pipes and shared
memory among other. A client who explicitly asks for a local or remote
server also should have the option to ask for a specific communication
method. The reason for this is mainly that a client knowing that it will use the
object in a sporadic way might not care about the communication method.
The client who will make excessive use of the object might on the other
hand want to make sure that only the fastest communication method is
used.

One thing that is absolutely needed in order to make a distributed system of
objects usable is the possibility of passing objects between clients. Extra
care must be put into this in order to make it safe in regard to authentication
and encryption of arguments.

4.3 System Functions

In this section the system functions implemented in the prototype are
presented. Only a subset of the features presented in the previous section
are implemented as the time available was limited, and some of the features
were not needed in order to accomplish the goal of the research.

The system only offers four different functions:

Registering a server of a specific component.

Unregistering a server.

Creation of a remote object.

Method calls on a remote object.

Each presentation is divided into three parts. First a short description of the
function is presented. It gives some background to the problem addressed.
Then the conditions that must be met before the function can be used are
given. Some functions depend on the execution of other functions before
they can be used. Lastly a more in-depth presentation of the function is
given. It further specifies the problems and peculiarities of each desired
function.

There are some preconditions that are common to all the desired functions.
They are presented in the following section.

4.3.1 Preconditions For All Functions

The system is built on several different parts. Some of these play a very
central role in all the functions presented below and are therefore explained
in a little more detail here. Parts and components specific to a certain
function is described when it is first mentioned in the text.

4 Problem Analysis

29

Some sort of database is needed where running servers can register
themselves and inform the system of what components they supply (see
section 3.1.3). How this database is designed or how the servers access it,
is not decided. For now we just assume there is some way for the servers to
access the database.

4.3.2 Register A Server

This function describes the problems surrounding registration of a server of
a component.

Preconditions

None, except the ones mentioned in section 4.3.1.

Function Description

A server that offers components must somehow tell the system that its
components are available. The way to do this is to register it with the
system.

When a server starts it is supposed to register itself with the system. This is
done in order to make the components it offers available to clients.

Each server implements at least on method of IPC, this too is registered in
the system.

A server must also have some sort of connection point where it can be
contacted. Together with the IPC method this provide enough information to
make it possible for clients to contact the server.

4.3.3 Unregister A Server

This function handles the process surrounding the unregistering of a server.

Preconditions

The server must of course be running and be registered (see section 4.3.2).

Function Description

A server that stops executing has to tell the system that its component is no
longer available to clients. A server should not stop executing as long as it
has clients who are connected to it, unless a non-recoverable error occurs.

As the server prepares to exit it has to remove all its entries in the database.

4 Problem Analysis

30

4.3.4 Creating A Remote Object

The first obstacle stumbled upon is the case of how to create an object on
the server side.

It might be desirable to be able to specify the method of IPC to be used.

Preconditions

The component is in fact not implemented in an in-process server, but by a
separate process that is running. The DLL1 implementing the object proxy is
registered with COM under the component ID previously mentioned.

There must also be a sender component registered with COM that
implement the IPC method used by the server.

Function Description

Given a certain component’s ID the program would like to obtain an
interface implemented by this component.

On the server side an object must be created and then an ID for this object
must be transmitted to the client. The ID is needed for future references to
the object.

4.3.5 Method Call On A Remote Object

The natural way to extend the function presented in section 4.3.4 is by
calling a method of the interface.

Preconditions

The client needs to have obtained an object proxy in the manner described
in section 4.3.4.

Function Description

This is probably the most central function. Without the ability to call a
method on a component the whole system is meaningless.

By using the ID obtained through the execution of the function presented in
section 4.3.4 the correct object is referenced on the server side. Arguments
are passed through a communication channel and then given to the actual
object. The results are passed back in the opposite direction.

1 Dynamic Link Library

5 Design

31

O’Brien: “Do we make a run for it?”
Sisko: “We make a run for it all
right. Run right at it.”
O’Brien: “Ahh. Pattern suicide.”

- from DS9

5. Design

This chapter presents the design and our design choices. The presentation
has been divided into two parts. First the overall design, where the
behaviour and design ideas shared between several of the different
components is presented. Secondly, the more detailed design issues for the
separate components are given.

5.1 Overall Design

One of the overall design decisions that was taken in an early stage was to
make it as easy as possible to change between different solutions (see
section 4.2 for a discussion about why this is important). This proposed
using a highly modularised design. The different areas where work needed
to be done was:

• Marshalling.

• Interprocess communication.

Both of these areas are covered in detail in the following sections.

Another decision that was made was to try to use design patterns as much
as possible. This will ensure that the design is both sound and robust, it also
helps the understanding of the design from a reader’s point of view.

5.1.1 Component Object Model

The many different flavours of COM1 available make it inevitable to have to
choose one. In this decision several things has to be weighed in. The things
that have to be considered are:

1 Component Object Model

5 Design

32

• Closeness to the target environment.

• Availability to source code.

• Availability of an IDL-compiler supporting distributed
components.

• Support for distributed components.

Among these four the first two were deemed most important. The closeness
to the target environment (Linux) is a must to get reliable data from the
tests. The source code is an important asset since the design of our
implementation is very dependent on the design of the core system. The
other two criteria are of minor interest since these parts can be implemented
by hand for the evaluation in this thesis. For the system to be complete at
least an IDL1 compiler must be written, or extended, to generate code with
support for distributed components.

COM for Windows is out of the question because of the difficulties with
obtaining the source code. The implementation that is left after this is
XPCOM2, not an ideal choice since it does not fulfil the last two criteria. But
the availability of the source code and the fact that it runs fine on Linux
makes it a candidate.

The proposed design for extending XPCOM in order to accomplish the
needed tests can be viewed in Figure 9. An effort is made to keep the
changes in XPCOM minimal and to instead extend it. This design uses the
Forwarder-Receiver ([11], 307 pp.) design pattern in combination with the
Client-Dispatcher-Server ([11], 323 pp.) design pattern.

The system consists of several parts. As can be seen in Figure 9 below
there are mainly three parties involved, the client, the server and the Server
Management System (SMS). The SMS itself is made up of two parts, first
the Server Manager (SM) and then a set of interfaces used to access the
SM.

1 Interface Definition Language
2 Cross Platform Component Object Model

5 Design

33

You Asked For
Component

(2) Give Me
Component A

(6) Where Is
My Server?

(1) Register Me As A Server
For Component A

(3) What DLL

Component A?

(8) Do This!

(11) Here’s The Result

(7
)

Y
ou

r
S

er
ve

r

(9) No, You Do This!

(1
0)

 R
es

ul
t

(4) Name Of DLL

Proxy
Object

DLL
Server

SM

(5) Here’s The

XPCOM

Client

Repository

Implements

Process boundary
XPCOM Call
SMS Call

Figure 9: The proposed architecture of our system

The steps involved are the following: First the server registers itself with the
SM (1). When the client is started and a component asked for (2) XPCOM
looks into its repository to find the DLL1 implementing the component
(actually it implements the object proxy) (3). Once the name of the DLL is
found (4) it is loaded into the memory of the client (5). Once loaded the
object proxy contacts the SM in order to acquire the server port (6), once it
is returned (7) it is used for all the future connections between the server
and this object proxy. In order to execute a method call (8) the object proxy
relays the call to the server (9) via the connection established earlier. The
result is returned first to the object proxy (10) and then to the client (11).

In the figure above (Figure 9) the filled arrows denote parts needed to be
added, while the dashed arrows are already present in XPCOM.

In this design it is not possible for the server to be started if it is not already
running. The reason for this is that adding this functionality is deemed as a
minor feat but it also requires a change in the representation of the
repository. That would be a major change to the core system of XPCOM
and hence is not desirable.

It should be noted that on this level nothing is said about several servers for
a single component, a situation that might be desirable. The question about
what to do if the exactly same server is started twice is also dodged
gracefully.

5.1.2 Marshalling

Marshalling is, as was described above, concerned with representation of
data. Agreeing on the representation of arguments and data to be

1 Dynamic Link Library

5 Design

34

transferred is crucial if the data is to be transferred between two different
architectures. This research is not concerned with communication between
different architectures since the processes that will communicate will be
executing on the same computer. This made it easy to come to the
conclusion that marshalling into a network representation of data is not
necessary.

The use of an IDL compiler tool is tightly coupled with marshalling, and this
is one thing we do need. To require that the programmers themselves make
the code for packing the data would only result in errors or that nobody uses
the system. The use of an IDL and the accompanying compiler tool is
therefore necessary.

Changing representation of data is not necessary, because of the reasons
previously stated. There is however one exception. In order to successfully
pass interfaces between processes there is a need to marshal them. An
interface is simply a pointer to an object in C++. This pointer can not, of
course, be transferred as it is between two processes. The way to marshal
an interface is described in [5] (206 pp.).

In conclusion can be said that marshalling is only needed for passing
interfaces. However, the benefits of using an IDL compiler tool will be
utilised.

Unfortunately the available IDL compiler tool for use with XPCOM (xpidl) is
not capable to generate source code for stubs and object proxies. This
makes it necessary to put more work than earlier expected into coding the
components. In the future, an IDL compiler tool capable of generating
everything needed for distributed components must be written. In order to
perform the tests at hand it is acceptable to use xpidl and write the rest by
hand.

Since this thesis is more geared towards comparing IPC methods than
implementing a component system, marshalling of interfaces will not be
considered in our prototype, but there is nothing inherent in the design that
prevents adding it later on.

5.1.3 System

As can be seen in Figure 9 above, an object proxy on the client’s side will
handle the communications. This proxy will start by acquiring an initial
connection to the server. If this connection is used for all communications
with the object or if a new one is established per object is up to the
implementation. If the same connection is used for all objects, some sort of
identification must be sent with all requests, to uniquely identify the object
that is actually called. Potential problems regarding synchronisation issues
have to be handled by the server.

5 Design

35

The runtime system, consisting of SM and the object proxy, has to be
changed slightly for each method of IPC1. The common denominator
between all the methods to be evaluated is the need to set up a connection
between the client and the server. After that what remains is but to send
requests and return values over the connection.

To achieve a piece of shared memory to pass the arguments in it is
necessary to acquire the name for the object to be shared. When pipes are
used the path to the servers pipe is needed. In order to use Doors/Linux the
name of the door has to somehow be transmitted. So, the runtime system
will still be passing around objects, but different kinds of objects depending
on the mechanism used for IPC.

Once the connection is established the server has to take care of incoming
requests and handle them appropriately. The return value is then
transferred back to the client.

5.2 Detailed Design

In this section the design is presented in more details.

5.2.1 Cross-platform COM

The necessary extensions involve making it possible to, from within a client,
locate a running server’s access point, whether it be a path to a Door, a
named pipe or the port it is listening to. As has been explained above the
way chosen to do this is by having an SMS where each running server must
register itself and which clients then can use to locate the desired server.

Two different ideas for the SM will be presented here. The first one makes
use of a process, which must always be running, to manage the registration
of new servers. The second one utilises an external database to achieve the
desired result.

Implementing the SM as a separate process makes it necessary for the
client to first connect to the SM in order to register itself. The client would, in
order to acquire a connection to a server, have to first connect to the SM to
get the location of the server and then it can continue to establish the actual
connection. When the server stops running it will have to unregister itself by
once again connecting to the SM. One is facing several problems in this
scenario. First of all the SM has to be robust in the sense that it can reliably
handle many connections in a short amount of time. The registration
process also leads it to manage a list of available servers with their
respective paths of access. Managing this list while there is several
connections coming in imposes the need for synchronisation. When taking

1 Interprocess communication

5 Design

36

all of this into account it makes the idea of making the SM into a process of
its own quite a cumbersome way to take.

The second idea for implementing the SM emphasises on the fact that the
role of the SM as described above is in fact the same as the role of a
database. Basing the implementation of the SM system on a database
relieves the programmers to a large extent. It also makes it possible to
choose a suiting environment for implementation, where things like
robustness and reliability can be weighed in. All the objections to the idea
with making the SM a separate process are vanished when it is replaced by
a database. As a matter of fact it introduces some interesting features to be
used. Among these is the use of transactions, which make it possible to
backtrack if for some reason a server dies while registering.

The set of XPCOM interfaces providing access to the SM would look almost
the same no matter which of the designs chosen for the SM. An overview of
the design is presented in Figure 10. And as can be seen in Figure 11 the
component will implement two interfaces.

CServerManager

IDBConnection

CDBConnection

Database

Figure 10: The ServerManager’s connection to the database

This design, seen in Figure 10, where CServerManager knows of an
IDBConnection makes it possible to change the SM without having to make
big changes to the component. Changing the SM will demand a change in
the CDBConnection, but this will have to be done no matter what the design
looks like. This design is simple and adequate to handle the functions
presented in section 4.3.

5 Design

37

CServerManager
ISMClient

ISMServer

Figure 11: IServerManager

The CServerManager will, conceptually, work in two different modes. For
the server it will be a component where one registers oneself. For the client,
on the other hand, it is the component that helps in locating the desired
server. This makes it only logical to offer two different interfaces to the
component.

The time limit imposed on conducting the research for this master’s thesis
made it easy to choose the design where the SM is implemented using a
database. This is not only the best choice in the aspect of difficulty of
implementation; it is also the most general implementation and allows
further development.

5.2.2 Marshalling

The system is designed to be as modular as possible. This makes adding
marshalling later on easy. This easiness is desirable since the system might
some day be extended in ways where marshalling is actually needed.

By implementing the marshalling as a COM interface the desired modularity
is easily achieved. The sending of the data will also be done through an
interface. There has to be some sort of connection between these two
interfaces since they both will work on the same data, the marshaller
(IArgMarshal) will prepare it before the sender (ISendAndReceive) sends it
away. When data comes back ISendAndReceive will receive it and then the
unmarshaller (IArgUnmarshal) will be used to extract the actual results. The
obvious approach to this problem is to let the two interfaces somehow share
a buffer that they work upon. But there are several ways to achieve this.

The naïve approach would be to let IArgMarshal and IArgUnmarshal work
on a simple buffer that is not connected in any way to the ISendAndReceive
that will be used. The result of the marshalling of a variable would simply be
written into this buffer and later the buffer is turned over to the
ISendAndReceive for sending it. As can easily seen by the astute reader
this will result in unnecessary writes in some cases.

To get around the problem with unnecessary writes into the buffer we let
ISendAndReceive offer a factory method (see Factory Method Pattern [7]
87 pp.) for the buffer. In this way the buffer will be tailored to suit the IPC
used. IArgMarshal (and IArgUnmarshal) will use this factory method in order

5 Design

38

to retrieve the interface to the correct buffer. The design is described in
Figure 12.

IBufferIA
rg

M
ar

sh
al

ISendAndReceive
Object Proxy

CArgMarshal

CXSendAndReceive

CXBuffer

Figure 12: IBuffer

Performing marshalling would then be a simple matter of obtaining an
IArgMarshal and an ISendAndReceive, then giving IArgMarshal the IBuffer
supplied by ISendAndReceive. Then IArgMarshal does the actual
marshalling. When done, one just tells ISendAndReceive to send whatever
is in the buffer. Unmarshalling is done in an analogous way.

5.2.3 System

Object proxies on both sides will always handle the interprocess
communication between a server and its client. This is done in order to
make it easy for the programmer and relieve her or him from the tedious
task of implementing the communication. In the future the task of producing
this code will be fully automated through the use of an IDL compiler tool.
The lack of an IDL compiler tool capable of this for XPCOM necessitates
writing this code by hand for now.

In this section the design is presented together with an explanation of the
intended use. In the following sections the peculiarities for the different
techniques for IPC is presented.

5.2.3.1 Object Proxy

In order to make it easy to change the IPC mechanism the design is made
as modular as possible. An overview of the idea behind the design is
presented in Figure 13.

5 Design

39

CXSendAndReceive

CArgMarshal

CArgUnmarshal

Object Proxy
IArgMarshall

IArgUnmarshal

IS
en

dA
nd

R
ec

ei
ve

Figure 13: The role of the object proxy

The proposed design makes it easy to change the behaviour of a single
part. By exchanging the components implementing IArgMarshal and
IArgUnmarshal a different scheme for marshalling is deployed. In a similar
way exchanging the ISendAndReceive easily switches the mechanism for
IPC. As can be seen the component will not rely on the assumption that
both marshalling and unmarshalling is done by the same component.

5.2.3.2 Server

A server can be divided into two parts. The first part handles the request on
an initial stage and unmarshalls the arguments before passing them on to
the other part, the object itself. The opposite way is taken before returning
the results to the object proxy.

The schematics of a server are shown in Figure 14 below.

1

3 4
2

Wait

Method1
Function

Method2
Function

Array

Object

Figure 14: Server schematics

A request is sent to the listening procedure (1). A service identifier is
extracted and then used to index into the array of procedures (2). The
indexed procedure is called (3). In this procedure the arguments for the

5 Design

40

method are extracted and the method is invoked on the correct object (4).
The results are then returned back to the listening procedure. The results
are then packaged appropriately before sending them to the client.

5.2.3.3 Locating A Server

When it comes to looking up the server there are at least three different
ways to accomplish it. The first scheme achieves flexibility through object
oriented design, the second is slightly faster but less general. Finally, the
third one is a hybrid between the two first. Figure 15, Figure 16 and Figure
17 depicts the three different designs proposed. In some figures a
component named CXSendAndReceive appears. The X is exchanged for
the different IPC methods e.g. CRPCSendAndReceive,
CDoorsSendAndReceive, etc.

The first alternative uses dynamic type inference. By letting the database
include information about the type of the server that implements the desired
component it is possible to develop one general component which
implements ISendAndReceive. Utilising the ISMClient interface the
CXSendAndReceive can decide which kind of connection it needs.

CSendAndReceive

ISMClient

ISendAndReceive

CXSendAndReceive

CServerManager

Object Proxy

Figure 15: The dynamic approach to SendAndReceive

The second alternative is compile-time static. By deciding at compile time
what server to use for a given object proxy. Instead of implementing one
general CSendAndReceive component, several specialised ones are
implemented, one for each type of IPC.

5 Design

41

ISMClient

ISendAndReceive
CSendAndReceive

CServerManagement

Object Proxy

Figure 16: The static approach to SendAndReceive

A third alternative would be to let ISMClient offer a factory method for the
sender (see Factory Method Pattern 87 pp. in [7]). The factory method in
CServerManager would look at the registered servers for this object proxy
and chose a suiting one. Depending on the IPC method supported by the
server the correct CXSendAndReceive is created and its ISendAndReceive
is then returned to the object proxy.

ISMClient

IC
on

ne
ct

io
nO

bj
ec

t

ISendAndReceive

CXSendAndReceive

CServerManagerObject Proxy

Figure 17: The improved dynamic approach

Alternative one is as general as can be while alternative two is static after
compiling. The generality offered by the first design is desirable but since
the third alternative offers the same amount of generality without relying on
object orientation it gives a general feel of “COM closeness” and because of
this it was chosen above the others.

5.2.3.4 Omissions

Some issues that were neglected earlier demand attention at this point.
Allowing several servers for the exact same object and using the same IPC
might be desirable in order to achieve a general distribution of objects. It

5 Design

42

also makes it possible to have to make a choice of which server to use. This
would make the system too big for this thesis, but the design makes it
feasible to extend the system in the future with this feature.

While servers are expected to keep on running forever they sometimes do
not quite live up to the expectations. Detecting the sudden demise of a
server requires some sort of regular checking. To make the system reliable
and truly usable a mechanism for detecting the death of a server and, if
needed, restarting it is necessary. This part of the system will however not
be considered in this thesis.

5.2.4 Interprocess Communication

All the different methods of IPC are implemented through separate
components implementing the IConnectionObject interface. Efforts have
been made to make these components isolated from the object proxies.
Peculiarities with the different designs are discussed in the following
sections.

The general design of the different components for IPC is shown in Figure
18 below.

IS
en

dA
nd

R
ec

ei
ve

Process Boundary

Server

Object Proxy

CXSendAndReceive

Figure 18: SendAndReceive design

5.2.4.1 Standard Remote Procedure Call

RPC1 is the only available method of interprocess communication in the
implementation made by Microsoft. Through their extension to RPC, called

1 Remote Procedure Call

5 Design

43

ORPC1, they achieve full distribution with just one implementation. It is full in
the sense that both local and remote servers are using the same means of
IPC.

Usage of RPC for IPC is achieved through the component called
CRPCSendAndReceive. As the name suggests it implements
ISendAndReceive and also IConnectionObject (see Figure 19 below).

IConnectionObject

ISendAndReceive

CRPCSendAndReceive

Figure 19: CRPRSendAndReceive

Including RPC is done to get something to compare the other methods with.
Since RPC is the original method one gets, in this way, a reasonably good
index to compare the others to is achieved.

5.2.4.2 Unix Pipes

Named pipes are used when the component CPipeSendAndReceive
provides the IConnectionObject and ISendAndReceive interfaces (see
Figure 20 below).

Three pipes are involved in the process. One pipe is created by the server
and is used to establish connections with clients. The other two is created
per client by the clients and is used for all communication with the server.
The pipe created by the server is only used to transfer the names of the
other two named pipes.

IConnectionObject

ISendAndReceive

CPipeSendAndReceive

Figure 20: CPipeSendAndReceive

5.2.4.3 Doors/Linux

Usage of Doors as IPC is achieved through the component called
CDoorsSendAndReceive. The component offers the two interfaces that are
needed in order to function as an IPC component, IConnectionObject and
ISendAndReceive (see Figure 21).

1 Object Remote Procedure Call

5 Design

44

Designing and implementing IPC using Doors is very straightforward. The
server creates a door, attaches it to a file and registers the file name
through the ISMServer interface. The client fetches the file name through
the ISMClient interface, opens the file and then calls the door using the door
descriptor. As door argument, a buffer with marshalled data is supplied. The
returned data is a buffer with the marshalled result.

IConnectionObject

ISendAndReceive

CDoorsSendAndReceive

Figure 21: CDoorsSendAndReceive

5.2.4.4 Shared Memory

Sharing memory between processes can, as was discussed earlier, be
achieved in three different ways. The implementation uses one of these and
the component that supplies this IPC method is called
CShmSendAndReceive. The component offers the two interfaces that are
needed in order to function as an IPC component, IConnectionObject and
ISendAndReceive. Figure 22 shows a conceptual view of the component

IConnectionObject

ISendAndReceive

CShmSendAndReceive

Figure 22: CShmSendAndReceive

5.3 System Functions

The design is supposed to address the problems encountered in the
description of the system functions presented in section 4.3. That it in fact
does so is shown in the following sections. For each of the system functions
we have provided an interaction diagram to clarify the function design,
Figure 23 trough Figure 26. The interaction diagrams follows the UML
standard notation [17].

5.3.1 Register A Server

Please refer to section 4.3.2 for a detailed description of this function.

When starting, a server has to register itself with the SM in order to make its
components available to clients. By obtaining the ISMServer interface from
a CServerManager all the needed information can be passed to the system.

5 Design

45

The data entered into the database has to differ slightly between different
kinds of IPC methods. The offered components’ ID and the type of IPC used
by the server are entered together with a string (path) that tells future clients
how to obtain contact with the server. This string is different from method to
method. The exact interpretation of this string is presented together with the
details for each specific IPC-component presented in section 6.4.

CServerManager CDBConnection DBServer

Create
ISMServer

Store

INSERT

Release

Release

Create
IDBConnection

RegisterServer

Figure 23: Interaction diagram for registering a server

5.3.2 Unregister A Server

Please refer to section 4.3.3 for a detailed description of this function.

As was the case above the server gains access to all the needed system
functions by obtaining the ISMServer interface from CServerManager.

Identifying its own entry in the database is simply a matter of matching the
component ID and the IPC method against an entry in the database.

5 Design

46

Server

Release

UnregisterServer

CServerManager CDBConnection DB

Create
ISMServer

Release

Remove2Key

REMOVE

Create
IDBConnection

Figure 24: Interaction diagram for unregistering a server

5.3.3 Creating A Remote Object

Please refer to section 4.3.4 for a detailed description of this function.

Creating a remote object is a quite involved process. The first thing that
should be noted is that it is actually the object proxy that is registered under
the desired component’s ID. Which in turn causes COM to create an
instance of the object proxy instead of the real component.

Upon creation the proxy obtains the ISMClient interface of
CServerManager. Using this it can then obtain the SendAndReceive of the
correct CXSendAndReceive component depending on the IPC method used
by the server. But before the ISendAndReceive interface is returned to the
proxy an object is created on the server side. CServerManager initiates the
creation by using the IConnectionObject interface of the
CXSendAndReceive component. The ID of the remote object is kept within
the CXSendAndReceive component.

5 Design

47

Create
ISMClient

Create
IDBConnection

Create
IConnectionObject

Client CMyProxy

Create
IMyInterface

CServerManager

GetSender

CDBConnection

RetrieveKey

Release

CreateObject

QueryInterface

Release

Release

AddRef

ISendAndReceive

CSHMSendAndReceive

CREATEOBJECT

Server

ISendAndReceive

Figure 25: Interaction diagram for creating a remote object

5.3.4 Method Call On A Remote Object

Please refer to section 4.3.5 for a detailed description of this function.

The called method is entered on the object proxy. It obtains an IBuffer
interface to use from the ISendAndReceive interface it kept from its time of
creation (see section 4.3.4).

It then obtains the IArgMarshal interface from CArgMarshal and tells it to
use the IBuffer that it just got. An ID of the method is marshalled first and
then the arguments are put into the buffer. When done the proxy tells its
ISendAndReceive to send the buffer and wait for a reply.

The details regarding how the buffer is transmitted to the server differs
depending on the IPC method used and this is presented in detail in section
6.4. When the data arrives it is handed over to a CArgUnmarshal
component through use of IArgUnmarshal. This interface is passed on to a
server stub, which handles the unmarshalling of the arguments, and calls
the method on the actual component.

5 Design

48

The return path is similar, after receiving the results from the methods they
are marshalled into a buffer that is sent back to the client. They are then
unmarshalled and used as the result of the method call on the object proxy.

Create
IArgMarshal

*[arguments]
Put

Create
IBuffer

Create
IArgUnMarshal

*[return arguments]
Get

Client

MyMethod

CMyProxy
CSHMSendAndReceive

FetchBuffer

CSimpleBuffer

AddRef
IBuffer

SetOutputBuffer
AddRef

Write

Release

Release
Release

SendAndReceive GetBufferAndSize

DO METHOD CALL

Release

SetBufferAndSize
IBuffer

Create
IBuffer

CArgMarshal
CArgUnMarshal

SetInputBuffer
AddRef

Read

Release

Release
Release

Server

RETURN VALUES

Figure 26: Interaction diagram for method call on a remote object

5.4 Evaluation Suite

Evaluating the implementation properly is important in order to acquire the
desired data. The nature of this study is to compare different ways of

5 Design

49

communication between processes, this implies that measuring time is of
the essence.

There are however several other aspects that are of interest, one of them is
usability from a programmers view.

These aspects, time, usability etc. will be discussed in the following
subsections. Because of the central role played by the time aspect and the
usability aspect they have been honoured with a subsection each, while the
others are discussed briefly in the last subsection.

5.4.1 Evaluating Time

Two different time intervals are of interest. First it is the time it takes for a
client to get an exclusive connection to a server, called time to connect from
here on. The second interesting interval is the time it takes for the client to
make a method call on a component in the server, from here on this interval
is called time for method call.

5.4.1.1 Time To Connect

Time to connect is interesting in the initial phases of an object proxy’s life
span. Once the exclusive connection from the object proxy to the server is
established it has never to be done again, unless this connection is
mysteriously lost.

Measurement of the time to connect is conducted by making a large number
of connections to one server by constructing objects.

5.4.1.2 Time For Method Call

The time for method call presumes that there is a working connection to the
server implementing the component. This is of crucial interest since this
time has a high impact when using distributed components. There are
actually two different aspects of a method call that is of interest. First a
simple method call with none or very little data that has to be transferred.
The second is the case were marshalling has influence on the speed.

Timing a method call is done similarly in the two cases described above: by
performing a large number of method calls. In the first case the evaluation
program used will perform a large number of calls on a method taking a
small amount of data as its arguments, While, in the second case, a larger
amount of data will have to be transferred between the client and the server.

5.4.2 Evaluating Usability

One might object the described type of testing is too geared towards special
uses of components. In order to show the usability of the design an

5 Design

50

evaluation program showing a possible future use could be made. The
future use might be modelled by letting two programs being each other’s
servers, and thence they are also each other’s clients.

It should be noted that the usability of the system is not effected by the
choice of IPC method for a server.

5.4.3 Evaluating Other Aspects

There are aspects of a system of this kind that are a lot harder to evaluate
by simply making a program and run it. Some of these aspects are listed in
the following list:

• Robustness

• Correctness

• Security issues

• Memory consumption

In the following paragraphs these aspects will be dealt with briefly. The
reason for not dealing with them more thoroughly is that, even though they
are important, they do not have a significant impact on the work described
in this thesis. They are, however, important enough to be mentioned, and in
the making of a production system built on the work in this thesis they would
be crucial.

5.4.3.1 Availability

Robustness deals with the matter of reliability of the system. This is
something that has an impact on both the server and the client. Servers
expect that the database where they registered stays up and available to
clients. They also rely on the clients for releasing components properly
before exiting, otherwise the server will experience memory leaks and might
be rendered dysfunctional.

Clients rely on the database for finding servers, without the database the
clients will not be able to perform its task satisfactorily. They also rely on the
fact that once a server has been contacted and a remote object has been
created it will be available for as long as the client might need it. As can be
easily seen the component proxy is the glue that connects the client and the
remote component, without the existence of a proxy the client is practically
helpless.

The system has no problems with robustness built into its design. By
choosing a reliable database both servers and clients can be sure of its
availability. Since the clients will be programmed by the future users of the
system, it is hard to assure that clients will always be well behaved and

5 Design

51

release all its remote components. A way around this would be for a server
to release unused components after a while. This approach is however not
applicable, since we cannot prophesise about the future clients of the
system. While one might use a remote component very frequently another
might make calls on its remote component scarcely.

The other things mentioned above are dealing with automatically generated
code. The use of an IDL compiler tool will produce the code for the server
as well as code for the component proxy. Making this code robust is quite
easily handled since it is not left to the individual programmer to make it.

5.4.3.2 Correctness

The issue of correctness is very important. It deals with whether the system
actually does what it is supposed to in every step. Both the client and the
server have to be correctly implemented and behaving in a manner
acceptable to the system. The future use of an IDL compiler tool will assure
that this is the case.

5.4.3.3 Integrity

One might think that since the system is designed to be used on a single
machine there is no need to pay attention to the security of the system.
There are however several possible scenarios where malign programmes
perform attacks on the system. Either in an attempt to bring the system into
a state where it is useless or in an attempt to read and possibly alter data
transferred between the client and the server.

Bringing down the system can be done in a number of ways. The most
obvious way is to make an attack on the database in order to make it
impossible for servers to register and for clients to find its servers. But this
type of attack is something that we expect the database to handle
appropriately.

A less obvious way of attacking the system is to register evil components in
COM with the same UUID1 as the components in the system (e.g.
CServerManager) which would result in clients and servers using this
component instead. Making sure that attackers can not register wicked
components is something that we expect the COM-system in use to handle
(in our case XPCOM) in an orderly fashion.

Performing attacks on a single server is quite easy, but the way to go about
it differs a bit from server to server. The servers that depend on the
existence of files will be helpless if the files are deleted or altered. In the
same way other objects shared between the server and the client can be
attacked. These issues should be dealt with if the system is to be used in an

1 Universal Unique Identifier

5 Design

52

environment where malign processes are expected to run. It is however
something that is a joint issue between the system and the underlying
operating system.

It is also a simple thing to replace a running server with another by altering
the database to direct clients in another direction. But once again this is
something that should be handled by the database.

In conclusion can be said that the issues of security is not a trivial one, and
solving it includes taking the underlying file system, database and operating
system into consideration.

5.4.3.4 Memory Consumption

There is really no inherent memory hog in the design. Since the design only
is concerned with interfaces the choice of the implementations of these
interfaces are free to employ whatever algorithms they choose. The design
has, however, been done with memory consumption in mind and therefore
allows the implementation of interfaces to utilise peculiarities regarding
connection management and transfer of data within each IPC method. It
should therefore not be anything in the design that prevents a memory
efficient implementation.

6 Implementation Details

53

“I want facts, not poetry.”
- Unknown, TOS

6. Implementation Details

Here are different decisions for the implementation presented. This chapter
might be a bit technical in its content, and a familiarity with UNIX,
particularly Linux might be helpful. In the last section the evaluation suite is
described.

6.1 Cross-platform COM

When designing the system one of our goals was to keep the changes of
XPCOM1 to a minimum. The design fulfils this goal; in fact there were no
changes at all to XPCOM.

In order to fully incorporate the system in XPCOM a number of changes will
be needed. First of all the repository of XPCOM needs to be extended to
handle out-of-processes. It is also necessary to change the interface for
component creation present in XPCOM. The extension needed is to let the
programmer choose what type of server is acceptable and, in the case of
out-of-process servers, what type of IPC2 to use. It is also needed to add
the capability of starting servers to XPCOM, since it is not a reasonable
constraint that the server has to be running before a client is started.

In order to relieve the programmers an IDL3 compiler tool capable of
generating both object proxies and stubs for the server is needed. Ideally
the xpidl program would be extended in this way.

6.2 Marshalling

Marshalling into some sort of network representation is not done. However
one might argue that the packaging of data that is done via the IArgMarshal
and IArgUnmarshal is in fact marshalling into a network representation that
just happens to be the same as the internal representation of the computers
where the prototype was implemented. There are however a few more
details that makes it correct to say that we actually do marshalling.

The CArgMarshal component implemented in the prototype does put in
some extra information into the buffer. This is done in the marshalling of
arrays, the size of the elements in the array is known by both client and
server from compile time, but the number of elements is not. This

1 Cross Platform Component Object Model
2 Interprocess Communication
3 Interface Definition Language

6 Implementation Details

54

necessitates putting the number of elements into the buffer before the
contents of the array.

One thing that the prototype does not implement is marshalling of interface
pointers. In order to obtain a useful system this has to be added together
with mechanisms for passing them between clients properly.

6.3 Server Management System

The Server Management System (SMS) acts as a database and works in
two modes. The first handles the registration and unregistration of servers.
The other handles the clients’ requests to locate servers. These two
interfaces, ISMServer and ISMClient, are implemented in the component
CServerManager.

CServerManager does not contain the database itself, just a connection to
it. The actual database is implemented through the interface
IDBConnection. Our implementation of CDBConnection uses an SQL1[13]
database called mySQL [14]. The choice of a SQL server might seem a bit
strange, but it is just for our prototype and not intended for the final system
(see chapter 9).

The SQL database gives some major advantages. Firstly, it makes
synchronisation unnecessary since the mySQL server handles this
automatically. Secondly, we do not have to care about how the data is
stored. Thirdly it was really easy for us to use it through a library called
mySQL++ [15], a C++ abstraction for the mySQL database.

Thanks to mySQL, our Server Manager (SM) will be fairly robust.

6.4 Interprocess Communication

The following sections discuss the separate implementations of the
components used for IPC. They also bring up issues regarding the servers
where it is needed.

Some parts of these discussions are common to all the different
implementations and therefore should be identified as such. Common
problems are the following:

• How to identify the referred object?

• How to identify which service is requested?

The problem with identifying the particular object which this request is
referring to can be solved in one way. By letting each object be connected
to a unique identity and then letting the proxy supply this identity every time

1 Structured Query Language

6 Implementation Details

55

a request is made. There exists several ways of implementing this, the two
ways chosen in this work are the following:

• Unique identity number

• Unique port

Letting a unique number identify an object is a simple and straightforward
way. This scheme demands that this identifier is sent together with the
arguments for every method call. This can be worked around in the cases
where the IPC method permits creating new ports of entry into a server
dynamically. By letting a port be connected with a certain object one can
avoid sending the identification data back and forth. The identifier is
preferably kept in the component implementing the ISendAndReceive
interface, i.e. not in the object proxy.

Numbering each method in the interface and then transmitting this number
with the arguments easily solves the second problem. It is possible to make
a solution similar to the one above to avoid sending this number, but this
would result in the creation of too many ports even for a medium sized
interface and a few objects. These numbers are preferably defined in the
source code for the object proxy since this is different for each new
component.

6.4.1 Standard Remote Procedure Call

In the implementation effort was put into making the changes to the
automatically generated code as small as possible. Obviously some
changes were needed in order to make the design a little bit more flexible.
One should however keep in mind that all of the source code produced for
the proxies and the servers should be automatically generated.

In the file fed to rpcgen three functions were declared. One used for
creating a new object (create_proc()), one for destroying objects
(destroy_proc()) and one for performing a method call in an object
(call_proc()). When creating a new object an identifier is returned, this
identifier is then used in subsequent calls on this object.

There is also a need to be able to identify the correct server. In this study
the implementations of the servers all have the same program number and
different version numbers. If this approach would be taken in a production
system there would be a need to dynamically allocate new version
numbers. For the prototype it is acceptable to make this a compile time
decision.

In RPC1 it is reasonably much work to dynamically create new ports hence
the implementation uses unique numbers to identify objects on the server

1 Remote Procedure Call

6 Implementation Details

56

side. These unique numbers are in fact the addresses of the individual
objects in the server memory space.

RPC is used as the index in the comparison of the different IPC methods.
This is since COM1 is using ORPC2 that in turn is based upon RPC. An
important question is then whether our implementation is close enough to
the one based upon ORPC. The fact that COM is built into Windows makes
it very hard to monitor its behaviour. And since the source code for
Microsoft’s implementation is not available makes it impossible to analyse it
in detail. Some important observations were made through simple test
programs. Firstly, the registration of servers is similar, but a bit more
complicated, since it is in fact the factory for the object that is registered in
Microsoft’s implementation. This fact makes it inevitable to perform marshal
of interfaces. This does however speak in our favour, our implementation
seems less complicated and hence it might actually be faster. Secondly, a
server created using Microsoft’s IDL compiler tool is not multithreaded by
default. Since our server is not multithreaded either we still consider it
appropriate to use the RPC implementation as index for the comparison.
Another observation that can be done is the fact that creating new threads
with each request on an object is quite expensive.

6.4.2 Unix Pipes

As mentioned before, the pipes used here are named pipes (created with
mkfifo(3)).

Because there does not exist a tool to generate code (like in the RPC case),
everything was written from scratch. But since the code is meant to be
automatically generated this was kept in mind when it was written. A
resemblance to the structure of the RPC implementation is obvious and
intended.

The server creates a named pipe somewhere in the filesystem, registers the
complete name and path to it in the SM through the ISMServer interface. It
then waits for a connection on the pipe. When the client is instantiated it
creates two named pipes (one for each direction of communication), fetches
the path to the server pipe and opens it. The client then writes the names of
the two previous created named pipes to the server pipe and then closes it.
For the rest of the client's life all communication with the server is done on
the two the pipes created. This design makes it easy to make the server
multithreaded.

When the communication channel is established the client writes its call
type, object ID, possibly a function number and marshalled data to the
server on the in pipe and reads the result from the out pipe.

1 Component Object Model
2 Object Remote Procedure Call

6 Implementation Details

57

The call type can be:

• create

• call

• destroy

When the call type is create the object ID is ignored. In this case a new
object is created and an ID is returned to the client proxy. This ID is then
sent along with all calls and also when the object is destructed.

After the server has read all the data sent by the client proxy, the server
does what the client asked for. That is, it creates an object, calls the right
function or destroys the object. After that, a result is always returned, even if
it is zero bytes long.

6.4.3 Doors/Linux

As for Pipes, there is no tool to generate code, so everything is written from
scratch with automation in mind.

When the Doors server is started, it first creates a door and a file. The
server then connects the door to this file and registers it. Acquiring an
ISMServer interface and calling the RegisterServer function with the file
name as identifier does the registration. This door descriptor (which is
acquired by opening the file) is used for all connections to the server.

When a connection is made to the server door, the first thing that is done is
determining the type of call. The call type can be:

• create

• call

• destroy

If no data is sent with the door call it is considered to be a create call. When
a create type of call is received a new object is created. Then a unique
identifier is returned to identify the object on subsequent calls. This unique
identifier is actually the address to the object in the server address space.
This is a security risk and must be solved in a real project. Here this risk is
not considered.

When the door call has data attached to it, this identifier is extracted from
the call data and converted to a pointer to the object. Then the call type is
extracted and the correct method in the object is called, or if it was a destroy
call, the object is destructed.

6 Implementation Details

58

The client proxy locates the door by looking up the ID for the object in the
database (through the ISMClient interface) and opening the file.

Doors/Linux is still alpha software and does not behave as the Solaris
equivalent. To make the doors client server solution work, we had to do
some none optimised code tricks. The documentation states that if the
result buffer is too small to hold the result, a new buffer will be allocated by
the system. This does not work unless the result is larger than 64kB, for
some unknown reason (remember that Doors/Linux is alpha quality
software). Therefore, a result buffer of 64kB is always allocated before a
door call where a result is expected.

6.4.4 Shared Memory

There are a few factors to consider regarding the implementation of a
shared memory IPC component and server. The first and most important
one is what type of shared memory should be used. System V shared
memory was used mainly because of two reasons. First, it is easier to use
than using mmap(2), second, POSIX1 shared memory is not available in
Linux yet. Since System V shared memory was used it was natural to also
use System V semaphores for synchronisation.

Performing IPC by use of shared memory offers no help tools in form of IDL
compiler tools or the like. This made it necessary to implement code for
contacting the server and handing over the results by hand.

Communication with the server is done via a shared memory object that
persists through the lifetime of the server. Passing of arguments is then
done in a shared memory object that the client creates when it is started.
Access of the persistent memory object and contact with the server is
accomplished through the use of three semaphores.

The synchronisation scheme is made a bit complicated by the fact that the
size of System V shared memory objects can not be changed. This forces a
scheme where chunks of data is transferred one at a time in case the data
has a size exceeding that of the shared memory object. The scheme for
making a method call is described in the following clauses.

When started, the server creates a shared memory object that persists
during the lifetime of the server. It also creates the three semaphores
needed for synchronisation, the semaphores are called G (Global), C
(Client) and S (Server). The server then locks semaphore C once and S
twice in order for it to suspend itself.

1 Portable Operating System Interface, with an X thrown in to make it sound cooler [18]

6 Implementation Details

59

When a client starts it creates a shared memory object of some fixed size.
This is the memory that will be used for transferring arguments to the server
in future method calls.

Whenever the client wants to call a method on a remote object it starts with
locking semaphore G. When this lock is obtained it can be sure that it is
alone in communicating with this server. It also means that no one else can
communicate with the server until the semaphore is unlocked.

The memory object created by the server is then filled out with information
regarding the method call. The object’s identity and the position of the
clients shared memory object. The size of the marshalled data is also
supplied.

Because the size of the arguments can change while the size of the shared
memory object owned by the client is fixed there might be a need to split the
arguments into chunks that are passed one at a time. The synchronisation
is achieved by using semaphores C and S. Since the server is locked and
waiting for semaphore S the client can wake the server by unlocking it. If the
client then locks semaphore C it will be suspended until the server is done
with its processing of this chunk and it unlocks semaphore C. The server
then suspends itself by locking semaphore S. This is repeated until all of the
arguments are transferred from the client to the server.

When the server has received all the arguments it can unmarshal them and
perform the method call on the object that was requested by the client. The
results from the call is then marshalled and put into the clients shared
memory object. In case the results does not fit it will be split into smaller
pieces just like was the case with the arguments. Passing of control is done
in the same way as described above.

When the last piece of the results are passed over to the client the server
puts itself into the same position as before the client woke it up, i.e. it will
suspend itself by trying to lock semaphore S after unlocking semaphore C.

The client takes care of the results and then it unlocks semaphore G in
order to let other clients to contact the server.

Identifying the correct server boils down to the matter of locating the correct
persistent shared memory object for the server together with its
semaphores. Since each System V IPC object (both shared memory and
semaphores) is connected to a filename the natural thing is to put the
filename in the SM. There is nothing that prevents different types of objects
to be connected to the same filename and hence only one filename is
needed for both the shared memory and the semaphore.

6 Implementation Details

60

6.5 Evaluation Suite

As an evaluation of our system, an evaluation suite is assembled. This suite
is composed to test different aspects of the system. As stated earlier (see
section 5.4), time is our primary evaluation criteria.

6.5.1 Evaluation Program One

The first program evaluates the connection overhead and the component
creation/destruction overhead imposed by the different IPC methods. The
program creates and destroys one component without performing any other
operations. The time is measured and entered in our evaluation protocol in
Appendix D

6.5.2 Evaluation Program Two

This program measures the overhead of a simple method call with very little
data as argument. The program creates one component and then calls it
with an integer as argument. The component then returns the square of this
integer.

6.5.3 Evaluation Program Three

This program measures the overhead of a large method call with a very
large data structure as argument. The program is run three different times
with 60kB, 1MB and 16MB as arguments respectively. The argument is an
array of integers. This evaluates the overhead imposed by the marshalling
done by the system and also the overhead of transferring large data
structures using the selected IPC method.

7 Results

61

“They say time is the fire in which
we burn.”

- Dr. Soran, Generations

7. Results

This chapter presents the results obtained. The presentation has been
divided into two parts, first a discussion about using different types of
marshalling methods. Then comes a comparison of the different methods
for transferring the data.

7.1 Marshalling

Because of the nature of our system, it is only providing communication
between clients and servers located on the same computer, marshalling is
not done in the sense of changing bit order of data. On the other hand all
data that is to be transferred from the client to the server as arguments and
the data transferred back from the server to the client has to be packaged in
a transferable format. Some data types also need extra information to be
transferred.

Examples of data types that need extra information to be transferred are
arrays and strings (which is actually an array of characters). These need
their length to be transferred in order for the receiver to be able to decode
them.

The design of the system makes it easy to add marshalling where
representation is changed into some network standard.

7.2 Interprocess Communication

The evaluation suite consists of three programs (see section 6.5). To
evaluate the different IPC1 methods, these programs are executed ten times
each for every IPC method. The mean result and the standard deviation
from the ten runs is calculated and entered in Appendix D.

Below is a short description of the outcome of the three evaluation
programs. For a precise display of the results see Appendix D.

7.2.1 Evaluation Program One

Evaluation program one measures the time to connect to the component
server, create one component and destroy it. The absolute time it takes to
create and destroy one component is about 0.8 to 1.6 ms.

1 Interprocess Communication

7 Results

62

Doors is the fastest and the close runner up is shared memory which only
takes 1.04 times as long time. Slowest is RPC1, which takes 2.02 times as
long time as with Doors. Pipes take 1.24 times as long as Doors. See
Figure 27.

The difference in time corresponds to the different operations needed to get
a connection to the server. The actual time to create the component in the
server is constant in the different IPC methods, since it is the same code
that executes in the server.

The time difference is not that significant between the different method
except for RPC. If a program using this system often creates and destroys
objects, this might have an impact on the program’s performance if the RPC
method is chosen.

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
(m

ic
ro

se
co

n
d

s)

ShM Doors RPC Pipe

Evaluation one, object creation and destruction

Figure 27: Evaluation Program one results

7.2.2 Evaluation Program Two

Evaluation program two measures the time to make a method call on a
component with very small arguments. In this case the argument was only
one integer. The absolute time it takes to do a method call is about 160-300
microseconds.

Doors is again the fastest and the first runner up is shared memory, which
takes 1.52 times as long as Doors. Pipes and RPC is a bit further behind,

1 Remote Procedure Call

7 Results

63

1.82 and 1.85 times as slow, but the difference between pipes and RPC is
not significant. See Figure 28. The “Rest” time is the same in all methods
and is about 50 microseconds. “Rest” time is the set-up time for the IPC
method.

Here, as in evaluation program one, the performance impact on a program
using this system can be huge. Since method calls are the fundamentals of
a program and normally is performed very often, this time differences may
have a big impact, especially if the method computes in short time and is
called often. Normal method calls on an in-process server is much faster
than this, about 150 times faster, a normal method call takes about one
microsecond. The overhead of the method call can in this case, from a
programmer's point of view, be substantial; i.e. a fast method can take over
100 times as long time as the programmer expected. See sections 3.1.2
and 3.1.3 for an explanation of these differences.

0

50

100

150

200

250

300

350

T
im

e
(m

ic
ro

se
co

n
d

s)

ShM Doors RPC Pipe

Evaluation two, small arguments (four bytes)

Rest
Send And Receive

Figure 28: Evaluation Program two results

7.2.3 Evaluation Program Three

Evaluation program three measures the time to make a method call on a
component with large arguments. Large in this context is anything from a
couple of kilobytes to several megabytes.

Evaluation program three is run with three different sizes of arguments:
60kB (3A), 1MB (3B) and 16MB (3C).

7 Results

64

Evaluation program three sends a large array of integers to the server. The
server just returns one integer as the result. This implies that it is not only
the time to transfer the array that is measures but also the time to marshal
(on the client side) and unmarshal it (on the server side). The
marshal/unmarshal time is not as small as expected but in fact rather large
and is therefore marked in the diagrams. Although it might seem strange to
measure this time and not just the transfer time, this is more like a real
situation and hopefully says more about how the IPC method will behave.
The results from these evaluation runs can be found in Figure 29 (3A),
Figure 30 (3B) and Figure 31 (3C). Detailed numbers are found in Appendix
D.

0

2000

4000

6000

8000

10000

12000

14000

T
im

e
(m

ic
ro

se
co

n
d

s)

ShM Doors RPC Pipe

Evaluation three, large arguments (60kB)

Rest

Unmarshalling

Transfer

Marshalling

Figure 29: Evaluation Program 3A results, large arguments (60kB)

Doors is fastest in all evaluation runs. In evaluation 3A, with moderately
large (60kB) arguments, the difference between RPC is 1.23 times as slow
as Doors. This difference stays about the same when the argument size is
increased, which can be seen in 3B and 3C. The difference between Doors,
Pipes and shared memory is almost the same in all evaluations. Shared
memory and Pipes are 1.06 to 1.11 times slower then Doors.

It should be noted that evaluation three not is how a component system
normally is used. 16MB as arguments is not a normal situation and if such
large data structures have to be transferred there are better ways than
through the component system. The earlier evaluations, evaluations one
and two, are more close to real usage.

7 Results

65

0

50000

100000

150000

200000

250000

300000

T
im

e
(m

ic
ro

se
co

n
d

s)

ShM Doors RPC Pipe

Evaluation three, large arguments (1MB)

Rest

Unmarshalling

Transfer

Marshalling

Figure 30: Evaluation Program 3B results, large arguments (1MB)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

T
im

e
(m

ic
ro

se
co

n
d

s)

ShM Doors RPC Pipe

Evaluation three, large arguments (16MB)

Rest
Unmarshalling
Transfer
Marshalling

Figure 31: Evaluation Program 3C results, large arguments (16MB)

If just the actual transfer times are compared, Doors is absolutely fastest,
e.g. in 3A the transfer time in Doors is just 10.5% of the transfer time in
RPC. The difference is less than 1% in 3C, but because of the large times

7 Results

66

to marshal/unmarshal, this huge difference is hidden. It is however obvious
in the diagrams.

To give an even better feel for how the system behaves Figure 32 and
Figure 33 are included here. Figure 32 shows the total time and the actual
transfer time for evaluation program three as a function of the argument
size. Figure 33 shows just the actual transfer times as a function of the
argument size.

All IPC methods comparison

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50000 100000 150000 200000

Argument size (bytes)

T
im

e
(m

ic
ro

se
co

nd
s)

RPC - total
Pipe - total
Shm - total
Doors - total
RPC - transfer
Pipe - transfer
Shm - transfer
Doors - transfer

Figure 32: All methods total and transfer time

7 Results

67

Transfer time comparison

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50000 100000 150000 200000

Argument size (bytes)

T
im

e
(m

ic
ro

se
co

nd
s)

RPC - transfer
Pipe - transfer
Shm - transfer
Doors - transfer

Figure 33: All methods transfer time

Finally, Figure 34 together with Figure 32 show that the standard deviation
for our evaluations are low, so that our mean values really show the
behaviour of our system. In Figure 34 the standard deviation is calculated
from ten measurements made on the total time for each argument size.

Standard devation for total time

0

50

100

150

200

250

300

350

400

450

500

0 50000 100000 150000 200000

Argument size (bytes)

S
ta

nd
ar

d
de

va
iti

on

RPC - stdev total
Pipe - stdev total
Shm - stdev total
Doors - stdev total

Figure 34: Standard deviation for total time in evaluation three

7 Results

68

8 Conclusions

69

O’Brien: “We won!”
Sisko: “You sound surprised.”
O’Brien: “Surprised? I’m
astonished! Not that I mind.”

– from DS9

8. Conclusions

From the results presented in the previous chapter a number of conclusions
can be drawn. A discussion of these conclusions is given here.

8.1 Marshalling

Since all communication in our system is done between components on the
same computer, no marshalling is needed. The only thing that is done is
packing complex data types to make it possible to transfer them.

Since no marshalling is done, this surely must be faster than anything else.
Although no marshalling is done, evaluation program three surely shows
that packing our complex data structure before sending it takes a lot of time.

If the time to marshal/unmarshal data can be reduced, the relative
differences in our evaluations will increase to Doors’ advantage. This fact is
clearly visible in the evaluation protocols where marshalling/unmarshalling
is not the operation that takes the longest time, i.e. in evaluation one and
two. In numbers, if the marshalling/unmarshalling time can be reduced to
half the time, the relative difference will be increased to about 1.4 times
instead of 1.23 in evaluation 3A (Doors compared to RPC).

8.2 Interprocess Communication

In all evaluation programs Doors is the fastest. The runner up in all
evaluations is shared memory and it is close behind in them all but
evaluation two. Also, Pipes is not far behind Shared memory in all
evaluations. RPC1 is definitely slowest in all cases and should probably be
avoided if performance is an issue.

The choice therefore is between Doors/Linux, Pipes and Shared memory.
All of these have their benefits and downsides. As mentioned before,
Doors/Linux is alpha software and is not reliable although very fast when it
works. Shared memory is a limited resource, there can only exist 128
shared memory segments system-wide at a time, which limits the number of
object servers that can exist simultaneously. This limitation is no hindrance
in a smart implementation. Even for pipes and RPC such limitations exist.

1 Remote Procedure Call

8 Conclusions

70

For pipes the maximum number of file descriptors per process (1024 in
Linux) limits the maximum number of objects that can be created. This
limitation is just an implementation detail and can easily be fixed. For RPC
the limitation is the number of possible TCP1 ports in the RPC system. This
limit is harder to do something about and is a big disadvantage for RPC.
Doors has also a limit because for each door that a client needs to keep
track of it has to have a door descriptor, and it is like any descriptor a limited
resource. In Linux the maximum number of descriptors is 1024 per process.

8.3 Summary

With all of this taken into consideration the best choice of IPC2 method must
be shared memory. RPC and pipes is too slow and Doors/Linux is still alpha
quality software.

The limit of 128 object servers per system is quite small, but is probably
nothing to worry about. One server often serves more than one type of
object, and if more than 128 object servers are expected in the system,
another implementation than the one in our prototype is needed. This is not
expected and therefore not considered in this thesis.

In a system where interprocess communication is planned from the
beginning, when the system is designed, it is possible to optimise the
performance by constraining the number of IPC transactions and size of
such transactions. However, in this system the process boundary is invisible
to the application programmer and it is therefore important that the system
does not add too much overhead.

Obviously it is best if the programmer knows of and plans for the extra time
added by the COM3 system.

As noted in sections 3.1.3 and 7.2.2, the time difference between a normal
method call and a method call on an out-of-process server is substantial. A
method call on an out-of-process server can take as much as 100-150 times
longer than on an in-process server.

1 Transmission Control Protocol
2 Interprocess Communication
3 Component Object Model

9 Further Studies

71

“I know when to quit.”
- Chakotay, Voyager

9. Further Studies

Here we present some subjects that has to be further investigated in order
to make our system ready to be a part of a product such as Nokia’s set top
boxes.

9.1 Database

The SQL database in our prototype is really just thrown in to get the system
up and running without too much work. The database needs to be replaced
with a more adequate solution. In the Mozilla browser project, there exists a
database that might be suitable. Changing the system database is easy; it is
just a matter of providing a different implementation of the IDBConnection
interface.

9.2 Server Management System

In our prototype system, servers register themselves when they are started.
In a real system it is better if servers are registered when they are installed
and just started as necessary. The Server Management System (SMS) or
some other part of the system can handle this.

9.3 Marshalling

As our evaluation revealed, marshalling and unmarshalling is what takes
most time when sending large data. This is something that probably can be
greatly improved and in this way one can gain a lot in overall performance.

To make the system truly useful marshalling of interfaces must be handled
appropriately.

9.4 IDL compiler tool

From a programmer’s point of view, this system is close to useless without
an IDL1 compiler tool to aid her in the development. This is probably one of
the first things that have to be added to the system. The IDL compiler tool
has to generate both a proxy DLL and server code from the IDL
specifications file.

1 Interface Definition Language

9 Further Studies

72

9.5 Servers

Our prototype shows that our system design works and that our
implementations of the servers work. In the future, code for the servers shall
be automatically generated (see section 9.4 above), but to get a fast
implementation, perhaps threaded, some work has to be done.

10 References

73

“It’s a good crew, they deserve to
know.”

- Unknown, TOS

10. References

[1] XDR, External data representation, RFC 1832,
http://www.ietf.org/rfc/rfc1832.txt

[2] Doors/Linux homepage http://www.rampant.org/doors/

[3] ASN.1 Complete, Prof. John Larmouth,
http://www.nokalva.com/asn1/larmouth.html

[4] RPC, Remote Procedure Call, RFC 1831,
http://www.ietf.org/rfc/rfc1831.txt

[5] Essential COM, Don Box, Addison-Wesley, 1998,ISBN 0201634465

[6] RPC man pages, http://www.openbsd.org/cgi-bin/man.cgi

[7] Design Patterns, Erich Gamma et al., Addison Wesley, 1998, ISBN
0201633612

[8] The C++ Programming Language 2nd Edition, Bjarne Stroustrup,
Addison Wesly, 1995, ISBN 020153992

[9] C++ Primer 2nd Edition, Stanley B. Lippman, Addison Wesley, 1995,
ISBN 0201548488

[10] Inside COM, Dale Rogerson, 1997, Microsoft Press, ISBN
1572313498

[11] A System of Patterns, Frank Buschmann et al. Wiley 1998, ISBN
0471958697

[12] UNIX Network programming Volume 2 – Interprocess
communications, W. Richard Stevens, Prentice-Hall PTR, 1999,
ISBN 0130810819

[13] Database system concepts, Abraham Silberschatz et al., McGraw-
Hill, 1998 3rd Edition, ISBN 0070310866.

[14] mySQL, a free SQL database, http://www.mysql.com/

[15] mySQL++, a free C++ API to mySQL,
http://www.mysql.com/download_mysql++.html

[16] Linux Application Development, Michael K. Johnsson et al, Addison-
Wesley, 1998, ISBN 0201308215

[17] UML Distilled: a brief guide to the standard object modeling
language 2nd edition, Martin Fowler, Addison-Wesley, 1999, ISBN
020165783X

[18] http://ftp.sunet.se/foldoc/foldoc.cgi?query=POSIX

10 References

74

[19] Software Requirements, Karl E. Wiegers, Microsoft Press, 1999,
ISBN 0735606315

(All links to web pages and ftp sites were confirmed to work and contain the
contents intended on 2000-02-03.)

Appendix A Abbreviations

75

 Appendix A Abbreviations

Abbreviation Comment

4.4BSD Berkeley System Distribution version 4.4
A branch on the UNIX tree developed at the
university of Berkeley.

API Application Programming Interface.

ASN.1 Abstract Syntax Notation One
A standard for representing data.

BER Basic Encoding Rules
One of the encodings of data connected to
ASN.1.

CER Canonical Encoding Rules
One of the encodings of data connected to
ASN.1.

COM Component Object Model
A component model used heavily within
Microsoft’s products.

CORBA Component Object Request Broker Architecture.
A system for distributed object, standardised by
OMG.

CPU Central Processing Unit
The brain of a computer.

DCOM Distributed Component Object Model
The distributed version of COM, it allows
components to be implemented in external
servers.

DER Distinguished Encoding Rules
One of the encodings of data connected to
ASN.1

DLL Dynamic Link Library.

DOS Disk Operating System.

FIFO First In, First Out.

Appendix A Abbreviations

76

IDL Interface Definition Language.

IPC Inter Process Communication.

IP Internet Protocol

NFS Network File System.

OMG Object Management Group.

ORB Object Request Broker.

ORPC Object Remote Procedure Call
The protocol used within DCOM in order to
transfer arguments and results between the
client and the server.

OS Operating System.

PC Personal Computer.

PER Packed Encoding Rules
One of the encoding rules of data connected to
ASN.1.

POSIX Portable Operating System Interface, with an X
thrown in to make it sound cooler [18]
A standard for UNIX systems.

RPC Remote Procedure Call
A protocol that lets a client call procedures
implemented in a remote server transparently.

SCM Service Control Manager.

ShM Shared Memory
A non-standard abbreviation.

SM Server Manager
The manager of servers and their location in the
work presented in this thesis.

SMS Server Management System
The full system for managing servers that is
presented in this thesis.

Appendix A Abbreviations

77

SQL Structured Query Language
A query language for databases.

SVR4 Unix System V Revision 4
AT&T’s version of the UNIX operating system.

TCP Transmission Control Protocol.

TLV Type, Length, Value.

UUID Universally Unique Identifier.

XDR External Data Representation
The data representation used in RPC to allow
servers and clients to run on different
architectures.

XPCOM Cross Platform Component Object Model
The version of COM that is used within the
Mozilla web browser.

Appendix A Abbreviations

78

Appendix B Interface Specification

79

 Appendix B Interface Specification

This is a somewhat more organised description of the interfaces designed
for the system described in this report. Ideally this appendix is all that is
needed to write programs using the services offered by the system.

IArgMarshal

Used within the object proxy to marshal arguments before sending
or returning them via some IPC method.

Interface ID

1c195754-855a-11d3-974b-008c7599b88

Extends

nsISupports

Methods

nsresult SetOutPutBuffer(buffer)
const void *buffer

Sets the output buffer for marshalling. The component
implementing IArgMarshal handles reference counting for the
IBuffer.

nsresult PutChar(cData)
const signed char cData

Marshals the character (8 bits) provided in cData.

nsresult PutUChar(ucData)
const unsigned char ucData

Marshals the unsigned character (8 bits) provided in ucData.

nsresult PutShort(sData)
const short sData

Marshals the short integer (16 bits) provided in sData.

nsresult PutUShort(usData)
const unsigned short usData

Marshals the unsigned short integer (16 bits) provided in
usData.

nsresult PutInt(iData)
const int iData

Marshals the integer (32 bits) provided in iData.

Appendix B Interface Specification

80

nsresult PutUInt(uiData)
const unsigned int uiData

Marshals the unsigned integer (32 bits) provided in uiData.

nsresult PutLong(lData)
const long long lData

Marshals the long integer (64 bits) provided in lData.

nsresult PutULong(ulData)
const unsigned long long ulData

Marshals the unsigned long integer (64 bits) provided in ulData.

nsresult PutFloat(fData)
const float fData

Marshals the float (32 bits) provided by fData.

nsresult PutDouble(dData)
const double dData

Marshals the double (64 bits) provided by dData.

nsresult PutArray(pcData, uiElementSize, uiLength,
fMarshFunc)

const char *pcData
const unsigned int uiElementSize
const unsigned int uiLength
const void *pfMarshFunc

Marshals an array of elements. pcData points to the data.
uiElementSize tells how large each array member is and
uiLength tells the number of elements in the array. For each
element the function pointed to by pfMarchFunc is called to
perform the actual marshalling.

nsresult PutPointer(pcData, pfMarshFunc)
const char *pcData
const void *pfMarshFunc

Marshals a pointer by calling the function pointed to by
pfMarshFunc to perform the marshalling.

Appendix B Interface Specification

81

IArgUnMarshal

Used within the object proxy to unmarshal arguments before
sending or returning them via some IPC method.

Interface ID

1c195753-855a-11d3-974b-008c7599b88

Extends

nsISupports

Methods

nsresult SetInputBuffer(buffer)
void *buffer

Sets the input buffer for unmarshalling. The called handles
reference counting.

nsresult GetChar(cData)
signed char *cData

Unmarshals a character (8 bits) into the memory pointed to by
cData.

nsresult GetUChar(ucData)
unsigned char *ucData

Unmarshals an unsigned character (8 bits) into the memory
pointed to by ucData.

nsresult GetShort(sData)
short *sData

Unmarshals a short integer (8 bits) into the memory pointed to
by sData.

nsresult GetUShort(usData)
unsigned short *usData

Unmarshals an unsigned short integer (8 bits) into the memory
pointed to by sData.

nsresult GetInt(iData)
int *iData

Unmarshals an integer (32 bits) into the memory pointed to by
iData.

nsresult GetUInt(uiData)
unsigned int *uiData

Unmarshals an unsigned integer (32 bits) into the memory
pointed to by uiData.

Appendix B Interface Specification

82

nsresult GetLong(lData)
long long *lData

Unmarshals a long integer (64 bits) into the memory pointed to
by iData.

nsresult GetULong(ulData)
unsigned long long *ulData

Unmarshals an unsigned long integer (64 bits) into the memory
pointed to by ulData.

nsresult GetFloat(fData)
float *fData

Unmarshals a float (32 bits) into the memory pointed to by
fData.

nsresult GetDouble(dData)
double *dData

Unmarshals a double (64 bits) into the memory pointed to by
dData.

nsresult GetArray(pcData, uiElementSize, uiLength,
pfUnmarshFunc)

char **pcData
const unsigned int uiElementSize
unsigned int *uiLength
const void *pfUnmarshFunc

Unmarshals an array of elements. uiElementSize provides the
size of each element, pfUnmarshFunc unmarshals each
element. The number of elements in the array is returned in
uiLength, and the array itself is returned in pcData.

nsresult GetPointer(pcData, uiElementSize, pfUnmarshFunc)
char **pcData
const unsigned int uiElementSize
const void *pfUnmarshFunc

Unmarshals a pointer by calling pfUnmarshFunc. The element
pointed to is returned in pcData. uiElementSize provides the
size of the element pointed to.

Appendix B Interface Specification

83

IBuffer

An interface used to access a buffer that is both readable and
writable.

Interface ID

1c195759-855a-11d3-974b-008c7599b88

Extends

nsISupports

Methods

nsresult SetBufferAndSize(pcBuffer, iDataSize, iBufferSize)
char *pcBuffer
int iDataSize
int iBufferSize

Sets the buffer and its size. It also sets the size of the data
already written in the buffer.

nsresult GetBufferAndSize(pcBuffer, iDataSize)
char **pcBuffer
int *iDataSize

Returns a pointer to the buffer and the size of its data.

nsresult Write(pcData, iSize)
char *pcData
int iSize

Writes iSize bytes from the memory pointed to by pcData into
the buffer.

nsresult Read(pcData, iSize)
char **pcData
int iSize

Returns iSize bytes in a buffer pointed to by pcData. The
needed memory is allocated and needs to be freed by the
caller.

Appendix B Interface Specification

84

IConnectionObject

An interface closely related to the ISendAndReceive interface
presented below. It allows the creation of objects.

Interface ID

3d592c6e-395c-4f4b-989c-1cda96eeae28

Extends

ISendAndReceive

Methods

nsresult CreateObject(sPath)
const char *sPath

Used to ask the server to create an object. The sPath argument
is used to contact the correct server.

IDBConnection

An interface used to access a database that accepts SQL queries.
Used by ISMServer and ISMClient.

Interface ID

1c195751-855a-11d3-974b-0008c7599b88

Extends

nsISupports

Methods

nsresult Store(iType, strPath, strCID)
int iType
char *strPath
char *strCID

Stores the arguments in the database. srtCID together with
iType is the primary key in the database.

nsresult Retrieve1Key(iType, strPath, strCID)
int *iType,
char **strPath,
char *strCID

Retrieves the type and path for the component corresponding
to the CID from the database.

nsresult Retrieve2Key (iType, strType, strCID)
int iType

Appendix B Interface Specification

85

char **strType
char *strCID

Retrieves the path for the component corresponding to the CID
and type from the database.

nsresult Remove1Key(strCID)
char *strCID

Removes all components with this CID from the database.

nsresult Remove2Key(strCID, iType)
char *strCID
int iType

Removes the component with this CID and type from the
database.

ISendAndReceive

Used by the object proxy to do the actual method-call.

Interface ID

1c195852-855a-11d3-974b-0008c7599b88

Extends

nsISupports

Methods

nsresult FetchBuffer(intBuffer)
void **intBuffer

Gets the buffer from this component that will be sent. Use this
buffer together with IArgMarshal to marshal the arguments. No
reference counting will be needed on the caller’s part.

SendAndReceive(intBuffer)
void **intBuffer

Send the contents of the buffer and then retrieve the return
values. The return values are delivered in the intBuffer
argument. No reference counting will be needed on the caller’s
part.

Appendix B Interface Specification

86

ISMClient

The interface used by a client to locate a server for a component.

Interface ID

1c195755-855a-11d3-974b-0008c7599b88

Extends

nsISupports

Methods

GetSender(ciidCIID, iType, pISAR)
nsCID &ciidCIID
int iType

void **pISAR

Returns the correct type of implementation of an
ISendAndReceive interface depending on what the type is.
E.g., if the type is RPC, a CRPCSendAndReceive component
will be instantiated and returned. The ciidCIID is looked up
through the IDBConnection interface. If the type is set to
ANY_TYPE, it is up to the implementation to choose one.

ISMServer

The interface used by a server for a component for registering and
unregistering itself.

Interface ID

1c195750-855a-11d3-974b-0008c7599b88

Extends

nsISupports

Methods

RegisterServer(ciidCIID, strPath, iType)
nsCID &ciidCIID
char *strPath
int iType

Registers a component’s CID, server type and location (Path).

UnregisterServer(ciidCIID, iType)
nsCID &ciidCIID
int iType

Unregisters a component. The type must be specified. After this
is done, a component proxy can no longer locate a server.
Must be called when a component server ends its execution.

Appendix C Interface Implementation

87

 Appendix C Interface Implementation

Design of the classes implementing the interfaces.

CArgMarshal

The class implementing the IArgMarshal interface. The marshalling
is very simple, since it only copies things byte by byte.

Component ID

1c195757-855a-11d3-974b-008c7599b88

Program ID

sms.cargmarshal.1

Interfaces

IArgMarshal

Attributes

IBuffer *m_pBuffer

The interface for the buffer where everything will be marshalled
into.

Methods

CArgMarshal()

Simple constructor.

~CArgMarshal()

Simple destructor. It releases m_Buffer if it is set.

nsresult QueryInterface(iid, ppv)
const nsIID &iid
void **ppv

Part of nsISupports.

nsresult AddRef()

Part of nsISupports.

nsresult Release()

Part of nsISupports.

nsresult SetOutputBuffer(buffer)
const void *buffer

Part of IArgMarshal. Sets m_Buffer to the value provided in
buffer if not NULL. The old m_Buffer is released properly first.
AddRef() is called upon the new buffer.

Appendix C Interface Implementation

88

nsresult PutChar(cData)
const signed char cData

Part of IArgMarshal.

nsresult PutUChar(ucData)
const unsigned char ucData

Part of IArgMarshal.

nsresult PutShort(sData)
const short sData

Part of IArgMarshal.

nsresult PutUShort(usData)
const unsigned short usData

Part of IArgMarshal.

nsresult PutInt(iData)
const int iData

Part of IArgMarshal.

nsresult PutUInt(uiData)
const unsigned int uiData

Part of IArgMarshal.

nsresult PutLong(lData)
const long long lData

Part of IArgMarshal.

nsresult PutULong(ulData)
const unsigned long long ulData

Part of IArgMarshal.

nsresult PutFloat(fData)
const float fData

Part of IArgMarshal.

nsresult PutDouble(dData)
const double dData

Part of IArgMarshal.

nsresult PutArray(pcData, uiElementSize, uiLength,
 pfMarshFunc)

const char *pcData
const unsigned int uiElementSize
const unsigned int uiLength
const void *pfMarshFunc

Part of IArgMarshal.

Appendix C Interface Implementation

89

nsresult PutPointer(pcData, pfMarshFunc)
const char *pcData
const void *pfMarshFunc

Part of IArgMarshal.

CArgUnMarshal

The class implementing the IArgUnmarshal interface.

Component ID

1C19575A-855A-11d3-974B-0008C7599B88

Program ID

sms.cargunmarshal.1

Interfaces

IArgUnmarshal

Attributes

IBuffer *m_Buffer

The interface for the buffer where the marshalled data is.

Methods

CArgUnmarshal()

Simple constructor.

~CArgUnmarshal()

Simple destructor.

nsresult QueryInterface(iid, ppv)
const nsIID &iid
void **ppv

Part of nsISupports.

nsresult AddRef()

Part of nsISupports.

nsresult Release()

Part of nsISupports.

nsresult SetInputBuffer(void *buffer)

Part of IArgUnmarshal. Sets m_Buffer to the value provided in
buffer if not NULL. The old m_Buffer is released properly first.
AddRef() is called upon the new buffer.

Appendix C Interface Implementation

90

nsresult GetChar(cData)
signed char *cData

Part of IArgUnmarshal. cData needs to point to an already
allocated memory area.

nsresult GetUChar(ucData)
unsigned char *ucData

Part of IArgUnmarshal. ucData needs to point to an already
allocated memory area.

nsresult GetShort(sData)
short *sData

Part of IArgUnmarshal. sData needs to point to an already
allocated memory area.

nsresult GetUShort(usData)
unsigned short *usData

Part of IArgUnmarshal. usData needs to point to an already
allocated memory area.

nsresult GetInt(iData)
int *iData

Part of IArgUnmarshal. iData needs to point to an already
allocated memory area.

nsresult GetUInt(uiData)
unsigned int *uiData

Part of IArgUnmarshal. uiData needs to point to an already
allocated memory area.

nsresult GetLong(lData)
long long *lData

Part of IArgUnmarshal. lData needs to point to an already
allocated memory area.

nsresult GetULong(ulData)
unsigned long long *ulData

Part of IArgUnmarshal. ulData needs to point to an already
allocated memory area.

nsresult GetFloat(fData)
float *fData

Part of IArgUnmarshal. fData needs to point to an already
allocated memory area.

Appendix C Interface Implementation

91

nsresult GetDouble(dData)
double *dData

Part of IArgUnmarshal. dData needs to point to an already
allocated memory area.

nsresult GetArray(pcData, uiElementSize, uiLength,
pfUnmarshFunc)

char **pcData
const unsigned int uiElementSize
unsigned int *uiLength
const void *pfUnmarshFunc

Part of IArgUnmarshal. The memory needed to hold the array
will be allocated, and needs to be released by the caller.

nsresult GetPointer(pcData, uiElementSize, pfUnmarshFunc)
char **pcData
const unsigned int uiElementSize
const void *pfUnmarshFunc

Part of IArgUnmarshal. The memory needed to hold the data
pointed to will be allocated, and needs to be freed by the caller.

CDBConnection

Class implementing the IDBConnection interface.

Component ID

1c195758-855a-11d3-974b-0008c7599b88

Program ID

sms.dbconnection.1

Interfaces

IDBConnection

Attributes

Connection *m_pCon

The connection to the SQL database.

Query *m_pQuery

The query object used to send queries via the connection
object to the SQL database.

Appendix C Interface Implementation

92

Methods

nsresult Store(iType, strPath, strCID)
int iType
char *strPath
char *strCID

Part of IDBConnection.

nsresult Retrieve1Key(iType, strPath, strCID)
int *iType,
char **strPath,
char *strCID

Part of IDBConnection.

nsresult Retrieve2Key (iType, strType, strCID)
int iType
char **strType
char *strCID

Part of IDBConnection.

nsresult Remove1Key(strCID)
char *strCID

Part of IDBConnection.

nsresult Remove2Key(strCID, iType)
char *strCID
int iType

Part of IDBConnection.

CDoorsSendAndReceive

Class implementing the IConnectionObject by use of Doors.

Component ID

d36c8ca2-92d4-46a4-bf44-dd2b2cf50155

Program ID

sms.doorssendandreceive.1

Interfaces

IConnectionObject

Attributes

Int m_iDoor

The Door descriptor for this object. This descriptor uniquely
identifies the object created on the server.

Appendix C Interface Implementation

93

IBuffer* m_pBuffer

The buffer that is sent when SendAndReceive() is called. It is a
CSimpleBuffer.

Methods

CDoorsSendAndReceive()

Simple constructor. The attributes are initialised to zero.

~CDoorsSendAndReceive()

Closes down the connection to the server and also releases the
buffer.

nsresult QueryInterface(iid, ppv)
const nsIID &iid
void **ppv

Part of nsISupports.

nsresult AddRef()

Part of nsISupports.

nsresult Release()

Part of nsISupports.

nsresult FetchBuffer(intBuffer)
void **intBuffer

Part of ISendAndReceive. A new CSimpleBuffer will always be
created, witch means this method is destructive. m_pBuffer will
be set to the last one created.

SendAndReceive(intBuffer)
void **intBuffer

Part of ISendAndReceive. The contents of the m_pBuffer will
be sent to the server and the results are provided in the
returned IBuffer (intBuffer).

nsresult CreateObject(sPath)
const char *sPath

Part of ISendAndReceive. Contacts the server at sPath. The
server creates an object and returns a door descriptor for this
object. This descriptor is stored in m_iDoor.

Appendix C Interface Implementation

94

CRPCSendAndReceive

Class implementing the IConnectionObject by use of RPC.

Component ID

55cbc269-96ef4128b2f3e0603219be22

Program ID

sms.crpcsendandreceive.1

Interfaces

IConnectionObject

Attributes

CLIENT *m_pClient

The pointer for a CLIENT structure that is needed for the RPC
connection with the server.

int m_iID

An identifier that is sent every time a call is made to the server
to identify the object.

IBuffer *m_pBuffer

The buffer that is sent when SendAndReceive() is called. It is a
CSimpleBuffer.

Methods

CRPCSendAndReceive()

Simple constructor. The attributes are initialised to zero.

~CRPCSendAndReceive()

Closes down the connection to the server and also releases the
buffer.

nsresult QueryInterface(iid, ppv)
const nsIID &iid
void **ppv

Part of nsISupports.

nsresult AddRef()

Part of nsISupports.

nsresult Release()

Part of nsISupports.

Appendix C Interface Implementation

95

nsresult FetchBuffer(intBuffer)
void **intBuffer

Part of ISendAndReceive. A new CSimpleBuffer will always be
created, witch means this method is destructive. m_pBuffer will
be set to the last one created.

SendAndReceive(intBuffer)
void **intBuffer

Part of ISendAndReceive. The contents of the m_pBuffer will
be sent to the server and the results are provided in the
returned IBuffer (intBuffer).

nsresult CreateObject(sPath)
const char *sPath

Part of IConnectionObject. Initialises m_pClient to something
that makes sense and also contacts the server to ask it to
create an object which ID is then returned and stored in m_iID.

CServerManager

This class is responsible for registering and unregistering object
servers and for locating servers for client proxies. It is divided into
two parts, one for the servers and one for the clients. The client
part contains a factory method for locating and creating the correct
ISendAndReceive interface (see section 5.2.3.3). The server part
contains methods for registering

Component ID

1C195756-855A-11d3-974B-0008C7599B88

Program ID

sms.servermanager.1

Interfaces

ISMServer

ISMClient

Attributes

None.

Methods

nsresult QueryInterface(iid, ppv)
const nsIID &iid
void **ppv

Part of nsISupports.

Appendix C Interface Implementation

96

nsresult AddRef()

Part of nsISupports.

nsresult Release()

Part of nsISupports.

GetSender(ciidCIID, iType, pISAR)
nsCID &ciidCIID
int iType

void **pISAR

Part of ISMClient. Returns the correct type of implementation of
an ISendAndReceive interface depending on what the type is.
E.g., if the type is RPC, a CRPCSendAndReceive component
will be instantiated and returned. The ciidCIID is looked up
through the IDBConnection interface. If the type is set to
ANY_TYPE, it is up to the implementation to choose one from
the database.

RegisterServer(ciidCIID, strPath, iType)
nsCID &ciidCIID
char *strPath
int iType

Part of ISMServer. Registers a component’s CID, server type
and location (Path).

UnregisterServer(ciidCIID, iType)
nsCID &ciidCIID
int iType

Part of ISMServer. Unregisters a component. The type must be
specified. After this is done, a component proxy can no longer
locate a server.
Must be called when a component server ends its execution.

Appendix C Interface Implementation

97

CSimpleBuffer

Class implementing IBuffer in a simple way. Notice that once the
caller turns over an allocated area of memory to CSimpleBuffer he
has to yield sovereignty of the buffer.

Component ID

1C19575A-855A-11d3-974B-0008C7599B88

Program ID

sms.csimplebuffer.1

Interfaces

IBuffer

Attributes

char *m_pcBuffer

A pointer to the buffer holding the data

char *m_pcBufReadPos

Marks the position for reading from the buffer

char *m_pcBufWritePos

Marks the position for writing into the buffer.

int m_iBufSize

The size of the buffer.

int m_iBufDataSize

The size of the data in the buffer.

Methods

nsresult QueryInterface(iid, ppv)
const nsIID &iid
void **ppv

Part of nsISupports.

nsresult AddRef()

Part of nsISupports.

nsresult Release()

Part of nsISupports.

Appendix C Interface Implementation

98

nsresult SetBufferAndSize(pcBuffer, iDataSize, iBufferSize)
char *pcBuffer
int iDataSize
int iBufferSize

Part of IBuffer. Sets m_pcBuffer to pcBuffer, the old one is
freed first. The attributes are set according to the suggestions
from the arguments.

nsresult GetBufferAndSize(pcBuffer, iDataSize)
char **pcBuffer
int *iDataSize

Part of IBuffer. Simply sets pcData and iDataSize to
m_pcBuffer and m_iBufDataSize respectively. CSimpleBuffer
still keeps the memory pointed to by m_pcBuffer.

nsresult Write(pcData, iSize)
char *pcData
int iSize

Part of IBuffer. Copies the number of bytes told by iSize from
the memory pointed to by pcData into m_pcBuffer. The buffer
will be enlarged if needed.

nsresult Read(pcData, iSize)
char **pcData
int iSize

Part of IBuffer. Reads iSize bytes of data into an allocated area
of memory, then sets pcData to point to this area. The caller is
responsible for freeing the memory.

bool EnlargeBuffer()

Enlarges the buffer kept by this object. The old buffer is copied
to the new one and then freed.

int LeftToRead()

Calculates the number of bytes left to read in the buffer. Used
when reading data from the buffer.

int SizeLeft()

Calculates the number of bytes left in the buffer. Used when
writing data to the buffer.

Appendix D Evaluation Protocols

99

 Appendix D Evaluation Protocols

D.1 Evaluation One

Conducted by: Fredrik Örvill

Test Program: Evaluation one: Creation of one component

Results:

Server RPC Doors Shared Memory Pipes

Total (µs) 1602.00 793.90 829.60 985.90

Standard deviation for
total time

15.20 17.27 13.20 5.65

Fastest X

Slowest X

Relative to fastest 2.02 1.00 1.04 1.24

Relative to slowest 1.00 0.50 0.52 0.62

Appendix D Evaluation Protocols

100

D.2 Evaluation Two

Conducted by: Fredrik Örvill

Test Program: Evaluation two: Method call, small arguments (four bytes)

Results:

Server RPC Doors Shared Memory Pipes

Total (µs) 300.90 163.00 247.20 296.10

Send&Recevie time
(µs)

253.40 117.00 204.10 239.40

Rest (µs) 47.50 46.00 43.10 56.70

Standard deviation
for total time

7.10 0.44 0.75 0.88

Fastest X

Slowest X

Relative to fastest 1.85 1.00 1.52 1.82

Relative to slowest 1.00 0.54 0.82 0.98

Appendix D Evaluation Protocols

101

D.3 Evaluation Three

Conducted by: Fredrik Örvill

Test Program: Evaluation three (3A): transfer of large arguments, 60kB

Results:

Server RPC Doors Shared Memory Pipes

Total (µs) 13157.20 10738.60 11560.80 11587.00

Unmarshalling (µs) 5036.40 4961.00 5008.60 5099.10

Transfer (µs) 2255.10 237.60 784.30 741.00

Marshalling (µs) 5777.30 5473.50 568834.00 5652.70

Rest (µs) 88.40 66.50 79.50 94.20

Standard deviation
for total time

90.30 200.75 50.10 45.46

Fastest X

Slowest X

Relative to fastest 1.23 1.00 1.08 1.08

Relative to slowest 1.00 0.82 0.88 0.88

Appendix D Evaluation Protocols

102

Conducted by: Fredrik Örvill

Test Program: Evaluation three (3B): Transfer of large arguments, 1MB

Results:

Server RPC Doors Shared Memory Pipes

Total (µs) 269950.60 209991.50 225603.80 230799.70

Unmarshalling (µs) 97482.40 97027.70 96102.40 98419.90

Transfer (µs) 60295.70 831.70 17174.80 20182.00

Marshalling (µs) 111958.80 111955.80 112109.80 111958.30

Rest (µs) 213.70 176.30 216.80 239.50

Standard deviation
for total time

912.57 2240.70 567.10 57.80

Fastest X

Slowest X

Relative to fastest 1.29 1.00 1.07 1.10

Relative to slowest 1.00 0.78 0.84 0.85

Appendix D Evaluation Protocols

103

Conducted by: Fredrik Örvill

Test Program: Evaluation three (3C): Transfer of large arguments, 16 MB

Results:

Server RPC Doors Shared Memory Pipes

Total (µs) 4205658.00 3414282.00 3684858.00 3786666.00

Unmarshalling (µs) 1565511.00 1556104.00 1549083.00 1596356.00

Transfer (µs) 784819.30 6056.40 282856.60 339354.80

Marshalling (µs) 1852150.00 1850468.00 1850706.00 1848760.00

Rest (µs) 2177.00 1653.30 2212.10 2194.70

Standard deviation
for total time

9780.34 26374.81 3771.45 5174.57

Fastest X

Slowest X

Relative to fastest 1.23 1.00 1.08 1.11

This page intentionally left blank.

