Android anti-forensics at the operating system
level

Karl-Johan Karlsson
1100965

Submitted in partial fulfilment of the requirements for the
degree of Master of Science in Computer Forensics and
E-Discovery in the Humanities Advanced Technology and
Information Institute, University of Glasgow

September 3, 2012

Abstract

In forensic analysis of mobile phones, current tools let the phone software
run and ask it to provide the data stored on the phone. This means that
the correctness and completeness of the analysis depends on the cooperation
of the phone software. Many phones running the Android operating system
can have their software replaced by the end user. This dissertation presents
a set of modifications to the CyanogenMod community distribution of the
Android operating system which provide false data to the forensic analysis
tools Cellebrite and XRY, while normal use of the phone is unaffected. Mod-
ifications are also presented to delay forensic data extractions and to prevent

installation of the forensics tools.

Contents

1 Introduction

2 Previous work

2.1 Android anti-forensicso
2.1.1 Datahiding
2.1.2 Artefact wiping
2.1.3 Trail obfuscation
2.1.4 Attacks against processes and tools

2.2 Weaknesses in current approaches
2.2.1 'Trusting the operating system
2.2.2 Unspecific triggering
2.2.3 Timing constraints
2.24 Permanence

3 Android

3.1 Content providers

3.2 Contact lists

3.3 SMS messages

3.4 Intents

3.5 Package management

3.6 Rooting

3.7 Community distrubutions of Android

4 Methodology
4.1 Scope . ..o

10
10

12
12
13
14
14
15
15
16

18

4.2 Limitations 20

4.2.1 Triggers for anti-forensic behaviour 20
422 Visibilityo 22
4.2.3 Filesystem access 22

4.3 Experimental design 24
4.3.1 Examination of current behaviour 24
4.3.2 Implementation of anti-forensic modifications 25

5 Implementation, testing and results 27
5.1 Examination of forensics tools 27
5.1.1 Cellebrite 28

51.2 XRY 28

5.2 Triggering 29
5.3 Anti-forensics modules 30
5.3.1 Responsedelays 30
5.3.2 Rejecting installation of forensics tools 32
5.3.3 Hardcoded false contact list 32
5.3.4 False contact list from alternate databases 33
5.3.5 Delayed restoration 33
5.3.6 Hiding SIM contacts 34
5.3.7 Hiding SMS messages 34

54 Testing and results L. 35
5.4.1 Triggering 35
54.2 Responsedelays L. 36
5.4.3 Rejecting installation of forensics tools 38
5.4.4 Hardcoded false contact list 38
5.4.5 False contact list from alternate databases 40
5.4.6 Delayed restoration 41
5.4.7 Hiding SIM contacts 43
5.4.8 Hiding SMS messages 44

6 Conclusions 49
6.1 Trust 49

ii

6.2 Modification

6.3 Detection
6.4 Reverting
6.5 Hypothesis.
Future work

7.1 Decompilation of forensic applications
7.2 Detection of forensics tools
7.3 Encryption
7.4 Unrooting e
7.5 SEAndroid.
7.6 Data destruction L.

Software and hardware environments

Tool behaviour
B.1 Cellebrite
B.2 XRY behaviour

Source code
C.1 USBMonitor
C.1.1 AndroidManifest.xml
C.1.2 res/layout/main.xml
C.1.3 res/values/strings.xml
C.1.4 USBMonitorActivity.java
C.1.5 USBBroadcastReceiver.java
C.1.6 USBUeventObserver.java
C.2 Instrumentation of contacts provider
C.3 Rejecting installation of forensics tools
C.4 Delayed responseso
C.5 Hardcoded false data
C.6 False data from alternate databases
C.7 Delayed restoration
C.8 Hiding SIM contacts

il

54
o4
95
o7
o7
o8
29

60

61
61
64

C.9 Hiding SMS messages
D Turnitin results

E Declaration of originality

v

List of Figures

5.1
5.2
2.3
5.4
2.5
0.6
5.7
5.8
2.9
5.10
5.11
5.12
5.13

5.14
5.15
5.16

5.17
5.18
5.19
5.20

Contacts extracted by Cellebrite from an unmodified phone . . 28

Contacts extracted by XRY from an unmodified phone 29
Warning shown when enabling USB debugging 30
Screenshots of USBMonitor output 36
Error from Cellebrite with a ten second response delay 37
Cellebrite extraction logs showing elapsed time 37
Extraction log from XRY with a six hour response delay . . . 37
Error from Cellebrite when installation was rejected 38
Results from XRY when installation was rejected 39
Contact list application with real data 40
Cellebrite extraction report showing hardcoded false data . . . 41
XRY extraction report showing hardcoded false data 41
Contact list application showing empty contact list when USB

debuggingisono 42
Contacts fed to Cellebrite from an alternate database 43
Contacts fed to XRY from an alternate database 43
Contact lists with delayed restoration, first extracted with

Cellebrite 45
Contact lists with delayed restoration, first extracted with XRY 46
Cellebrite extraction reports for SIM contact lists 47
Cellebrite extraction logs showing SMS messages 47
Screenshots of the built-in messaging application 48

Chapter 1
Introduction

According to the International Telecommunications Union, at the end of 2011
there were almost 6 billion mobile phone subscriptions for a world population
of 7 billion [62]. In the first quarter of 2012 alone, 144 million smartphones
were sold [41], of which 56% were running Android [40]. At that time, a total
of 331 million Android devices had been activated, representing 59% of the
global smartphone population [47].

Smartphones are essentially general-purpose computers with an attached
phone. As such, many people use smartphones for their daily computation,
storage and communications tasks. This makes smartphones a great source of
forensic evidence. However, smartphones present a particular set of forensics
difficulties compared to PCs.

In traditional PC forensics, it is usually possible to power down and disas-
semble a system, whereupon the components can be analysed independently.
If a hard disk is connected through a write blocker to an analysis worksta-
tion, changes cannot be made to the disk and any anti-forensics programs
installed on it do not run automatically. This workflow is supported by the
Association of Chief Police Officers guidelines for digital forensics, whose
first principle states: “No action taken by law enforcement agencies or their
agents should change data held on a computer or storage media which may
subsequently be relied upon in court” [53].

For mobile phones, this kind of procedure is often unavailable. Mo-

bile phones are highly integrated and built from non-standard components,
running software which is often proprietary, undocumented and frequently
changed. To perform a similar component-by-component analysis, the an-
alyst would start by disassembling the phone and removing the surface-
mounted memory chips, which is a delicate procedure with a high risk of
damage. The memory chips can be read by standardised readers, but the
interpretation of the data depends on the software which was running on the
phone.

A much easier method is to let the phone run, and access the data through
the normal interfaces provided by the software. This presents a high risk of
data being modified, both as a normal function of the phone and by spe-
cialised anti-forensic applications. However, the savings in time and effort
are great enough that this method is endorsed by both ACPO and the Amer-
ican National Institute of Standards and Technology [63].

Because of this, forensic analysts rely on the correct functioning of the
phone’s software when performing analyses. This means that changing that
functionality is a way of thwarting analysis. Smartphones running operat-
ing systems such as Android and iOS are designed to allow the installation
of third-party applications, so such applications with anti-forensic purposes
have been developed [51, 46, 68, 83]. By being regular applications, such anti-
forensic systems have to work under the restrictions imposed by the system,
such as application isolation and responsiveness demands. If anti-forensic
modifications were to be made on a lower level, these restrictions would not
apply in the same way, possibly making more advanced methods available.
This project investigates the viability of operating system-level anti-forensics
for Android smartphones.

The rest of this dissertation is structured as follows. Chapter 2 provides
an overview of previous work in the field of Android anti-forensics. Chapter
3 describes some details of the Android system relevant to the implemented
anti-forensic system. The methodology is described in chapter 4, and the
implementation, testing and results in chapter 5. Conclusions are in chapter
6, with suggestions for future work in chapter 7. Appendix A describes
the software and hardware used. Logs of query behaviour exhibited by the

forensics tools Cellebrite and XRY are in appendix B. Finally, appendix C

contains the source code for all modifications.

Chapter 2
Previous work

Android is a young system, with the first commercial device, the HTC Dream,
also known as the T-Mobile G1, launched in September 2008 [38]. In contrast,
one of today’s most common PC systems, Windows NT with NTFS, was
introduced with Windows NT 3.1 [84] in 1993 and entered mainstream use
with the launch of Windows XP in 2001 [37]. As such, it can be expected
that the Android forensics and anti-forensics literature will be less mature
than the ones for Windows PCs.

Mobile phone forensics in general is a field under rapid development, as are
mobile phones themselves. Books written on the subject (e.g. [60]) quickly
become obsolete with the release of new devices and new versions of operating
systems. There are fairly recent articles on mobile phone forensics which are
simple overviews of the field or confirmations that forensics tools perform as
advertised [67, 96]. Some more advanced research topics are beginning to
emerge, such as live memory acquisition [92] and using data found on phones

as proxy evidence for remote data [55].

2.1 Android anti-forensics

Kessler [64] categorises anti-forensics into four groups: data hiding, artefact

wiping, trail obfuscation, and attacks against forensics processes or tools.

2.1.1 Data hiding

For PC anti-forensics, this group contains things like steganography, deleted
files, and storing data in the cloud or in other users’ storage space. These
would be substantially similar for an Android phone, with the caveat that
recovery of deleted files depends on the file system used, which is usually
YAFFS2!, which may be unsupported in commercial forensics tools.

Specific for Android is the separation between different applications en-
forced by the operating system. Every application is run as its own Linux
user, and standard Linux file system permissions are used to ensure that
no other application can read its files. This also applies to the applications
uploaded to the phone by forensic analysis tools. This protection can only
be bypassed if the phone is first rooted. If that is done, forensics tools such
as Cellebrite and XRY can use the elevated privilege to read the entire file
system.

On a non-rooted phone, then, information can be hidden by having an
application store it somewhere secluded and restore it at a later time (such as
when the user enters a password). This approach was tested by Distefano et
al. [51]. Their program takes data from a number of standard databases on
the phone (e.g. contact list, call logs, and SMS? messages) and user-specified
files, copies this data to files in the program’s own directory, and deletes
the originals. This approach also allows for quick mass deletion, since the
Android package manager deletes all files private to an application if it is
uninstalled.

They attempted to use the forensics tool Paraben Device Seizure [50], but
found that this was incompatible with the phone they were using. Instead,
they used backup programs, which require the phone to be rooted and per-
form a logical acquisition of the phone memory. As expected, these programs
were able to read the private directory where the data had been stored. Had
the phone not been rooted, the backup programs would not have worked [57].

Distefano et al. say nothing about how their data hiding program is

'Yet Another Flash File System, version 2 [82]
2Short Message Service, a system for sending short text messages between mobile
phones.

triggered, nor when data is put back. They do, however, include test results
for how long it takes for the hiding process to run (on the order of 10 seconds,
depending on the amount of data to be hidden). This suggests that the hiding
process is time sensitive, which would be the case if it was triggered by the
connection or starting of a forensics tool. Presumably, the data would then

be manually restored by the user after regaining control over the phone.

2.1.2 Artefact wiping

Artefact wiping is the act of overwriting data so that it is impossible to
restore, even with undeletion techniques. While the overwritten data will
be irrevocably destroyed, Kessler [64] notes two weaknesses with this class
of techniques: they may miss some data, and they may leave traces of the
wiping having occurred, most notably the presence of the wiping tool. Most
of the existing Android anti-forensic literature is concentrated on artefact
wiping.

Albano et al. [43] describes a technique for sanitising a phone, removing
deleted files. Their technique works by booting a custom recovery image,
copying all files to an external storage device, overwriting the entire internal
flash memory and copying the files back. The recovery image is a minimal
operating system image which was originally intended for performing a com-
plete reset of the phone but which can be replaced on a rooted phone [59].
This procedure will make sure that any data previously deleted will now
be irrevocably lost, but has the disadvantage of being an off-line procedure
requiring significant time and manual effort.

Another pattern of design for artifact wiping, adopted by several re-
searchers [46, 68, 83], uses an application on an unmodified (or rooted)
Android phone to detect the presence of a forensic analysis tool and start
deleting data. To trigger the wipe, two methods have been used: reading
the system logs [46, 68] and detecting a USB connection [83]. Reading the
system logs has the disadvantage of being slow, since it has to wait for the
event to occur, the log message to be generated and written and finally read

back in before being able to take action.

Detecting a USB connection suffers from lack of specificity, especially in
earlier versions of Android. Rouwendal [83] was using version 8 of the An-
droid API (corresponding to Android 2.2 “Froyo” [3]) and was therefore un-
able to use the improved USB support introduced in APT version 12 (Android
3.1 “Honeycomb MR1”) and backported to API 10 (Android 2.3.4 “Ginger-
bread MR1”) [9]. His system was therefore forced to use a signal that the
phone has entered USB mass storage mode as a trigger. It is unclear what
impact, if any, this surrogate had on the result. Both forensic analysis sys-
tems he used (Cellebrite and XRY') require the phone to be switched to USB
debug mode before it is connected, which disables USB mass storage mode.
From a naive reading, this should have precluded his system from trigger-
ing, but his experimental results show that it does trigger. This apparent
discrepancy is not discussed in the report.

Regardless of triggering mechanism, the anti-forensic application then has
to delete data before the forensic analysis tool can extract it. All papers using
this approach are concerned with this time window, reporting measurements

of time taken and how much can be overwritten in that time.

2.1.3 Trail obfuscation

In this section, Kessler [64] concentrates on network forensics. When an
attacker does not need a reply to a network communication, they can falsify
the sender address (so called address spoofing) to make tracing the attack
to its source harder. It is also possible to use spoofed sender addresses for
attack amplification, by tricking third parties into sending much more traffic
to a victim than the attacker could on their own. For example, using DNS; it
is possible for an attacker to send a 60-byte query packet to the third party,
which generates a 4320-byte reply to the victim [94], thereby overloading the
victim’s data transfer capability much faster than if the attacker had to do
it directly.

Other tools in this category are onion routers [35], web proxies [15] and
e-mail anonymisers [27], all of which hide the real sender of traffic behind a

server which serves many clients.

Finally, this category includes log file and timestamp alteration. Tools
such as TimeStomp from the Metasploit framework [25] have long done this
on PCs to hide evidence of attacks.

Since Android anti-forensics is mainly concerned with data legitimately
stored and usable on the phone, and not with attacks or traces on other
devices on the network, this category is not very relevant. However, one
piece of research which stands out is that of Albano et al. [42]. They develop
an automation system which can be used to make the phone act as if a
user is present, thereby providing false evidence that the user was where the
phone was at a particular time. They describe several systems based on
generally available software automation and testing tools, and finally build
one of their own based on recording and playing back user interactions (e.g.
touch screen input). For recording events, they connect the phone to a PC
and performed the recording over a USB debug connection. Playback is
performed either from the recording PC or on the phone from a script file
uploaded from the PC. Tests show that this system can be used to post
messages to Facebook and send SMS messages. After sending the messages,
forensic analyses were performed, which showed no conclusive traces of the
automation system on the phone. For their system to work, the phone had
to be rooted, and for running without being connected to a PC, a general-
purpose scheduling application had to be installed. The researchers hint at,
but do not state outright, that the uploaded script is sufficiently obtuse not
to be a significant trace. The controlling PC was run entirely in RAM from

a Linux live CD, and thus left no traces whatsoever.

2.1.4 Attacks against processes and tools

In this section, Kessler [64] places attacks which force the forensic analyst to
perform non-standard procedures or call into question the data recovered.
The procedures used by computer forensic analysts are supposed to follow
the public guidelines set by central bodies (e.g. ACPO [53] and NIST [63]). It
is therefore relevant to design anti-forensic tools to attack these procedures.

An example would be hiding information where only a single, password-

protected program can access it, as in Distefano et al.’s design [51]. In this
case, the analyst can choose between following procedure and not getting the
data, or rooting the phone, getting the data and violating ACPO principle
13.

Smartphones are integrated devices, often necessitating the use of the
entire original system in the analysis. This stands in contrast to a PC, which
consists of discrete components connected through standard interfaces which
can be examined one by one, thereby bypassing some protection*. For this
reason, the published standards condone much more invasive examinations
for mobile phones than for PCs [63, s. 6.5]. However, many of these take
time and effort, are specific for each phone model, and require individual

testing and, should they be relied on in court, explanation.

2.2 Weaknesses in current approaches

2.2.1 Trusting the operating system

Cellebrite and XRY trust the Android operating system, since they go through
it to get the information they want to extract. For unrooted phones this is
required, whereas for rooted phones it greatly simplifies the job for the tool.
Android is released under an open source license, and several community
projects exist which take advantage of this to build their own versions.
Taken together, these facts suggest that this trust is misplaced, since the

user could modify the operating system and make it lie to the forensic tools.

2.2.2 Unspecific triggering

Previous approaches have been in the form of a separate application running

on the phone. Due to the security separation which Android enforces on

3“No action taken by law enforcement agencies or their agents should change data held
on a computer or storage media which may subsequently be relied upon in court.” [53]

4For example, an operating system asking for a login password does not help against an
investigator plugging the hard disk into another computer and reading the data without
going through the original operating system.

applications, there is a limit to the amount and timeliness of information
available to the anti-forensic application for determining when to trigger. In
a modified operating system, the triggering code can be located anywhere in
the system (except in the uploaded forensic application itself), making much
more detailed information available without having to wait for and parse log
messages.

For triggering on the connection of a USB cable, previous approaches
have used older versions of the Android operating system which only make
available very general information about the USB connection. Contemporary
versions allow the triggering code to single out USB debugging connections,

which are commonly used by forensics tools but rarely by end users.

2.2.3 Timing constraints

Anti-forensic applications which run separately from the forensics application
are limited in how much they can influence its behaviour, again because of
the operating system-enforced security separation. It is therefore vital that
any manipulations of data are completed before extraction starts.

If the operating system is modified to insert anti-forensics code into the
call path of the forensic tool, this constraint disappears, since the code has
full control of what data to return to the tool and when. The only remaining
timing constraint is on human timescales, when the analyst gives up wait-
ing or the tool determines that an excessive delay means that an error has

occurred.

2.2.4 Permanence

Except for Distefano et al. [51], who offer manual restoration of hidden data,
all approaches described change the data stored on the phone permanently.
While this may be optimal in some cases, it would be desirable to have the
option of making non-permanent modifications, so that the legitimate user
can restore all data after regaining control of the phone.

Non-permanent modifications also present the option of having different

10

modifications at different times, thereby denying the forensic analyst repeata-

bility of the examination.

11

Chapter 3

Android

Android is an open collection of software intended for running on mobile
phones. Developed by the Open Handset Alliance [29], it is a complete
software stack, with operating system, middleware and end-user applications.
Estimates of its share of the smartphone market in 2012 vary between 50%
[39] and 60% [47].

At its core, the Android system has a Linux kernel with some Android-
specific modifications. The rest of the system is almost entirely Android-
specific, with the majority of the code being written in Java and running in
the Dalvik [20] virtual machine.

3.1 Content providers

The Android system includes the SQLite database [32] for storing structured
data, e.g. the contact list. To simplify the job of each application which
wants to use the data, Android wraps each database in an application called
a content provider [1]. The content provider provides a simple CRUD! inter-
face to other applications, and regular Linux file system access control makes
sure that the content provider is the only application allowed to touch the

database file directly. This means that the content provider can be solely

L An acronym for the four fundamental operations exposed: Create, Read, Update, and
Delete [69, p. 381]

12

responsible for handling security and access control per data item, and vari-
ations in the data format. For security, the content provider builds on top of
the Android permissions system [87], which decides which applications can
access it at all.

A regular Android phone has no means for an application to bypass the
Linux file system permission mechanism, so forensics tools must be able to use
the content provider interfaces to extract information from the databases on
the phone. Therefore, the tools place complete trust in the content providers
to provide them with correct data. This is valid on a standard phone, since
the same permissions which stop the forensic tool from reading the data
directly also stops the user from replacing operating system components,
including the content providers. However, by a process known as rooting,
the user can bypass the permissions mechanism and replace the operating
system on the phone. The content providers can then be replaced with

versions containing anti-forensic modifications.

3.2 Contact lists

One of the content providers in a standard Android system is the contact
list provider. This allows access to the phone contact list, implemented
in CyanogenMod 7% as an SQLite database. The Android documentation
specifies how to query the content provider for contact list entries, and the
format of the returned data.

In a GSM phone, contacts can also be stored on the SIM3. These are not
directly accessible through the contacts content provider interface. Instead,
they are supposed to be imported to the phone’s database when the SIM is
first inserted. There are also functions for exporting contacts from the phone
to the SIM. All this functionality is currently broken in CyanogenMod 7 [19].

For accessing the SIM contact list directly, another content provider* exists.

’In the file packages/providers/ContactsProvider/src/com/android/
providers/contacts/ContactsProvider2. java.

3Subscriber Identity Module, a smart card containing user information

4Implemented in the file frameworks/base/telephony/java/com/android/
internal/telephony/IccProvider. java.

13

This is available to programs, but no standard user interface is provided.

3.3 SMS messages

Android has three standard content providers for accessing messages, de-
pending on which type of messages is desired. The SMS provider gives access
to SMS messages, the MMS® provider gives access to MMS messages, and
the MMS+SMS provider handles conversations consisting of both types of
messages®.

SMS messages can be stored on the SIM card as well as on the phone,
but unlike SIM contacts there is no interface in Android for directly access-
ing SMS messages on the SIM card. Instead, the SMS provider itself is

responsible for copying messages from the SIM to the phone’s database.

3.4 Intents

To communicate between different processes, Android uses a framework called
Binder [85] to send messages called intents [2]. An intent can be directed
to a specific receiver or broadcast, and carries information describing an
action to be performed or an event that has occurred. For example, when-
ever something happens to the phone’s USB connection, an intent called
ACTION_USB_STATE is broadcast, containing e.g. whether the USB cable was
connected or disconnected and which mode the phone is in, such as USB mass
storage or USB debugging. Any application can register with the Binder sys-
tem to receive such broadcast messages.

Non-broadcast intents can be either explicit (directed to a named appli-
cation and component) or implicit (directed to a function). To receive an
implicit intent, an application first registers with the Binder system that it

wishes to implement a given function. For example, the content provider for

SMultimedia Messaging Service, a system for sending messages containing multiple
media formats such as text, images, and sound.

6These are implemented in files in the directory
packages/providers/TelephonyProvider/src/com/android/providers/telephony/,
named SmsProvider. java, MmsProvider. java, and MmsSmsProvider. java, respectively.

14

contact lists registers that it provides contacts, and any application wishing
to read contact lists will send intents addressed to whichever content provider
is currently registered, regardless of its actual name and implementation.
All inter-process communication in Android uses Binder, and Binder pro-
vides the name of the calling application to the callee. This means that any
application receiving an intent asking for information can check which appli-

cation is asking.

3.5 Package management

Applications are delivered to Android devices in a format called APK" [16].
In addition to the program code, the APK file contains metadata such as
a digital signature, requests for permission to access restricted data, and
the minimum version of the Android API required for the application to

7, is responsible for taking this

run [8]. The package manager, called “pm
file, processing the metadata and, if no problems occur, install the program.
It is also responsible for uninstalling programs, which includes deleting the

contents of their private directories.

3.6 Rooting

Android uses the Linux kernel, which includes the standard UNIX discre-
tionary access control system. In this system, the superuser, called root, has
complete access and can bypass all privilege checks. Normally, Android does
not allow a physical user access to the root account. However, using security
vulnerabilities in the standard Android system, it is possible to make the sys-
tem run code as root for the user. This code can then set up more convenient
methods for the user to gain root access later. This process is called rooting
the phone. Some phones aimed at developers, such as the Google/Samsung
Nexus S [71], have a built-in switch for allowing root access, removing the

need for exploiting security vulnerabilities.

" Application Package

15

Once root access has been obtained, the user is in complete control over
the phone. In particular, they can replace the operating system with a cus-
tom version of Android. This is accomplished by replacing the recovery
image [59], an alternate firmware present in all Android devices which the
standard Android bootloader can boot instead of the main Android system.
The standard recovery image allows very few operations, such as resetting the
device to factory defaults and installing approved operating system updates.
Alternate recovery images, such as ClockworkMod [17], allow additional op-
erations such as taking complete system backups and replacing the entire
operating system from a ZIP file on the SD card. Installing a modified ver-
sion of Android is accomplished by storing the new version in a ZIP file on
the SD card, booting the recovery image, choosing to install a new operating
system, and selecting the ZIP file.

A few Android devices allow the user to replace the recovery image with-
out first rooting the phone, using a method called fastboot [58]. When in
fastboot mode, instead of booting from the built-in memory, the phone waits
for commands from a PC attached via USB. The accepted commands in-
clude one for writing a new recovery image to the phone. However, only a
few old phone models and models targeted towards developers enable fast-
boot by default [65]. For the majority of Android phones, using the fastboot
method would require first rooting the phone and using the elevated privilege

to install a new bootloader which allows fastboot.

3.7 Community distrubutions of Android

In order to make Android a successful platform for diverse devices, Google
made it open source [74]. In particular, they chose to license the source
code for the system under the Apache License 2.0 [44] as far as possible
[73]. This license is approved as an open source license by the Open Source
Initiative [89] and as a free software license by the Free Software Foundation
[88]. The Android Open Source Project [11] distributes this source code and
provides compliance test suites for ensuring that any modifications still meet

the Android specifications.

16

Several projects have built upon this source code to create their own
distributions, which users can install on their own Android devices. Examples
of such projects include Replicant [81], a community effort to remove the few
modules with non-free licenses still existing in Android; MIUI [26], developed
by Chinese phone manufacturer Xiaomi and installed as default on one of
their phones [66]; and CyanogenMod [18], which is “designed to increase
performance and reliability over Android-based ROMs released by vendors
and carriers” and “[offer] a variety of features & enhancements that are not
currently found in these versions of Android” [77]. Since these distributions
replace operating system components, the phone must first be rooted in order
for the user to be able to install them.

As of June 2012, CyanogenMod claims to have been installed and run
at least once on over 2.4 million different devices [78] where the user has
actively opted in to being counted [90]. For comparison, 331 million Android
devices had been activated as of the first quarter of 2012 [47]. However,
neither figure considers deactivated devices. A possibly more relevant figure
is the rate of new activations. Google claims they activate more than 900 000
devices per day as of June 2012, while CyanogenMod claims almost 15 000
new installations per day as of July 2012 [79].

CyanogenMod claims official support for 63 different devices, with an un-
specified number of others being unstable or having incomplete support [80].
There are therefore large both actual and potential user bases for modifica-

tions built on top of CyanogenMod.

17

Chapter 4

Methodology

This dissertation aims to examine the potential for operating system-level
anti-forensics on Android. The hypothesis is that it is possible to modify
the Android operating system to present false information to the forensics
tools Cellebrite and XRY. Several subsidiary research questions need to be

answered in order to explore the hypothesis:

e Which components of the Android operating system do the forensics

tools trust?
e [s it possible to modify these components to present false information?
e Can the presence of a forensic analysis tool be detected?

e [s it possible to make the presentation of false information reversible,
such that the phone will revert to presenting the real information after

the forensic analysis?

The equipment used will be an HT'C Desire phone running the Cyanogen-
Mod distribution of Android, analysed by the two forensics tools Cellebrite
and XRY. See appendix A for details.

An unrooted phone requires the use of content providers in order to access
application-private data. Assuming that the forensics tools also use the same
method, the content providers will be instrumented to find if they are used by

each tool, and if so how. If they are, the content providers will be modified

18

to return false data to the tools. To test the modifications, the forensics
tools will be used to extract data from the phone while running the modified
software, and the results compared to the ones from an unmodified phone.
For analysing the behaviour of the forensics tools, and for providing real
data to be hidden during experiments, a dataset will be entered into the
phone. The phone contact list will be entered using the standard on-board
tools, and will have two entries, each with a name and a phone number. It
will not be synchronised with any other service. The SIM contact list will
contain two entries, which are entered by default by the service provider.

SMS messages will be sent from another phone to the experiment phone.

4.1 Scope

The work produced for this dissertation is intended to be a proof of concept.
As such, only a single category of forensically interesting data will be consid-
ered in depth, with others touched upon lightly in order to ascertain whether
the method can be generalised.

There are several content providers in a standard Android phone. Of
these, the contact list is of high value to a forensic analysis, and thus a prime
target for anti-forensics. The contact list is stored only on the phone and
other devices the phone’s owner has chosen to synchronise it with, unlike
call logs and SMS messages which can be retrieved from the SIM card or the
network provider. It is therefore a good target for anti-forensics locally on
the phone. The contact list also has a history of being used as a target for
proof of concept implementations. Previous work [46, 83] has used erasing
or overwriting contact list entries as a measure of the performance of anti-
forensic tools. Due to these factors, the phone contact list will be selected as
the primary target for anti-forensics.

The other targets will be SIM contacts and SMS messages. They are
both potentially available external to the phone, in the SIM. The SIM can
be removed by the investigator and read separately, thus negating any anti-
forensic measures taken on the phone. However, this may be undesirable, e.g.

if the SIM is PIN-locked and there are exigencies preventing the acquisition

19

of the PUK! from the service provider. Also, the SIM only has limited
storage for a small, fixed number of messages, so other messages would have
to be retrieved from the phone. There is therefore a point in performing
anti-forensics on these items on the phone. Furthermore, the difference in
back-end data storage between the contact list and these SIM data items

should provide a test of the generality of the method.

4.2 Limitations

4.2.1 Triggers for anti-forensic behaviour

The anti-forensics system needs to be able to distinguish between a request
for data made by the legitimate user and one made for the purposes of forensic
examination, in order to determine which set of data to return. This is, of
course, impossible in the general case. However, we can make assumptions
about how the forensic examination is carried out, and base the trigger on
these assumptions. Should this prove inadequate, new trigger mechanisms
can be designed from the observed behaviour of forensic investigators.
Based on the recommendations in the ACPO Good Practice Guide for
Computer-Based Electronic Evidence [53], an examination can be assumed

to be carried out in the following steps:

1. Seizure.

2. (Optional) Connection to a portable power supply for transport to the

forensics lab.
3. Network cut-off, using e.g. a Faraday cage.
4. Transport to a forensics lab.

5. Enabling of debug mode (required for the analysis system to be able
to upload its application to the phone).

I'PIN Unlock Key or Personal Unlock Key, a code which can be used to reset the SIM
PIN code

20

6. Connection to a forensic analysis system (e.g. Cellebrite or XRY)).
7. Data extraction using the forensic analysis system.

8. Disconnection from the forensic analysis system.

9. Disabling of debug mode.

10. Manual check of data on the phone, for verification of data extracted

by the forensic analysis system.

Since we assume that the first time the information on the phone is ac-
cessed is by the forensic analysis system, detecting it presents a good op-
portunity to trigger the serving of false data. To accommodate the manual
verification after extraction, there should be a delay between the forensic
analysis system disconnecting and the real data becoming available.

While a USB device (such as a phone) must identify itself to its host (such
as a forensic analysis system), the device does not learn anything about the
host [54, part 5]. This means that the phone cannot distinguish the con-
nection of a forensic analysis system from the connection of a PC. However,
Cellebrite and XRY (and, according to Azadegan et al. [46], also Paraben
Device Seizure [50] and Susteen Secure View [61]) work by uploading an ap-
plication to the phone over Android’s standard USB debug interface [10] and
having this application export the data, also over the USB debug interface.

Accordingly, the first trigger used is USB debugging itself. It serves as
a fallback option, in case the specific triggers for each forensic analysis sys-
tem miss, perhaps due to changes in the systems since their signatures were
recorded. The end of USB debugging is used to determine when examination
has completed, and thus when to start the timer for stopping the serving of
fake data.

More specific triggers will be developed by instrumenting the contacts
provider and studying the system logs to determine exactly how the different

forensic analysis systems query the contact list.

21

4.2.2 Visibility

The code of the anti-forensics system will be implemented as changes to the
default CyanogenMod content provider for contact lists. This means that
CyanogenMod has to be installed on the device before the anti-forensics sys-
tem can be used. CyanogenMod is visibly different from a standard Android
distribution, using different branding, standard applications, etc. However,
CyanogenMod is installed on a significant number of devices, so its presence
is not necessarily suspicious in and of itself.

As the system is a modification of a standard component of the operating
system, no indication of anti-forensics will exist in the form of extra appli-
cations. For the versions of the system where the decoy data is hardcoded,
no extra data will be present in the file system either. To determine the
nature of the anti-forensics system, a forensics analyst would have to look
at all operating system components, determine that the contacts provider
is non-standard, and reverse engineer the changes. The reverse engineering
step would be helped by the free availability of Java decompilers, such as JD
[52].

For the versions of the system which use external databases to provide
decoy data, this decoy data will be present in the file system. However, it
resides in files which do not exist in a standard Android system, in a directory
which is unreadable for forensics tools on a standard Android system. The

analyst would thus have to actively search for them to find them.

4.2.3 File system access

Android content providers use Linux file system permissions to limit direct
file access to the database to only the content provider itself. This means
that, in a standard Android system, it would be impossible for a forensics
tool to read the database file directly. Therefore, Cellebrite and XRY in
standard modes do not attempt to do so when extracting the contact list,
but use the content provider interface.

The anti-forensics system relies on being able to replace a system applica-

tion, which is normally protected from the user by the phone manufacturer.

22

To install it, then, requires the circumvention of this protection, a process
known as rooting the phone. This process gives the user the ability to run
applications as root, the Linux superuser, which is able to bypass all restric-
tions.

A forensics tool can take advantage of this elevated privilege to read data
directly from the phone’s file system, without going through the content
providers. Both Cellebrite and XRY offer this functionality. In the case
where the decoy data is hardcoded in the application, this would enable the
tool to read the database file and extract the real data. When the decoy
data resides in databases on the file system, the tool can read all databases
and present them to the analyst. However, in order to use this functionality
the analyst would first have to suspect that the standard analysis was faulty,
and then manually examine the extracted data files.

There is no inherent technical reason for keeping the capability to run
applications as root after the system application has been replaced and the
anti-forensics system is operational. For a stronger defence against forensic
examination the user could either revoke root access permanently (thereby
denying even themselves the possibility of further changes), or make it require
a customised series of operations (thereby making automated tools unable to
use it). This is discussed further as future work.

If a forensic analysis tool can completely bypass the Android operating
system, the anti-forensics discussed in this dissertation will have no effect.
The forensic recovery image developed by Vidas et al. [95] is such a tool. Tt
installs and boots a minimalistic alternate operating system on the phone,
bypassing the phone’s main operating system. This minimalistic operating
system can then read the phone’s built-in memory without interference. How-
ever, neither Cellebrite nor XRY use the technique of recovery image replace-
ment over fastboot developed for that image. Drawbacks of this technique
include requiring a specific recovery image for each phone model, modern
consumer phones requiring rooting before fastboot will work, and the lack of

help from the Android operating system in interpreting the extracted data.

23

4.3 Experimental design

The experiments will be divided into two stages, examination of current be-
haviour and implementation of anti-forensic modifications. The implemen-

tation is described in chapter 5, and the source code is in appendix C.

4.3.1 Examination of current behaviour

Before any anti-forensics can be implemented, it is necessary to determine
if and how the operating system can be modified, and how the operating
system and the forensics tools currently behave. This will be accomplished

through the following steps:

Step 1 To investigate the possibility of operating system modifications, the
source code for the CyanogenMod community distribution of Android
will be downloaded, built and installed according to the CyanogenMod

project’s instructions [23, 24].

Step 2 Once the phone is running this version of CyanogenMod, modifica-
tions will be introduced to trace the behaviour of the forensics tools.
Content providers are applications that wrap databases on the phone,
performing security checks and format conversions as required by the
Android specifications. On the assumption that both Cellebrite and
XRY use content providers to access data on the phone, these modifi-
cations will take the form of altering the content providers to provide

logs of how they are called.

Initial investigation will be limited to the content provider responsible
for the phone’s contact list. Once data is available from that content
provider, the techniques developed will be extended to cover SIM con-

tacts and SMS messages, to prove that they can be generalised.

Step 3 From knowing how the calls are made, the Android documentation
will be consulted for information on the format of the returned data

for each call.

24

Step 4 According to the documentation for Cellebrite and XRY, they both
use a USB debugging connection to connect to and extract data from
Android phones. To determine what information is available for trig-
gering anti-forensic behaviour, a separate application will be developed
that produces logs of the events seen by the operating system when

this connection is established and severed.

4.3.2 Implementation of anti-forensic modifications

The data acquired from the previous stage will help create an understanding
of how Cellebrite and XRY call the content providers. Using this information,

anti-forensic modifications will be implemented in the following steps:

Step 1 The content providers will be modified to recognise when they are
being called by forensics tools. This will take into account the informa-
tion from the separate program on how to recognise USB debugging,

and behaviour specific to the tools.

Step 2 Modifications will be developed to make the content providers ex-
hibit anti-forensic behaviour when they detect the presence of the foren-
sics tools, but still be sufficiently close to the original behaviour for the

forensics tools to believe in the data they receive.

The anti-forensic behaviours will be delaying before returning any data,
returning no data, returning data hardcoded in the content provider,
and returning data from an alternate database. The full range of anti-
forensics will be implemented for the phone’s contact list. To prove that
the techniques can be generalised, modifications will be introduced to

return no data for queries for the SIM contact list and SMS messages.

When anti-forensics are used, the real data should not be extracted,
the intended false data should be extracted and no errors should be

reported.

Step 3 The package manager will be modified to detect attempts by the

forensics tools to install their applications on the phone, and reject the

25

installation. In this case, the tools will be permitted to report errors

to the forensic analyst, but no data should be returned.

Step 4 For testing, the phone will be prepared with real data in the form
of contact list entries and SMS messages. Forensic extractions will
be performed using both Cellebrite and XRY, first with the phone
running an unmodified CyanogenMod operating system and then with
each anti-forensic modification in turn. The results of the extractions
will be inspected for the real data, the false data for that anti-forensic
case and any signs of the tools suspecting that something is wrong,

according to the test criteria in steps 2 and 3.

26

Chapter 5

Implementation, testing and

results

The experimental work for this dissertation consists of the three stages of ex-
amination, implementation and testing. Examination finds where and how
the forensics tools find their information. Implementation uses the infor-
mation gathered to modify the parts of the operating system that the tools
rely on, in order to invalidate their results. Testing checks whether the tools

recover the real or the false information when the modifications are active.

5.1 Examination of forensics tools

The content provider interface is the only way to gain access to information
such as the contact list on an unrooted Android phone. As such, forensics
tools need to use this interface at least when dealing with unrooted phones.
On a rooted phone, it would be possible for a forensics tool to bypass the
content provider and read directly from the database, but this would require
the tool to first find and interpret the database.

Under the assumption that the content provider is always used, instru-
mentation code was inserted into it to write information about its behaviour
to the system log. For each call to the content provider’s main query func-

tion, the code output the name of the calling program, the query arguments

27

and which part of the existing program logic handled the query. The source

code is in appendix C.2.

5.1.1 Cellebrite

Cellebrite uses the content provider in all observed cases. It starts by making
seven queries to the raw_contacts and settings modules, collecting general
information such as the number of contacts and whether contacts are marked
as deleted. It then goes through the raw_contacts module, querying for
information on each contact. For each contact, nine queries are made for
different kinds of information associated with it (name, phone number, e-
mail address, etc.). The full log is in appendix B.1. One of the kinds of
information, “dispatch_v2”, is not documented in the Android developers’
manual and no such query has been seen to return information. Its purpose
is therefore currently unknown. The extracted contact list, seen in figure 5.1,

matched that entered and seen in the phone’s built-in contact list application.

Phone Contacts

Total Entries: 2

FBE MD5 Hash: 220948 A440AA43AT3294AT7T733120A1A9
PBE SHA256 Hash: EE48FC18 FEC2IFCD DFOBACO FAC1FE1
DEEEEFO BIEFFAS4 0502A2B 801B32A 016044 A

University of Glasgow (Memory: Phaone)
Wark: +441413302000
#2 Houses of Parliament (Memory: Phone)
Wark: +442072193000

Figure 5.1: Contacts extracted by Cellebrite from an unmodified phone

5.1.2 XRY

XRY was also observed to use the content provider in all cases. It makes

only two queries in total, retrieving an entire data module with each query.

28

The two modules are raw_contacts and data. It is possible for XRY to
interpret this data using information found in the Android API reference
manual [4]. The full log is in appendix B.2. The extracted contact list, seen
in figure 5.2, matched that entered and seen in the phone’s built-in contact

list application.

Importance |Hﬂme Index Work
O University of Glasgow 1 +441413302000
(&) Houses of Farliament 2 +44 2072193000

Figure 5.2: Contacts extracted by XRY from an unmodified phone

5.2 Triggering

Previous work has triggered anti-forensic behaviour either on finding log
entries relating to the installation of forensics tools or on connection of a
USB cable. Reading logs requires waiting for the log messages to show up and
then spending effort reading and interpreting them, while USB connections
are frequent in everyday use.

One attribute common to all examined forensics tools is that they require
the phone to be set to USB debug mode. This lets the tool control the phone
and e.g. install applications. Setting the phone to debug mode requires
going deep into the settings menu and acknowledging a warning that “USB
debugging is intended for development purposes only” (see figure 5.3). It
also removes the possibility to use the phone as a USB memory and transfer
files to and from it using standard file management tools. The fact that
activating debug mode removes these normal and desirable features suggests
that most users will not have debug mode activated. If so, triggering anti-
forensic behaviour upon activation of USB debugging will have a lower false
positive rate than triggering on all USB connections.

A stand-alone application will be built to be a receiver for the intent
broadcast when the USB state of the phone is changed. Using the extra

information contained in the intent, the program determines whether the

29

A Allow USB debugging?

USB debugging is intended for
development purposes only. It
can be used to copy data
between your computer and
your device, install
applications on your device
without notification and read
log data.

Figure 5.3: Warning shown when enabling USB debugging

USB cable is connected or not, and whether the phone is in debugging mode.

The source code for this application is in appendix C.1.

5.3 Anti-forensics modules

Based on the examination of the forensics tools and of the USB triggering,
several anti-forensics modules will be constructed. Some of the modules will

depend on previous ones, and some will be self-contained.

5.3.1 Response delays

Anti-forensic applications which operate outside of the call path of the appli-
cation uploaded to the phone by the forensics tool have only a small window
of time to do their work, between detecting the forensic application and the
extraction being completed. For example, Azadegan et al. [46] reported
a gap of several seconds between the installation of the forensic application

and the start of extraction, while Rouwendal [83] reported being able to make

30

200-500 small writes in the time from the USB cable was inserted until the
forensic extraction was completed.

On the other hand, modifications within the call path, such as those
described here, have much more time available, since they can make sure
not to return any results to the forensics tool until the anti-forensic work is
completed. Any time constraints would come from the tool or the human
operator deciding that the delay is excessive, perhaps speculating that the
forensics tool or its connection to the phone has malfunctioned. This would
only have an impact on the ability of the anti-forensics system to return false
data, since a process to delete or hide data can keep going while the operator
retries the extraction.

Even if it would be unnecessary for completing the anti-forensic work, a
delay on human timescales could still be useful for wasting the investigator’s
time. Kessler [64] calls this “time-sensitive anti-forensics”. Computer crimi-
nals have talked about a “17-hour rule” [48]. It works on the principle that,
since computer forensics investigators are constantly overloaded with work,
it can be assumed that no more than two working days (16 man-hours) will
be spent on a routine investigation. Therefore, if the anti-forensic measures
hold up for 17 hours, they will have succeeded. If a significant amount of this
time can be taken up with artificial delays, less time is available for defeating
other measures, which can then be simpler. This is similar to the concept of
a tarpit in e-mail spam prevention [34].

The delay should be long enough to incur significant problems for the
forensic analyst (i.e. it should not be enough to run the extraction overnight),
but should still trickle-feed data at a rate high enough to keep the tool and
the analyst interested in continuing the extraction. It must also take into
account Android’s built-in “Application Not Responding” system [7], which
may alert the analyst to the fact that a delay is used.

Building upon the triggering code, delays will be inserted at the beginning
of the query () function. As was seen when examining the behaviour of the
forensics tools, Cellebrite makes several initial queries and then several more
per contact, while XRY makes only two queries for the entire database. If

trickle-feeding is desired, this places sharp limits on the number of delays

31

and the length of each delay. The source code is in appendix C.4.

5.3.2 Rejecting installation of forensics tools

If the presence of an application uploaded from a forensics tool can be de-
tected before it is started, it should be possible for the phone to refuse to
run the tool altogether. This could be disguised as one of several legitimate
problems which could arise from the installation process, such as the appli-
cation being incompatible with the version of the Android operating system
used on the phone, or there not being enough memory available to install the
application.

The package manager is the primary (and, on a non-rooted phone, only
possible) avenue through which programs are installed on an Android sys-
tem. Dumps of the USB communication between forensics tools and phones
confirm that the package manager is used to install the applications used by
the tools to extract data from the phone [46]. In all observed cases during
these experiments, Cellebrite and XRY have used the same names for their
respective applications. Therefore, the package manager will be modified to
check the name of each package being installed and refuse to perform the
installation if the name matches one of the forensics tools. The source code

is in appendix C.3.

5.3.3 Hardcoded false contact list

Finding no data in a well-used phone would be suspicious. Arranging for the
analyst to find plausible, but non-incriminating, data instead increases the
chance of them accepting the data as given and concluding that the phone
holds no relevant data.

In case this deception fails and a thorough analysis of the phone is per-
formed, it should be as hard as possible to determine where the false data
came from, in order to cast doubt on the analysis process. Hiding the data
in program code makes it harder to find than if it is in a separate file. String

obfuscation techniques, well-known from malware analysis, can be added to

32

make the data impossible to spot in the code without significant reverse en-
gineering effort. Such obfuscation methods can range from simple bitwise
logical operations [91] to customised encryption algorithms [33, 56].

In the examination of the behaviour of the forensics tools, sufficient data
was obtained to determine the format they expect for the extracted contact
list. Using that information, false data of the correct formats will be con-
structed and inserted into the code for the contacts provider, to be returned
in response to queries from each tool. As a fallback, the USB triggering
work will be incorporated as well. If a query comes from an unknown tool,
but USB debugging is on, no results will be returned. The source code is in

appendix C.5.

5.3.4 False contact list from alternate databases

Hardcoded data is optimised for hiding, but in order to change it the user
would have to edit, recompile and reinstall the contacts provider. If the
false data instead resides in an alternate database, it can more easily be
customised by each user.

This would leave the false data on disk in the same format as the real
data, which makes it easier to spot than if it was hardcoded. As an additional
precaution, the file names should be switched, so that the file which normally
contains real data now contains false, and vice versa. That way, even if the
analyst succeeds in making a logical or physical dump of the phone’s file
system, any tools and experience would still lead them to the false data.

The module for returning hardcoded false data already contains code
for answering queries differently depending on which forensics tool made the
query. The false response code will be modified to read its data from alternate
databases instead of having it hardcoded, one database for Cellebrite and one

for XRY. The source code is in appendix C.6.

5.3.5 Delayed restoration

After an analyst has performed an extraction of data from a device, they may

want to perform an independent verification. This may be done by using

33

another tool to perform an extraction, or by manually using the phone’s
built-in functionality. To preserve the illusion that the false data reported to
the first tool is true, subsequent examinations should yield the same results.

To this end, a timer will be added to the triggering code in the module
reading false responses from alternate databases. The removal of the USB
cable will start the timer, and the same false data will continue to be returned
until the timer expires. Subsequent insertions of USB cables will reset the
timer, so that the same false data will continue to be delivered to other

forensics tools. The source code is in appendix C.7.

5.3.6 Hiding SIM contacts

The previous modules for returning false data only work with the phone’s
internal contact list. The SIM also contains a contact list. In the standard
Android operating system, there is no way to directly manipulate these con-
tacts, but they can be imported to the phone’s contact list in bulk, and
forensics tools can read them directly from the SIM.

A module for hiding SIM contacts will be included to ensure that all
contacts on the phone are hidden. It will also provide a demonstration of the
generality of the method used, since the content provider for SIM contacts is
not the same as the one for phone contacts, and uses a different data storage

mechanism. The source code is in appendix C.8.

5.3.7 Hiding SMS messages

Like contacts, SMS messages are stored both on the SIM and in the phone.
Unlike contacts, Android doesn’t provide a way to access SMS messages on
the SIM independent from those on the phone. All code for handling SMS
messages is in the same content provider, which fetches messages from the
SIM to the phone as required.

SMS messages are pushed to the SIM from the network, meaning that
one could arrive in the middle of an investigation. Best practise guidelines
recommend isolating the phone from the network to prevent this. However,

it is possible that the guidelines aren’t followed, or that the analyst hasn’t

34

had time to isolate the phone before the message arrives. In these cases, it
would be desirable to hide the fact that a message has been received, to avoid
giving the investigator an incentive to perform a detailed analysis.

There are two content providers in Android which allow access to SMS
messages, called “SmsProvider” and “MmsSmsProvider”. The SMS provider
only returns SMS messages, and is the one used by Cellebrite and XRY. The
MMS and SMS provider returns full conversations spanning both SMS and
MMS messages, and is used by the built-in messaging application. To make
sure SMS messages are hidden from all viewers, both will be modified. USB
debug triggering will be implemented, and query () function of each will be
modified to return no result when USB debugging is active. As a proof of
concept, only hiding of messages will be implemented. Should false messages
be desired, the techniques for returning false contact lists could be adapted

to SMS messages. The source code is in appendix C.9.

5.4 Testing and results

For each test of an anti-forensic module, the operating system was rebuilt
to contain the module, uploaded to the phone and installed using the recov-
ery image. This replaced the operating system already on the phone, but
preserved user data such as contact lists and SMS messages. Fach modified
version of CyanogenMod was approximately 90 MB in size and took slightly

less than one minute to install.

5.4.1 Triggering

The phone will be reinstalled using a standard CyanogenMod 7.2 operat-
ing system. The monitoring application will be installed and started. With
the monitoring application running, the USB cable will be plugged and un-
plugged with the phone in both USB mass storage and USB debugging
modes. The messages printed by the application should match the state
of the USB cable and settings.

Two screenshots from the running application are in figure 5.4. In 5.4a,

35

the phone is in USB debugging mode, and in 5.4b it is not. Both images con-
tain mostly raw information, so the processed information indicating USB
connection and debugger state! has been indicated with outlines. They are
different and match the physical actions performed, so the program can dis-

tinguish between the different cases.

v Lnangy

UEvent: fSUBSYSTEM switch, SWITCH_STATE=1,
DEVPATH= /de\nces/wrtual/swnch/usbfcomnected
SEQNUM=818, ACTION=change,
SWITCH NAME=usb connected}
bnReceive(android.hardware.usb.action.
SB_STATE): connected, ADB off
, diag, configuration, accessory,

usb_mass_storage, rn connected]
UEvent: {SUBSYSTEM=power_supply, DEVPATH=/
devices/platform/rs30100001:00000000/
power_supply/ac, SEQNUM=819,
POWER_SUPPLY_ONLINE=0, ACTION=change,
POWER_SUPPLY_NAME=ac}
UEvent: {SUBSYSTEM=power_supply, DEVPATH=/
devices/platform/rs30100001:00000000/
power_supply/usb, SEQNUM=820,
POWER_SUPPLY_ONLINE=1, ACTION=change,
POWER_SUPPLY_NAME=ush}

Pausing

UEvent: {SUBSYSTEM=switch, SWITCH_STATE=1,
DEVPATH=/devices/virtual/switch/
ushb_configuration, SEQNU 21, ACTION=change,
SWITCH_NAME=usb_co Iration}

UEvent: {SUBSYSTEM ver_supply, DEVPATH=/
devices/platform/ds2784-battery/power_supply/
battery,
POWER_SUPPLY_CHARGE_COUNTER=1126400,
POWER_SUPPLY_HEALTH=Good,

POWER_ SUPPLV STATUS= Charwmv

POQWER HNOLO _ion

ration, acCessory,
ndis, conn ected]

UEvent: 'SUBSVSTEM power supply, DEVPATH=/
devices/platform/rs30100001:00000000/
power_supply/ac, SEQNUM=785,
POWER_SUPPLY_ONLINE=0, ACTION=change,
POWER_SUPPLY_NAME=ac}
UEvent: ’SUBSYSTEM power_supply, DEVPATH=/

power_supply/usb, SEQNU
POWER_SUPPLY_ONLINE=
POWER_SUPPLY_NAME=usb}
UEvent: {SUBSYSTEM=switch, SWITCH_STATE=1,
DEVPATH=/devices/virtual/switch/
usb_configuration, SEQNUM= 787 ACTION=change,
SWITCH_NAI\-’WE:usb_cor

ower_ supmv DEVPATH=/
devices/platform/ds2784-battery/power_supply/
battery,
POWER_SUPPLY_CHARGE_COUNTER=1120000,

POWER_SUPPLY_TEMP=265,

(a) USB connected, debugging on (b) USB connected, debugging off

Figure 5.4: Screenshots of USBMonitor output

5.4.2 Response delays

The phone will be reinstalled using a modified CyanogenMod 7.2 operating
system. The only modification from default will be the insertion of a delay
into each query of the contact list provider. Extractions of the contact list
will be performed using Cellebrite and XRY, and the delay increased until
the tools present errors instead of performing successful extractions.
Cellebrite has a low tolerance for response delays. It accepts a delay of

five seconds at each call to query(), but ten seconds is enough to make it

!The debugger is indicated by its name “ADB”, which stands for “Android Debug
Bridge” [13].

36

abort the extraction and show the error message in figure 5.5. When this
error happens, no report is created and no data is extracted, even if other
information on the phone could have been extracted successfully. Adding a
five second delay to each call lengthens the extraction time from approxi-
mately 25 seconds for an unmodified phone (figure 5.6a) to approximately 2

minutes 20 seconds (figure 5.6b).

Oesire/Bravo GSM
roidCable 188%:
- connect to phone
F1 for more info)
rt [F3 Skip | ®Retry

Figure 5.5: Error from Cellebrite with a ten second response delay

Extraction start dateftime: 10/08/12 14:46:09

Extraction end dateftime: 10/08/12 14:46:33
(a) No delays

Extraction start dateftime: 10/08/M12 14:10:38

Extraction end dateftime: 10/08/12 14:13:00

(b) Delay 5 seconds per call to query ()
Figure 5.6: Cellebrite extraction logs showing elapsed time
No upper bound has been found for the delay tolerated by XRY. With a
six hour delay for each of the two calls, XRY took the expected twelve hours

to complete the extraction of the contact list. No error message was given,

but the times were recorded in the log (figure 5.7).

18 ANDRCID Success 15:34:14 Reading Contacts
19 ANDROID Success 03:34:15 Reading Calls

Figure 5.7: Extraction log from XRY with a six hour response delay

37

5.4.3 Rejecting installation of forensics tools

The phone will be reinstalled using a modified CyanogenMod 7.2 operating
system. The only difference from the standard code will be the modifica-
tions to the package manager for rejecting installation of applications named
“com.client.appA” or “example.helloandroid”. Extractions of the contact
list will be performed using Cellebrite and XRY, and the extraction result
compared to that from an unmodified CyanogenMod.

Cellebrite completely failed to perform the extraction, instead presenting

the error message in figure 5.8 to the user.

Figure 5.8: Error from Cellebrite when installation was rejected

XRY completed the extraction. However, the summary (figure 5.9a) re-
ports that an error has occurred and that the extraction was incomplete. An
error was also reported in the log (figure 5.9b), but this was not particu-
larly clear on what went wrong and what the consequences were. The report
was missing the sections “Device/App Usage”, “Contacts” and “Web/Book-

marks”.

5.4.4 Hardcoded false contact list

The phone will be reinstalled using a standard CyanogenMod 7.2 operating
system. Using the built-in contact list application, two contacts will be en-
tered into the phone contact list (see figure 5.10). Extractions of the contact
list will be performed using Cellebrite and XRY, and both should extract

38

Logical Extraction finished with errors

XRY encountered one or more errors during the extraction of data from the device.
Data may not be complete.

Folder Items
Device / General Information 1
Files / Unrecognized 12

(a) Extraction summary

7 MAIN Success 11:45:58 Processing device [HTC Desire A&131]
connected to DummyPort []...

3 MAIN Success 11:45:58 Starting process of ANDROID (6.1.1)

9 ANDROID Success 11:45:58 Connecting

10 ANDROID Success 11:46:08 Connected

11 ANDROID Unsuccessful 11:46:08 Receive packet failed

12 ANDROID Success 11:46:12 Device is rooted. Application data will be
exiracted.

13 ANDROID Success 11:46:14 Extracting email data.

14 ANDROID Success 11:46:18 Extracting Google Talk data.

18 ANDROID Success 11:46:30 Disconnecting

16 MAIN Unsuccessful 11:46:35 ANDROID (6.1.1) completed with error

17 MAIN Success 11:46:35 Starting process of DISKSTOR (6.1.1)

(b) Extraction log

Figure 5.9: Results from XRY when installation was rejected

both contacts.

The contact list database will be copied from the phone to a PC. The
phone will be reinstalled using a modified CyanogenMod 7.2, the only dif-
ference from the standard operating system being the contact list provider,
which will contain hardcoded false data. Three sets of false data will be
provided. Cellebrite and XRY will be provided with contact lists containing
one contact each, this being the technical support phone number for each
tool. Unknown tools will be provided with an empty contact list.

Cellebrite and XRY will be used, in turn, to extract the phone contact
list. They should see the same number of contacts as in the real contact
list, but each should have the name and number to technical support for the
respective tool. Finally, the phone will be connected to a PC, still in USB
debugging mode, and the contact list inspected using the built-in application.
No contacts should be visible.

Both Cellebrite (figure 5.11) and XRY (figure 5.12) showed the two con-

39

Displaying 2 contacts
H

Houses of Parliame ¢*

. University of Glasgc ¢*

Figure 5.10: Contact list application with real data

tacts with their respective false data. When connected to a PC in USB
debugging mode, the built-in application shows an empty contact list, as

seen in figure 5.13.

5.4.5 False contact list from alternate databases

The phone will be reinstalled using a modified CyanogenMod 7.2 operating
system. The contact list provider will have been modified to retrieve its
data from different databases depending on whether the query comes from
Cellebrite, XRY or the phone itself outside of USB debugging mode.

When the contact list was entered manually in the previous test, the
phone software will have created an SQLite database file on the phone to
store it2. This file will be copied to a PC in two instances, which will be
changed to contain the technical support phone numbers for Cellebrite and
XRY, respectively. These changed database files will be uploaded to the
phone to be used by the modified contact list provider?.

?/data/data/com.android.providers.contacts/databases/contacts2.db
3/data/data/com.android.providers.contacts/databases/cellebrite.db and

40

Phone Contacts

Total Entries: 2

FEE MDE& Hash: ASF35CE59FCO096D899252CEEDB48AFOF
FPEB SHA256 Hash: 62BFC342 9078845 71A1907 2490120
DI9CAGTY 82ABSD2 2BB2812 6A07718 8D0OSCCA

#1 Cellebrite Technical Support (Memory: Phone)
Wark: +495251546430
#2 Cellebrite Technical Support (Memaory: Phong)
Wark: +495251546490

Figure 5.11: Cellebrite extraction report showing hardcoded false data

Importance |Name [Index |Work |
O XRY Technical Support 1 +4G37300270
5 XRY Technical Support 2 +4687380270

Figure 5.12: XRY extraction report showing hardcoded false data

Extractions of the phone contact list will be performed using Cellebrite

and XRY. They should not see the two contacts in the real contact list, but

only their own technical support phone numbers.
Both Cellebrite (figure 5.14) and XRY (figure 5.15) saw only their own

single technical support contact.

5.4.6 Delayed restoration

The phone will be reinstalled using a modified CyanogenMod 7.2 operating
system. The contact list provider will have been modified to return results
from alternate databases, as in the previous test. In addition, the provider
will be modified so as to continue returning the same false contact list until

the USB cable has been unplugged for thirty seconds, regardless of which

tool requests it.

/data/data/com.android.providers.contacts/databases/xry.db

41

You don't have any contacts to
display.

To add contacts, press Menu
and touch:

Accounts to add or configure
an account with contacts that

you can sync to the phone

New contact to create a new
contact from scratch

import/Export

Figure 5.13: Contact list application showing empty contact list when USB
debugging is on

Cellebrite will be used to perform an extraction of the phone contact
list. This should contain only the number for Cellebrite technical support.
Another extraction will be performed using XRY. This should still show the
same number for Cellebrite technical support. The phone will be discon-
nected from the USB cable and the contact list inspected using the built-in
contact list application. This should also only show the number for Cellebrite
technical support. Thirty seconds should be allowed to pass, and the built-in
contact list application opened again. This should now show the two contacts
in the real contact list.

The Cellebrite extraction report showed only the false contact intended
for Cellebrite (figure 5.16a). The contact list application on the phone saw
the same information (figure 5.16b), and so did XRY (figure 5.16¢). After dis-
connecting the phone and waiting thirty seconds, the contact list application
on the phone saw the two contacts in the real contact list.

Beginning a new series of extractions with XRY, the XRY extraction
report showed only the false contact for XRY (figure 5.17a). The built-in

42

Phone Contacts

Total Entries: 1

PBB MDE5 Hash: 324B323C2612C3A2CE85F T2FBECS5641D
PEB SHA256 Hash: 34515095 B25CT782 BE38TDF 4268C414
DF75C2F 657167A 68BDE36 DD1C085 82359767

Cellebrite Technical Support (Memary: Phone)

Wark: +495251546430

Figure 5.14: Contacts fed to Cellebrite from an alternate database

Importance | Name |Index |Work |Attach ments |
O XRY Technical Support 1 +4687390270 0

Figure 5.15: Contacts fed to XRY from an alternate database

contact list application (figure 5.17b) and Cellebrite (figure 5.17c) showed
the same contact. After disconnecting the phone from the USB cable and
waiting thirty seconds, the built-in application again showed the real contact
list.

5.4.7 Hiding SIM contacts

The phone will have a SIM for a pay-as-you-go account from Lebara. This
contains two contacts by default, one for topping up and one for voicemail.
The phone will be reinstalled using a standard CyanogenMod 7.2, and ex-
tractions of the SIM contact list performed using Cellebrite and XRY. Both
tools should extract both contacts from the SIM.

The phone will be reinstalled using a modified CyanogenMod 7.2 oper-
ating system. The only modification will be to the SIM contacts provider,
which will be changed to return no contacts when the phone is in USB de-
bugging mode. Extractions of SIM contacts will be performed again using
Cellebrite and XRY. Neither should be able to find any contact.

On an unmodified phone, Cellebrite found two phone contacts and two
SIM contacts (figure 5.1). With the SIM contact hiding active, only the two

43

phone contacts were visible (figure 5.18b).
XRY does not have functionality for reading data from the SIM through
the phone. It requires the SIM to be removed and inserted into an external

reader. Therefore, SIM anti-forensics on the phone have no effect on XRY.

5.4.8 Hiding SMS messages

The phone will be reinstalled using a modified CyanogenMod 7.2 operating
system. The only modification will be to the SMS provider, which will be
changed to return no SMS messages when the phone is in USB debugging
mode.

Before the phone is connected to any analysis tool, an SMS message will
be sent to it. This should produce a notification and be visible in the SMS
application. Then, the phone will be connected to each of Cellebrite and
XRY in turn, and extractions of SMS messages performed. No messages
should be extracted. While the phone is still connected to each tool, another
SMS will be sent to it. This should not produce a notification and should
not be visible to the user. The built-in messaging application should show
no messages while the phone is connected using USB debugging.

No notifications were produced when messages were sent to the phone
while it was connected to the analysis tools. After the phone was discon-
nected from the tools, the messages were available through the standard
phone application.

Cellebrite found no SMS messages when the anti-forensics was enabled,
as seen in figure 5.19b. The message “SMS Information Not Available” seems
to be an error message. However, it is also present when the phone is running
standard CyanogenMod and legitimately has no SMS messages stored.

XRY also did not find any SMS messages when the anti-forensics was
enabled. The extraction report from XRY does not detail which pieces of
information were sought, only which were returned, so the report simply lacks
a section for SMS messages. The built-in messaging application showed no
messages while the phone’s USB debugging connection was active (figure
5.20Db).

44

Phone Contacts

Total Entries: 1

PEB MD5 Hash: 324B323C2612C3A2CE585F 12FBEC5641D
PEE SHA256 Hash: 34515095 B25C 762 BE3BTDF 426C414
DF75C2F 657167A 68BD626 DD1C085 3359767

Cellebrite Technical Support (Memory: Phone)

Waork: +495251546430

(a) Cellebrite extraction report

Displaying 1 contact
C

. Cellebrite Technical ¢*

(b) Built-in contact list application

Importance |Name |Index |Work |Attachments
O Cellebrite Technical 1 +495251546490 0
Support

(c) XRY extraction report

Figure 5.16: Contact lists with delayed restoration, first extracted with
Cellebrite

45

Importance | Name |lndex |Work |Attachments
&) XRY Technical Support 1 +4687390270 0

(a) XRY extraction report

Displaying 1 contact

X
. XRY Technical Supp ¢*

(b) Built-in contact list application
Phone Contacts

Total Entries: 1

FEE MDS Hash: 4229781116860 7D3EQSCES42212D02374
FPEE SHA256 Hash: DET985F9 A98AD44 3EASSBE D280171
DaDsDC1 2FDTCCO 5F994AE 1369103 9C3BE9S

XRY Technical Support (Memory: Phone)

Wark: +4687 390270

(c) Cellebrite extraction report

Figure 5.17: Contact lists with delayed restoration, first extracted with XRY

46

Phone Contacts

Total Entries: 2

PBB MDS5 Hash: 213EBO4FA860342141979F 19E T5BFA1C
PBB SHAZ256 Hash: 73566850 44D4D16 77268AFA D428615
D21BADB FEA479B A15BBAS EQTC34B DD152D0

#l Top-up (Memaory: SIM)
General: 5588

Voicemail (Memaory: SIM)
General: 121

(a) SIM contacts visible

Phone Contacts

Contacts Information Mot Available

(b) SIM contacts hidden

Figure 5.18: Cellebrite extraction reports for SIM contact lists

Phone SMS - Text Messages

SMS MD3 Hash: 81161ADSAS0B496D9DFS5ACS2190EBET
SMS SHA256 Hash: C5357DEE 227EF 1D E964105 3FTAFG3 1FOBT2C FFEFBS1 6AF 1EC4 DATF21E ADCED36

Number Name Date & Time SMSC Status |Folder |Storage Type Text

+47412995116 | NJA | 16/07/12 14:11:01 (GMT+ +447782000800 |Read |Inbox |Phone [Incoming |This is test SMS number 1

+HAT412995116 | NJA | 17/07/12 11:43:34 (GMT+1 +447782000800 |Read |Inbox |Phone [Incoming |This SMS will be delivered while the phone is connected to Cellebrite

=lw[r] ==

()

+447412995116 | N/A - |16/07/12 19:49:41 (GMT+1) | +447782000800 |Read |Inbox |Phone |Incoming |This is test SMS number 2
()
()

+47412995116 | NJA | 17/07/12 11:45:53 (GMT+ +447782000800 |Read |Inbox |Phone [Incoming |This SMS will be delivered after Cellshrite has been disconnected

* Phonebook name lookup used to retrieve names

(a) Standard CyanogenMod
Phone SMS - Text Messages

|# |Numher ‘Name ‘Dale & Time SMSC Status Folder Storage Type Text

* Phonebook name lookup used to retrieve names

SMS Information Not Available

(b) SMS messages hidden

Figure 5.19: Cellebrite extraction logs showing SMS messages

47

New message New message

Compose new message Compose new message

+447412995116 (4)
This SMS will be delivered after ... 17 Jul

(a) Normal (b) SMS messages hidden

Figure 5.20: Screenshots of the built-in messaging application

48

Chapter 6
Conclusions

This dissertation set out with an hypothesis and a number of research ques-
tions. The hypothesis was that it is possible to modify the Android operating
system to present false information to the forensics tools Cellebrite and XRY,

and the research questions were:

e Which components of the Android operating system do the forensics

tools trust?
e [s it possible to modify these components to present false information?
e Can the presence of a forensic analysis tool be detected?

e [s it possible to make the presentation of false information reversible,
such that the phone will revert to presenting the real information after

the forensic analysis?

6.1 Trust

Forensic analysts try to minimise the trust they place in the equipment under
examination. This is expressed by disassembling PCs and examining them
component by component, and by using forensics tools instead of operating
systems to interpret the data on as low a level a possible. This is hard to do

on a phone, where disassembling requires much effort, time and resources,

49

and interpretation of raw data may be impossible due to formats being un-
documented. Therefore, phone forensics is mostly performed by letting the
phone run its software and having the forensics tools ask that software for
information.

This means that the forensics tools trust the phone software to return
the correct results. In particular, both Cellebrite and XRY use the standard
content provider interfaces to retrieve personal data from Android phones.
Both tools can also perform logical acquisitions of the phone’s entire memory,
thereby bypassing the high-level phone software and only trusting the phone’s
file system driver to return the correct files. However, using that mode of
acquisition requires that the tool or the analyst perform data interpretation
themselves, without the help of the phone software. Both tools also use stan-
dard methods of installing software, thereby trusting the package manager to
install that software correctly. These high-level software packages, in turn,
trust the lower levels to function correctly. Therefore, the forensics tools also
trust, by extension, all lower levels of the Android stack, including the Dalvik
virtual machine, the Linux kernel and the hardware.

Cellebrite and XRY place slightly different levels of trust in different
components of the Android phone. When the phone refused to install the
forensics application, Cellebrite refused to run and presented an error mes-
sage to the analyst, while XRY partially completed the extraction, reported
a partial error, and produced a report containing very little data. Cellebrite
was also more time-sensitive, with a ten second delay for each query being
enough to cause errors. XRY, in contrast, did not report any errors even
after six hours, and completed the extraction successfully if left alone for
that time.

6.2 Modification

Any component of a system under forensic analysis that is trusted by one
party is a point of attack for their opponent. Since the content providers
and package manager are trusted by Cellebrite and XRY, they are natural

targets for anti-forensics.

30

Android is an open system, with specifications and source code freely
available. Several projects use that source code to build community dis-
tributions of Android which can be installed on many different models of
phones. The installation requires that the phone be rooted, which is possible
to do on many phones and popular among technologically sophisticated cus-
tomers. Step-by-step guides available on the Internet describe how to root
phones and install community distributions of Android.

These community distributions depend upon contributions of code from
the general public. They therefore make it easy to modify their code and
install the modified versions. While programming skills are a prerequisite,
this dissertation has shown that it is possible to modify and replace content

providers and the package manager.

6.3 Detection

Behaviour that is repeated is grounds for identification. If that behaviour
is not the same as that produced by regular use, it is grounds for anomaly
detection. Cellebrite and XRY provide both. Every time the behaviour of
either was observed, each used the same name its uploaded application, and
that application queried the content providers in the same way. They both
also require the phone to be in USB debugging mode, which is unlikely to be
the case for a phone in regular use.

The experiments performed here have shown that it is possible to distin-
guish between normal use and forensic analysis by looking at whether USB
debugging is enabled, and that it is possible to distinguish between different

forensics tools by looking at the names of their applications.

6.4 Reverting

Most phone anti-forensics is concerned with overwriting or deleting infor-
mation. While this hopefully makes the data completely unavailable to the

forensic analyst, it also makes it unavailable to the legitimate user if the

o1

phone is eventually returned. Presenting false data to the analyst instead
opens the possibility of hiding the real data and reverting to it after the
analysis has been completed.

The anti-forensics implemented for this dissertation show that this is pos-
sible. The real information is left in its place, while false information is fed
to forensics tools from other sources. The real information is made available

again either immediately or after a set time.

6.5 Hypothesis

Forensics tools place a great deal of trust in the Android software, but that
software can easily be modified and replaced. When suitably modified and re-
placed, that software can feed false information to the tool. Neither Cellebrite
nor XRY detects this subterfuge, and so present the false information to the
analyst as if it was real. The anti-forensics software modules are present on
the phone and can be seen by the analyst should they do a logical extraction
of the phone’s file system. However, their presence and function is not ob-
vious, and even if they are detected reverse-engineering them would require
significant time and effort from the analyst.

This dissertation has presented a proof of the hypothesis by construc-
tion. It is possible to modify the Android operating system to present false
information to Cellebrite and XRY, because such modifications have been

performed and tested. The modifications:

e Hide the phone contact list from the forensics tools

e Present different false contacts to the forensics tools depending on

which tool is used

e Continue to present false contacts for a set time after the forensics tool

has been disconnected

e Delay the extraction of data by the forensics tools by an arbitrary

amount of time

92

e Hide SIM contacts from the forensics tools
e Hide SMS messages from the forensics tools

e Prevent the forensics tools from being installed

33

Chapter 7

Future work

7.1 Decompilation of forensic applications

Standard Android applications are written in Java and compiled to Java
bytecode. They are then translated to the Android-specific Dalvik [20] virtual
machine, which runs the application on the phone. The application can
be turned back into Java bytecode using tools such as dex2jar [21], after
which generic Java reverse engineering techniques are available, such as the
JD decompiler [52] which can turn Java bytecode into human-readable Java
source code.

Both Cellebrite and XRY upload an application to the phone through the
USB debug connection. This application reads the requested data and sends
it to the tool. After extraction, the tool stops and deletes the application.
Study of these applications could reveal avenues for more accurate detection
of forensic tools and vulnerabilities in the applications. Experiments could
be conducted to see if it is possible to make the application accept commands
from an anti-forensic application running on the phone as well as the external
forensic tool, any logs would implicate the forensic tool as responsible for
the resulting behaviour. It’s plausible, based on previous research pointing
to forensic software being insecure and unprepared to deal with a hostile
environment [75], that such vulnerabilities would be found.

Even if no actual vulnerabilities are found, there is information suggesting

o4

that it is possible to use Java reflection to invoke arbitrary functions in other
applications [76]. For example, Cellebrite sells products for phone backup,
restoration and data transfer in addition to phone forensics. These would
have the ability to write data to the phone as well as read it. An investigation
could be conducted to see if the application has been reused between these
different products, such that code for writing data is also present in the
application uploaded by the forensics tool. If this is so, and an anti-forensics
module could call that code, it would be possible to make it look like the
forensics tool intentionally destroyed evidence. Even if no such extraneous
functionality is present, simply calling legitimate forensic functions is an
unexpected order might be enough to confuse the analysis tool and ruin any
data extraction.

In order to decompile these applications, they must first be captured. Ini-
tial experiments with Cellebrite suggests that this is very easy. The deletion
is triggered by the external Cellebrite tool, not internally from the uploaded
application itself. To prevent the application from being deleted at the end of
an extraction, simply unplug the USB cable between the Cellebrite tool and
the phone before extraction is complete. The extraction will be aborted, but
the application will still be running. The application could then be down-
loaded to a PC by connecting to the phone using a standard USB debug
connection.

The legality of this procedure would depend on the specific licence for
the forensic tool and its uploaded application, and the legal provisions for
academic reverse engineering in the jurisdiction where the research is taking

place.

7.2 Detection of forensics tools

The triggers used to detect the presence of a forensics tool currently use the
name of the application uploaded to the phone, which would be easy for the
tool vendor to change in the future.

More sophisticated triggers are possible. Two are immediately apparent
from the logs of Cellebrite and XRY behaviour in appendices B.1 and B.2:

95

raw_contacts and a query-following state machine.

The raw_contacts method would look at queries for the URI' content://
com.android.contacts/raw_contacts. Such queries return contacts data
in a format suited for automated processing, while a different URI (content://
com.android.contacts/contacts) returns data suitable for humans and is
used by the built-in contact list application?. This suggests that trigger-
ing on the use of raw_contacts would be a good fallback method, but care
must be taken not to trigger on legitimate applications. According to the
documentation, it is primarily intended for use by applications that perform
contact list synchronisation and other contact list management tasks.

A query-following state machine would take advantage of the fact that
the forensics tools make the same set of queries in the same order each time.
XRY makes only two queries, each for an entire dataset, and presumably
does all processing in the analysis tool. This does not leave much structure
to trigger on. Cellebrite, on the other hand, makes seven preparatory queries
and then nine queries per contact (one each for the contact’s name, phone
number, e-mail address, etc.). A state machine could look at the seven
preparatory queries, or the nine queries for one contact, and from that series
of queries determine that the queries come from Cellebrite and serve false
data in response to the following queries.

Another idea for a triggering mechanism can be had from the ACPO
digital forensics guidelines [53]. This recommends that mobile phones be dis-
connected from the network before analysis, preferably using a Faraday cage.
Presenting false data whenever the network connection is lost may therefore
be a valid anti-forensic strategy. The connection may be legitimately lost
during everyday use, for example by the user walking into a cellar. In these
cases, the phone functionality is unavailable to the user anyway, so the un-
availability of phone-related data may not be a significant drawback. For
example, no phone calls can be made, so hiding the contact list may not

inconvenience the user.

!Uniform Resource Identifier, a standard for specifying the name and location of data
items [49].

2The format of the results returned are documented as ContactsContract.RawContacts
[6] and ContactsContract.Contacts [5], respectively.

56

7.3 Encryption

Starting with version 3.0 (also known as “Honeycomb”), Android implements
full-disk encryption using the Linux standard “dm-crypt” system [28]. Since
Android series 3 was only available for tablets [14], encryption functionality
was not available for smartphones until the release of Android 4.0 (“Ice Cream
Sandwich”) in October of 2011 [70]. No academic publications of the forensics
consequences of this encryption have been found.

According to the documentation for the encryption feature [12], encryp-
tion requires a boot-time password and a screen lock password, which have
to be identical. This password would probably be simple, since it needs to
be entered frequently on a device not intended for quick, accurate input of
long strings of characters. Since it is entered frequently, it might also be
vulnerable to touch-screen attacks such as fingerprint smudge recognition
[45].

Using encryption may increase the viability of anti-forensic applications.
If an analyst knows they will need a password to boot the phone, they may
be forced to leave it running instead of turning it off in order to remove
components for separate analysis (such as the SIM card). This would increase

the relevance of anti-forensics for SIM contacts and SMS messages.

7.4 Unrooting

Current systems for rooting Android phones are permanent, in that they
allow unrestricted root access after they have been installed. However, there
is no technical reason why this has to be so. Since forensic tools can take
advantage of root access to make logical or physical copies of the phone’s
memory, removing this access would force these tools to use the content
provider interfaces, which can have anti-forensic modifications.

After modifying the operating system not to grant root access automati-
cally, this root access can be made more or less difficult to recover, depending
on the user’s needs. More difficulty makes the device more safe from forensic

examination, but harder for the user to modify further.

57

The standard UNIX utility su allows a user to change their user ID, and
thus gain root access. It is available in the user’s search path?® by default in
CyanogenMod. If moved outside the standard search path, or renamed, it
would still be available to a user who knows where to find it (or a sufficiently
thorough forensic analyst), but unavailable to automatic tools which expect
it to be in the default location.

Removing the su application completely still leaves the alternate recovery
image. Using this, a complete new operating system can be installed on the
device. Whether any user data survives this operation depends on the exact
installation process. For example, using ClockworkMod to upgrade from
CyanogenMod 7.1 to CyanogenMod 7.2 preserves all user data. For anti-
forensics purposes, it would be recommended to modify the recovery image
to require wiping all data before installing a new operating system.

For maximum protection against forensic examination, the recovery im-
age should be reverted to the standard Android one. There would then be no
intentional ways to gain root access, which would place a forensic investigator
in the same position as a hacker with a newly released phone, trying to get
an alternative operating system installed. However, to cater to the enthusi-
ast market, many phone manufacturers began to include supported ways of
unlocking the bootloader in 2011 [72]. This means that the investigator can
easily install their own recovery image and use that to install an operating
system granting root access with minimum alterations to the data already
present on the device. The question would remain of how acceptable such a
procedure would be to a court, since it involves substantial modification of

the device.

7.5 SEAndroid

Standard Android uses just the traditional UNIX discretionary access control
mechanism, which allows the superuser (root) to override any restrictions.

When the phone is rooted, the user is allowed to install modified versions of

3A list of directories where the system automatically looks for programs when the user
gives the name of a program to execute.

38

operating system components, but this also allows a forensics tool to access
database files directly in the phone’s file system instead of going through a
content provider.

SELinux [86] is an initiative from the US National Security Agency to
implement mandatory access control on Linux. It has been included in stan-
dard Linux since 2003 [93], and has been used by major desktop distributions
such as Fedora [22] and Ubuntu [36] for several years.

SEAndroid [31] is a project for using SELinux on Android. While using it
would require that the phone first be rooted to replace the operating system
with one implementing SEAndroid, once running it would be able to restrict
even the root user from certain actions. It would then be possible to forbid
forensic tools from reading database files from the file system, thereby forcing

them to go through the content provider to get the data.

7.6 Data destruction

The modifications performed for this dissertation were all non-destructive,
meaning that the original data was still left on the phone, even when it was
not presented to the forensics tools. However, this is not inherent in the de-
sign. The improved hiding and triggering properties found by implementing
anti-forensics in the operating system over using a standalone application
would also be able to hide destructive anti-forensics routines. For example,
the package manager could be extended to not only reject the installation
of forensics tools, but use the installation attempt as a trigger to perform a
complete wipe of the phone. This would free the anti-forensics routines from

the timing constraints which apply when they run as a separate application.

29

Appendix A

Software and hardware

environments

The development of the tool, and all experiments, were carried out using the

following software and hardware:

Phone HTC Desire GSM (also known as Bravo and A8181), Hboot version
0.93.0001

Rootkit Revolutionary version 0.4pre4 [30]

Recovery image Revolutionary ClockworkMod 4.0.1.4
Android 2.3.7 (Gingerbread)

Distribution CyanogenMod 7.2

CyanogenMod development environment Set up as documented on the

CyanogenMod wiki [23], for branch gb-release-7.2.

Rooting and CyanogenMod installation Procedure as documented on
the CyanogenMod wiki [24]

Cellebrite Versions: App: 1.1.9.4 UFED, Full: 1.0.2.7, Tiny: 1.0.2.1

XRY Version 6.1.1

60

Appendix B

Tool behaviour

The following are logs of the calls made by the forensics tools Cellebrite and
XRY when told to extract the contact list from the phone. The contact list
contained two entries, each with a name and a phone number. The fields
correspond to the arguments to the main query function,
com.android.providers.contacts.ContactsProvider2: :query(Uri uri,
String[] projection, String selection, String[] selectionArgs,
String sortOrder).

Documentation on the format of the data returned by these queries can
be found in the Android developer documentation for the ContactsContract
class [4].

B.1 Cellebrite

The application making these queries is called “com.client.appA”.

URI: content://com.android.contacts/raw_contacts
Projection: null

Selection: null

Selection arguments: null

Sort order: null

URI: content://com.android.contacts/raw_contacts
Projection: null

Selection: null

Selection arguments: null

Sort order: null

61

URI: content://com.android.
Projection: [account_type]
Selection: null
Selection arguments:
Sort order: null

null

URI: content://com.android.
Projection: null

Selection: deleted = 7 AND
Selection arguments: [0]

Sort order: null

URI: content://com.android.
Projection: null
Selection: null

Selection arguments: null

Sort order: null

URI: content://com.android.
Projection: [account_type]
Selection: null

Selection arguments: null

Sort order: null

URI: content://com.android.
Projection: [.id]
Selection: deleted < 7
Selection arguments: [1]
Sort order: null

URI: content://com.android.
Projection:
is_primary ,
Selection: _id 1 AND
mimetype = ’vnd.android.
Selection arguments: null
Sort order: null

account_type

URI: content://com.android.
Projection: [datal, data2,
Selection: _id 1 AND
mimetype = ’vnd.android.
Selection arguments: null

Sort order: null

URI: content://com.android.
Projection: [datal, data2,
Selection: _id = 1 AND
mimetype = ’vnd.android.
Selection arguments: null

Sort order: null

URI: content://com.android.
Projection: [datal, data2,
Selection: _id 1 AND

mimetype = ’vnd.android.
Selection arguments: null
Sort order: null

[datal, data3, data2, datab,

[datab, data6, datad, data7,

contacts/settings

contacts/raw_contacts

(account_type IS NULL)

contacts/raw_contacts

contacts/settings

contacts/raw_contacts

contacts/raw_contacts/1/entity
datad4 , data6,
, account_name |

cursor .item/name’

contacts/raw_contacts/1/entity
is_primary |

cursor .item/phone_v2’

contacts/raw_contacts/1/entity
is_primary]

cursor .item/dispatch_v2’

contacts/raw_contacts/1/entity
is_primary |

cursor .item/email_v2’

contacts/raw_contacts/1/entity
data8 , data9,

URI: content://com.android.
Projection:
datal0, data2, is_primary |

62

Selection: _id = 1 AND

mimetype = ’vnd.android.
Selection arguments: null
Sort order: null

URI: content://com.android.
Projection: [datal, data2,
Selection: _-id = 1 AND

mimetype ’vnd . android .
Selection arguments: null
Sort order: null

URI: content://com.android.
Projection: [data2, datal,
Selection: _id 1 AND

mimetype = ’vnd.android .
Selection arguments: null
Sort order: null

URI: content://com.android.
Projection: [datal]
Selection: _id = 1 AND

mimetype ’vnd . android .
Selection arguments: null

Sort order: null

URI: content://com.android.
Projection: [datal, data2,
Selection: _id 1 AND

mimetype = ’vnd.android .
Selection arguments: null
Sort order: null

URI: content://com.android.
Projection: [datal, data3,
is_primary , account_type
Selection: _id = 2 AND
mimetype = ’'vnd.android.
Selection arguments: null
Sort order: null

URI: content://com.android.

Projection: [datal, data2,

Selection: _id = 2 AND
mimetype = ’vnd.android

Selection arguments: null

Sort order: null

URI: content://com.android.
Projection: [datal, data2,
Selection: _id = 2 AND

mimetype ’vnd . android
Selection arguments: null
Sort order: null

URI:
Projection:
Selection: _id = 2 AND

mimetype ’vnd . android
Selection arguments: null
Sort order: null

content://com.android.
[datal, data2,

cursor .item/postal—address_v2’

contacts/raw_contacts/1/entity
datab5, data6, is_primary]

cursor .item/im’

contacts/raw_contacts/1/entity
data4 , is_primary]

cursor .item/organization ’

contacts/raw_contacts/1/entity

cursor .item/note’

contacts/raw_contacts/1/entity
is_primary |

cursor .item/website’

contacts/raw_contacts/2/entity
data2, datab, datad, data6,
, account_name]

cursor .item /name’

contacts/raw_contacts/2/entity
is_primary |

.cursor .item/phone_v2’

contacts/raw_contacts/2/entity
is_primary |

.cursor.item/dispatch_v2’

contacts/raw_contacts/2/entity
is_primary |

.cursor.item/email_v2’

63

URI: content://com.android.contacts/raw_contacts/2/entity
Projection: [datab, data6, datad, data7, data8, data9,
datal0, data2, is_primary |
Selection: _id = 2 AND
mimetype = ’vnd.android.cursor.item/postal—address_v2’
Selection arguments: null
Sort order: null

URI: content://com.android.contacts/raw_contacts/2/entity
Projection: [datal, data2, datab5, data6, is_primary]
Selection: _id = 2 AND

mimetype = ’vnd.android. cursor.item/im’
Selection arguments: null
Sort order: null

URI: content://com.android.contacts/raw_contacts/2/entity
Projection: [data2, datal, data4, is_primary]
Selection: _id = 2 AND

mimetype = ’vnd.android.cursor.item/organization
Selection arguments: null
Sort order: null

)

URI: content://com.android.contacts/raw_contacts/2/entity

Projection: [datal]
Selection: _id = 2 AND
mimetype = ’vnd.android. cursor.item/note’

Selection arguments: null
Sort order: null

URI: content://com.android.contacts/raw_contacts/2/entity

Projection: [datal, data2, is_primary]
Selection: _id = 2 AND
mimetype = ’vnd.android. cursor.item/website’

Selection arguments: null
Sort order: null

B.2 XRY behaviour

The application making these queries is called “example.helloandroid”.

URI: content://com.android.contacts/raw_contacts
Projection: null

Selection: null

Selection arguments: null

Sort order: null

URI: content://com.android.contacts/data
Projection: null

Selection: null

Selection arguments: null

Sort order: null

64

Appendix C

Source code

C.1 USBMonitor

The USBMonitor application was built as a proof of concept for detecting
when USB debugging is in use. It listens to the intent broadcast [2] used by
the Android system to inform applications that the USB state has changed
(called UsbManager.ACTION_USB_STATE), and the low-level Uevents gener-
ated by the Linux kernel when the hardware configuration changes. This

information is decoded and printed to the screen.

C.1.1 AndroidManifest.xml

<?xml version="1.0" encoding="utf—-8"7>
<manifest xmlns:android=
»http://schemas.android.com/apk/res/android”
package="uk.ac.gla.arts.hatii.usbmonitor”
android: versionCode="1"
android :versionName="1.0" >

<uses—sdk android:minSdkVersion="10" />

<application
android :icon="Q@drawable/ic_launcher”
android:label="@string /app_-name” >
<activity
android :name=".USBMonitorActivity”
android:label="@string /app-name” >
<intent—filter >
<action android:name=
”android . intent.action .MAIN” />
<category android:name=

65

”android . intent . category .LAUNCHER”
/>

</intent—filter >
</activity >

</application >

</manifest >

C.1.2 res/layout/main.xml

<?xml version="1.0" encoding="utf—-8"7>

<LinearLayout
xmlns: android="http://schemas. android.com/apk/res/android”
android:layout_width="fill _parent”
android:layout_height="fill _parent”
android:orientation="vertical” >

<TextView
android:layout_width="fill _parent”
android:layout_height="fill_parent”
android:id="@+id /logText” />

</LinearLayout>

C.1.3 res/values/strings.xml

<?xml version="1.0" encoding="utf—-8"7>
<resources>

<string name="app-name”>USBMonitor</string>

</resources>

C.1.4 USBMonitorActivity.java

package uk.ac.gla.arts.hatii.usbmonitor;

import android.app.Activity;

import android.content.BroadcastReceiver;

import android.content.IntentFilter;

import android.hardware.usb.UsbManager;

import android.os.Bundle;

import android.os.UEventObserver;

import android.text.method. ScrollingMovementMethod ;
import android.widget.TextView;

public class USBMonitorActivity extends Activity {

private TextView logText;

VAT

* The end—of—line string for this platform.

66

*/

private String eol;

private BroadcastReceiver receiver = null;
private IntentFilter filter = null;
private UEventObserver observer = null;
@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R. layout . main);

logText = (TextView)

findViewById (R.id .logText);
logText .setMovementMethod (

new ScrollingMovementMethod ());

eol = System.getProperty(”line.separator”);
this.addLogMessage (” Waiting.for_events ...”);

receiver = new USBBroadcastReceiver(this);
filter = new IntentFilter ();

// This is the CyanogenMod 7.1 UsbManager,

// mot the omne from stock Android 2.3 or

// the backported Google API:s.

filter .addAction (UsbManager . ACTION_USB_STATE) ;

observer = new USBUeventObserver(this);

}

@Override

protected void onPause() {
this.addLogMessage (” Pausing”);
unregisterReceiver (receiver);
observer.stopObserving ();
super .onPause ();

}

@Override

protected void onResume() {
this.addLogMessage (” Resuming”);
registerReceiver (receiver , filter);
observer.startObserving (77);
super .onResume () ;

. Y

¥ ¥ ¥ X ¥ ¥ ¥

*
Adds a message to the log text field,
automatically adding a terminating newline.

@param message
The log message.

*/

public void addLogMessage(String message) {
logText .append (message + eol);

}

ez

67

Like addLogMessage(String), but callable from
other threads.

@param string
The log message.

* ¥ ¥ ¥ X ¥

*
/
public void addLogMessageFromOtherThread (
final String string) {
// hittp://stackoverflow.com/questions/3050937/
// java—thread—message—passing
runOnUiThread (new Runnable () {
public void run() {
addLogMessage (string);
}

1)

C.1.5 USBBroadcastReceiver.java

package uk.ac.gla.arts.hatii.usbmonitor;

import
import
import
import
import

public

android.content . BroadcastReceiver;
android.content . Context ;
android.content.Intent ;

android . hardware . usb . UsbManager;
android . os.Bundle;

class USBBroadcastReceiver extends BroadcastReceiver {

private static final String TAG = ” USBBroadcastReceiver”;

Vex:

x* The activity that started wus.

*/

private USBMonitorActivity activity = null;

VAT
* @param parent
* The activity that started us and will get

* the log messages.

*/

public USBBroadcastReceiver (USBMonitorActivity parent) {
activity = parent;

}
ez

* @see android.content. BroadcastReceiver#

x onReceive (android. content. Context,

* android.content. Intent)

*/

@Override

public void onReceive(Context context, Intent intent) {
// This is the CyanogenMod 7.1 UsbManager, mnot the one
// from stock Android 2.3 or the backported Google
// API:s.
if (intent.getAction ().equals(

UsbManager . ACTION_USB.STATE)) {

68

Bundle extras = intent.getExtras();
boolean usbConnected =
extras.getBoolean (UsbManager . USB.CONNECTED) ;
boolean adbEnabled =
extras.getString (UsbManager . USB_ FUNCTION_ADB)
.equals (UsbManager . USB.FUNCTION_ENABLED) ;
activity .addLogMessage (
?onReceive (” + intent.getAction() + 7):.” +
(usbConnected ? ”” : ”dis”) 4 ”connected,.” +
(adbEnabled ? ”"ADB_on” : ”ADB_off”));
activity .addLogMessage (
?Extras:.” + extras.keySet ().toString());
} else {
activity .addLogMessage (
?onReceive (” + intent.getAction() + 7)”);

C.1.6 USBUeventObserver.java

package uk.ac.gla.arts.hatii.usbmonitor;

import android.os.UEventObserver;

public class USBUeventObserver extends UEventObserver {

VAT
* The activity that started wus.
*/

private USBMonitorActivity activity = null;

public USBUeventObserver (USBMonitorActivity parent) {
activity = parent;
}

@Override
public void onUEvent(UEvent event) {
// UEventObservers run in their own implicit
// thread, and cannot touch the Ul by themselves.
// Post a message to the activity to have the UI
// thread add the log message for us.
activity .addLogMessageFromOtherThread (
?UEvent:.” 4+ event.toString ());

C.2 Instrumentation of contacts provider

This is the code which instruments the contacts provider, providing a log

of the calls made from forensics tools. It is provided as a patch on top of

CyanogenMod. The original CyanogenMod source code repository is avail-

able at git://github.com/CyanogenMod/

69

android_packages_providers_ContactsProvider, and this patch is on top
of the branch gb-release-7.2. The patched file is src/com/android/
providers/contacts/ContactsProvider2. java, which is installed on the
phone as part of the contacts provider package, /system/app/
ContactsProvider. apk.

For each call to query (), the contact list query function, the code outputs
the name of the calling process, the query arguments and which branch of
the original program logic handles the code. The results are written to the

system log.

70

1.

index 3bee54d..00be75e 100644

—— gb—release —7.2/src/com/android/providers/contacts/ContactsProvider2.java
+4+ instrumentation/src/com/android/providers/contacts/ContactsProvider2.java
@@ -16,32 416,28 @@

package com.android.providers.contacts;

—import com.android.internal.content.SyncStateContentProviderHelper;

—import com.android. providers.contacts.ContactLookupKey.LookupKeySegment ;

—import com.android.providers.contacts.ContactsDatabaseHelper. AggregatedPresenceColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper. AggregationExceptionColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper. Clauses;

—import com.android.providers.contacts.ContactsDatabaseHelper.ContactsColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper.ContactsStatusUpdatesColumns;
—import com.android. providers.contacts.ContactsDatabaseHelper.DataColumns;

—import com.android.providers.contacts.ContactsDatabaseHelper.GroupsColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper.MimetypesColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper.NameLookupColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper.NameLookupType;
—import com.android.providers.contacts.ContactsDatabaseHelper.PhoneColumns;

—import com.android.providers.contacts.ContactsDatabaseHelper.PhoneLookupColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper.PresenceColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper. RawContactsColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper.SettingsColumns;
—import com.android. providers.contacts.ContactsDatabaseHelper.StatusUpdatesColumns;
—import com.android.providers.contacts.ContactsDatabaseHelper. Tables;

—import com.google.android. collect . Lists;

—import com. google.android. collect .Maps;

—import com. google.android. collect . Sets;

+import java.io.ByteArrayOutputStream;

+import java.io.FileNotFoundException;

+import java.io.IOException;

+import java.io.OutputStream:;

+import java.text.SimpleDateFormat ;

+import java.util.ArrayList;

+import java.util.Arrays;

+import java.util.Collections;

+import java.util.Date;

+import java.util.HashMap;

+import java.util.HashSet;

CL

+import
+import
+import
+import
+import

import
import
import
+import
+import
import
import
import

import
import
import
+import
import
import
import

import

import

import
—import
—import
—import

import
+import
+import
+import
+import
+import
+import
+import
+import
+import
+import

java.util. List;
java.util.Locale
java.util .Map;
java.util.Set;
java.util

android . accounts.Account;

android .
android .
android .
android
android .
android .
android .

android .
android .
android
android .
android .
android .
android .

android .
android
android .
android .
android .
android .
android .
android
android
android .
android .
android .
android .
android .
android
android
android .

accounts

.AccountManager;

.concurrent . CountDownLatch;

accounts.OnAccountsUpdateListener;
app. Activity ;

.app.ActivityManager;

app. Notification ;
app. NotificationManager;
app.Pendinglntent;
@ —73,6 +69,7 @@ import android.database.sqlite.SQLiteQueryBuilder;
database.sqlite.SQLiteStatement;

net.Uri;

.o0s.AsyncTask;

os.Binder;
os.Bundle;

os . MemoryFile;
os.RemoteException;
@@ —83,10 480,17 @@ import android.pim.vcard.VCardConfig;
preference . PreferenceManager ;

.provider.
provider.
provider.
provider.
provider.
provider.
.provider.
.provider.
provider.
provider.
provider.
provider.
provider.
.provider.
.provider.
provider.

BaseColumns;
ContactsContract
LiveFolders;
OpenableColumns ;

SyncStateContract ;
AggregationExceptions;

ContactsContract .
. CommonDataKinds
.CommonDataKinds.
.CommonDataKinds.
.CommonDataKinds .
.CommonDataKinds.
.CommonDataKinds .
.CommonDataKinds.
. CommonDataKinds
.CommonDataKinds.
.CommonDataKinds .

ContactsContract
ContactsContract
ContactsContract
ContactsContract
ContactsContract
ContactsContract
ContactsContract
ContactsContract
ContactsContract
ContactsContract

.BaseTypes;

Email ;
GroupMembership ;
Im;

Nickname;
Organization;
Phone;

. Photo;

StructuredName;
StructuredPostal;

€.

import android.provider.ContactsContract.ContactCounts;
import android.provider.ContactsContract.Contacts;

import android. provider.

ContactsContract .

Data;

@@ —101,35 +105,35 @@ import android.provider.ContactsContract.RawContacts;
SearchSnippetColumns;

import android. provider.

import android. provider.

import android.provider.
—import android. provider.
—import android. provider.
—import android. provider.
—import android. provider.
—import android. provider.
—import android. provider.
—import android. provider.
—import android. provider.
—import android. provider.
—import android. provider.
+import android. provider.
+import android. provider.
+import android. provider.

import android.

util . Log;

ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
ContactsContract .
LiveFolders;
OpenableColumns

Settings;
StatusUpdates;

CommonDataKinds .
CommonDataKinds.
CommonDataKinds.
CommonDataKinds .
CommonDataKinds .
CommonDataKinds .
CommonDataKinds .
CommonDataKinds .
CommonDataKinds.
CommonDataKinds .

SyncStateContract ;
import android.telephony.PhoneNumberUtils;
import android.text.TextUtils;

—import java.io.ByteArrayOutputStream;
—import java.io.FileNotFoundException;
—import java.io.IOException;

—import java.io.OutputStream:;

—import java.text.SimpleDateFormat ;
—import java.util.ArrayList;
—import java.util.Collections;
—import java.util.Date;

—import java.util.HashMap;

—import java.util.HashSet;

—import java.util.List;

—import java.util.Locale;

—import java.util.Map;

—import java.util.Set;

—import java.util.concurrent.CountDownLatch;

BaseTypes;

Email ;
GroupMembership ;
Im;

Nickname;
Organization;
Phone;

Photo;
StructuredName;
StructuredPostal;

+import com.android.internal.content.SyncStateContentProviderHelper;

2

+import com.android. providers.contacts.ContactLookupKey.LookupKeySegment ;

+import com.android.providers.contacts.ContactsDatabaseHelper. AggregatedPresenceColumns;
+import com.android. providers.contacts.ContactsDatabaseHelper. AggregationExceptionColumns;
+import com.android.providers.contacts.ContactsDatabaseHelper. Clauses;

+import com.android.providers.contacts.ContactsDatabaseHelper. ContactsColumns;

+import com.android.providers.contacts.ContactsDatabaseHelper.ContactsStatusUpdatesColumns;
+import com.android.providers.contacts.ContactsDatabaseHelper.DataColumns;

+import com.android.providers.contacts.ContactsDatabaseHelper.GroupsColumns;

+import com.android.providers.contacts.ContactsDatabaseHelper.MimetypesColumns;

+import com.android. providers.contacts.ContactsDatabaseHelper . NameLookupColumns;

+import com.android.providers.contacts.ContactsDatabaseHelper.NameLookupType;

+import com.android.providers.contacts.ContactsDatabaseHelper.PhoneColumuns;

+import com.android.providers.contacts.ContactsDatabaseHelper.PhoneLookupColumns;
+import com.android.providers.contacts.ContactsDatabaseHelper.PresenceColumns;

+import com.android. providers.contacts.ContactsDatabaseHelper.RawContactsColumns;
+import com.android.providers.contacts.ContactsDatabaseHelper. SettingsColumns;

+import com.android.providers.contacts.ContactsDatabaseHelper.StatusUpdatesColumns;
+import com.android.providers.contacts.ContactsDatabaseHelper. Tables;

+import com. google.android. collect. Lists;

+import com.google.android. collect .Maps;

+import com.google.android. collect. Sets;

/%
* Contacts content provider. The contract between this provider and applications
@@ —4192,6 +4196,22 @Q@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun
return false;
}

private String getProcessNameFromPid(int givenPid)

{

ActivityManager am = (ActivityManager)
getContext (). getSystemService (Activity . ACTIVITY_SERVICE) ;

List<ActivityManager. RunningAppProcessInfo> lstApplInfo =
am. getRunningAppProcesses ();

for (ActivityManager. RunningAppProcessInfo ai : lstAppInfo) {
if (ai.pid = givenPid) {
return ai.processName;
}

i i e SRS

6L

+ }
+ return null;
+ }
+
@Override
public Cursor query(Uri uri, String][] projection, String selection, String][] selectionArgs,

String sortOrder) {
@@ —4199,6 +4219,13 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun
Log.v(TAG, ”query: ” + uri);

—+ Log.i(TAG, ”Query from: ” 4 getProcessNameFromPid (Binder.getCallingPid ()));
+ Log. i (TAG, ” URI: ” + uri.toString());

+ Log.i(TAG, ” Projection: ” + Arrays.toString(projection));

+ Log. i (TAG, 7 Selection: 7 4 selection);

+ Log. i (TAG, ” Selection arguments: 7 4+ Arrays.toString(selectionArgs));

+ Log. i (TAG, ” Sort order: ” + sortOrder);

+

final SQLiteDatabase db = mDbHelper. getReadableDatabase ();

SQLiteQueryBuilder gb = new SQLiteQueryBuilder ();
@@ —4210,15 +4237,18 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

final int match = sUriMatcher.match(uri);

switch (match) {

case SYNCSTATE:
+ Log. i (TAG, ” Branch SYNCSTATE”);
return mDbHelper. getSyncState (). query(db, projection, selection, selectionArgs,
sortOrder);

case CONTACTS: {

+ Log. i (TAG, ” Branch CONTACTS”);
setTablesAndProjectionMapForContacts(gb, uri, projection);
break;

}
case CONTACTSID: {
+ Log.i(TAG, ” Branch CONTACTSID”);

long contactld = ContentUris. parseld (uri);
setTablesAndProjectionMapForContacts(gb, uri, projection);
selectionArgs = insertSelectionArg(selectionArgs, String.valueOf(contactld));

9.

@a —4228,6

@@ —4267,6

@a —4278,6

@a —4288,6

@a —4298,6

+4258,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements

case CONTACTSLOOKUP:
case CONTACTSLOOKUPID: {
Log.i(TAG, ” Branch CONTACTSLOOKUP(.ID)”);
List<String> pathSegments = uri.getPathSegments ();
int segmentCount = pathSegments.size ();
if (segmentCount < 3) {
+4298,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements

}

case CONTACTSAS_-VCARD:
Log.i(TAG, ” Branch CONTACTS_AS-VCARD”);
// When reading as vCard always use restricted view
final String lookupKey = Uri.encode(uri.getPathSegments().get (2));
gb.setTables (mDbHelper. getContactView (true /+ require restricted */));
+4310,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements

case CONTACTS_ASMULTIVCARD:
Log.i(TAG, ” Branch CONTACTS_AS MULTLVCARD”);
SimpleDateFormat dateFormat = new SimpleDateFormat (”yyyyMMdd-HHmmss”);
String currentDateString = dateFormat.format (new Date()).toString ();
return db.rawQuery (
+4321,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements

case CONTACTSFILTER: {
Log. i (TAG, ” Branch CONTACTSFILTER”);
String filterParam = ”7;
if (uri.getPathSegments().size () > 2) {
filterParam = uri.getLastPathSegment ();

+4332,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements

case CONTACTSSTREQUENT_FILTER:
case CONTACTSSTREQUENT: {
Log.i(TAG, ” Branch CONTACTSSTREQUENT(_FILTER)”);
String filterSql = null;
if (match = CONTACTSSTREQUENT_FILTER
&& uri.getPathSegments ().size () > 3) {

OnAccoun

OnAccoun

OnAccoun

OnAccoun

OnAccoun

L.

@@ —4349,6 +4384,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun
}

case CONTACTS.GROUP: {
+ Log.i(TAG, ” Branch CONTACTS.GROUP”);
setTablesAndProjectionMapForContacts(gb, uri, projection);
if (uri.getPathSegments().size() > 2)
gb . appendWhere (CONTACTSIN_.GROUP_SELECT) ;
@@ —4358,6 +4394,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}

case CONTACTSDATA: {
+ Log.i(TAG, ” Branch CONTACTSDATA”);
long contactld = Long.parseLong(uri.getPathSegments (). get (1));
setTablesAndProjectionMapForData (gb, uri, projection, false);
selectionArgs = insertSelectionArg(selectionArgs, String.valueOf(contactld));
@@ —4366,6 +4403,7 @Q public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

case CONTACTSPHOTO: {
+ Log.i(TAG, ” Branch CONTACTSPHOTO”);
long contactld = Long.parseLong(uri.getPathSegments().get(1));
setTablesAndProjectionMapForData (gb, uri, projection, false);
selectionArgs = insertSelectionArg(selectionArgs, String.valueOf(contactld));
@@ —4375,12 +4413,14 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}
case PHONES: {
+ Log. i (TAG, ” Branch PHONES”);
setTablesAndProjectionMapForData (gb, uri, projection, false);
gb.appendWhere (” AND ” + Data .MIMETYPE + ” = ’” 4+ Phone.CONTENTITEM.TYPE + ” 7);
break ;
}
case PHONESID: {
+ Log. i (TAG, ” Branch PHONESID”);

setTablesAndProjectionMapForData(gb, uri, projection, false);
selectionArgs = insertSelectionArg (selectionArgs, uri.getLastPathSegment ());
gb.appendWhere (” AND ” + Data .MIMETYPE + ” = °” + Phone.CONTENTITEM.TYPE + 7 ");

@@ —4389,6 +4429,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

8L

}

case PHONESFILTER: {

+ Log. i (TAG, ” Branch PHONES_FILTER”);
setTablesAndProjectionMapForData(gb, uri, projection, true);
gb.appendWhere (” AND ” + Data .MIMETYPE + ” = ’” 4+ Phone.CONTENTITEM.TYPE + ” 7);

if (uri.getPathSegments().size() > 2) {
@Q —4437,12 +4478,14 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}
case EMAILS: {
+ Log.i(TAG, ” Branch EMAILS”);
setTablesAndProjectionMapForData (gb, uri, projection, false);
gb.appendWhere (” AND ” + Data .MIMETYPE + ” = >” 4+ Email . CONTENTITEM.TYPE + 7");
break ;
}
case EMAILSID: {
+ Log.i(TAG, ” Branch EMAILSID”);
setTablesAndProjectionMapForData (gb, uri, projection, false);
selectionArgs = insertSelectionArg (selectionArgs, uri.getLastPathSegment ());
gb.appendWhere (” AND ” + Data .MIMETYPE + ” = 7 4+ Email . CONTENTITEM.TYPE + 7’7
@@ —4451,6 +4494,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun
}
case EMAILSTOOKUP: {
+ Log. i (TAG, ” Branch EMAILSTLOOKUP”);
setTablesAndProjectionMapForData(gb, uri, projection, false);
gb.appendWhere (” AND ” + Data .MIMETYPE + ” = 7 4+ Email . CONTENTITEM.TYPE + ” ");

if (uri.getPathSegments ().size () > 2) {
@@ —4463,6 +4507,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

case EMAILS FILTER: {
+ Log.i(TAG, ” Branch EMAILS_FILTER”);
setTablesAndProjectionMapForData(gb, uri, projection, true);
String filterParam = null;
if (uri.getPathSegments().size() > 3) {
@@ —4515,6 +4560,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}

6.

case POSTALS: {
+ Log. i (TAG, ” Branch POSTALS”);
setTablesAndProjectionMapForData (gb, uri, projection, false);
gb.appendWhere(” AND ” 4 Data MIMETYPE + 7 = 7

+ StructuredPostal .CONTENTITEM.TYPE + 7 ’7);
@@ —4522,6 +4568,7 @Q public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun
}
case POSTALSID: {
+ Log.i(TAG, ” Branch POSTALS.ID”);

setTablesAndProjectionMapForData(gb, uri, projection, false);
selectionArgs = insertSelectionArg(selectionArgs, uri.getLastPathSegment ());
gb.appendWhere (” AND ” + Data .MIMETYPE + 7 = ’”

@@ —4531,11 +4578,13 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}
case RAW.CONTACTS: {

+ Log.i(TAG, ” Branch RAW.CONTACTIS”);
setTablesAndProjectionMapForRawContacts(gb, uri);
break ;

}
case RAW_CONTACTSID: {
+ Log.i(TAG, ” Branch RAW_CONTACTSID”);

long rawContactld = ContentUris. parseld (uri);
setTablesAndProjectionMapForRawContacts(gb, uri);
selectionArgs = insertSelectionArg(selectionArgs, String.valueOf(rawContactld));

@Q —4544,6 +4593,7 @Q public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}

case RAW.CONTACTSDATA: {
+ Log. i (TAG, ” Branch RAW_CONTACTSDATA”);
long rawContactld = Long.parseLong(uri.getPathSegments (). get (1));
setTablesAndProjectionMapForData(gb, uri, projection, false);
selectionArgs = insertSelectionArg(selectionArgs, String.valueOf(rawContactld));
@@ —4552,11 +4602,13 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}

case DATA: {

08

+ Log. i (TAG, ” Branch DATA”);
setTablesAndProjectionMapForData (gb, uri, projection, false);

break;
}
case DATAID: {
+ Log.i(TAG, ” Branch DATAID”);

setTablesAndProjectionMapForData (gb, uri, projection, false);
selectionArgs = insertSelectionArg(selectionArgs, uri.getLastPathSegment ());
gb.appendWhere (” AND ” + Data._ID + 7"=7");

@@ —4564,6 +4616,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements

case PHONELOOKUP:
+ Log. i (TAG, ” Branch PHONELOOKUP”);

if (TextUtils.isEmpty(sortOrder)) {
// Default the sort order to something reasonable so we get consistent
@@ —4582,6 +4635,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements

}

case GROUPS: {
+ Log.i(TAG, ” Branch GROUPS”);
gb.setTables (mDbHelper. getGroupView ());
gb.setProjectionMap (sGroupsProjectionMap);
appendAccountFromParameter (gb, uri);
@@ —4589,6 +4643,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements

}

case GROUPSID: {
+ Log. i (TAG, ” Branch GROUPSID”);
gb.setTables (mDbHelper. getGroupView ());
gb.setProjectionMap (sGroupsProjectionMap);
selectionArgs = insertSelectionArg(selectionArgs, uri.getLastPathSegment ());
@@ —4597,6 +4652,7 @Q public class ContactsProvider2 extends SQLiteContentProvider implements

}

case GROUPSSUMMARY: ({
+ Log.i(TAG, ” Branch GROUPSSUMMARY”);
gb.setTables (mDbHelper. getGroupView () + 7 AS groups”);

OnAccoun

OnAccoun

OnAccoun

OnAccoun

18

gb.setProjectionMap (sGroupsSummaryProjectionMap) ;
appendAccountFromParameter (gb, uri);
@@ —4605,12 4+4661,14 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}
case AGGREGATION_EXCEPTIONS:

+ Log.i(TAG, ” Branch AGGREGATION_EXCEPTIONS”);
gb.setTables (Tables . AGGREGATION_EXCEPTIONS) ;
gb.setProjectionMap (sAggregationExceptionsProjectionMap);
break;

}
case AGGREGATION_SUGGESTIONS: {
+ Log.i(TAG, ” Branch AGGREGATION_SUGGESTIONS”);

long contactld = Long.parseLong(uri.getPathSegments().get(1));
String filter = null;
if (uri.getPathSegments().size() > 3) {
@@ —4630,6 +4688,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

case SETTINGS: {
+ Log. i (TAG, ” Branch SETTINGS”);
gb.setTables (Tables .SETTINGS);
gb.setProjectionMap (sSettingsProjectionMap);
appendAccountFromParameter (gb, uri);
@@ —4651,11 +4710,13 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}
case STATUS.UPDATES: {

+ Log.i(TAG, ” Branch STATUS_UPDATES”);
setTableAndProjectionMapForStatusUpdates(gb, projection);
break ;

}
case STATUS_.UPDATESID: {
+ Log. i (TAG, ” Branch STATUS_.UPDATESID”);

setTableAndProjectionMapForStatusUpdates(gb, projection);
selectionArgs = insertSelectionArg (selectionArgs, uri.getLastPathSegment ());
gb.appendWhere (DataColumns .CONCRETEID + ”=7");

@@ —4663,32 +4724,38 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

¢8

}

case SEARCH.SUGGESTIONS: {
+ Log. i (TAG, ” Branch SEARCH_SUGGESTIONS”);
return mGlobalSearchSupport.handleSearchSuggestionsQuery (db, uri, limit);

}
case SEARCHSHORTCUT: {
+ Log.i(TAG, ” Branch SEARCH SHORTCUT”);
String lookupKey = uri.getLastPathSegment ();
return mGlobalSearchSupport.handleSearchShortcutRefresh (db, lookupKey, projection);
}
case LIVEFOLDERS CONTACTS:
+ Log.i(TAG, ” Branch LIVE_FOLDERS_.CONTACTS”);

gb.setTables (mDbHelper. getContactView ());
gb.setProjectionMap (sLiveFoldersProjectionMap);
break ;

case LIVEFOLDERS.CONTACTS_WITH_PHONES:

+ Log.i(TAG, ” Branch LIVE FOLDERS.CONTACTS WITH_PHONES”);
gb.setTables (mDbHelper. getContactView ());
gb.setProjectionMap (sLiveFoldersProjectionMap);
gb . appendWhere (Contacts . HASPHONENUMBER + 7=17);
break ;

case LIVE.FOLDERS_.CONTACTS_FAVORITES:

+ Log.i(TAG, ” Branch LIVE_FOLDERS_CONTACTS FAVORITES”);
gb.setTables (mDbHelper. getContactView ());
gb.setProjectionMap (sLiveFoldersProjectionMap);
gb . appendWhere (Contacts .STARRED + ”=1");
break ;

case LIVEFOLDERS.CONTACTS_.GROUPNAME:
+ Log.i(TAG, ” Branch LIVEFOLDERS CONTACTS_.GROUPNAME”);
gb.setTables (mDbHelper. getContactView ());
gb.setProjectionMap (sLiveFoldersProjectionMap);
gb . appendWhere (CONTACTSIN_.GROUP_SELECT) ;
@@ —4696,11 +4763,13 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun
break;

€8

case RAW_CONTACT_ENTITIES: {

Log. i (TAG, ” Branch RAW_CONTACT_ENTITIES”) ;
setTablesAndProjectionMapForRawContactsEntities (gb, uri);
break;

}

case RAW_CONTACTENTITYID: {
Log.i(TAG, ” Branch RAW_CONTACT ENTITY ID”);

long rawContactld = Long.parseLong(uri.getPathSegments ().get (1));
setTablesAndProjectionMapForRawContactsEntities (gb, uri);
selectionArgs = insertSelectionArg(selectionArgs, String.valueOf(rawContactld));

@@ —4709,10 +4778,12 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}
case PROVIDER.STATUS: {
Log. i (TAG, ” Branch PROVIDER.STATUS”);
return queryProviderStatus(uri, projection);
}
default:

Log. i (TAG, ” Branch DEFAULT”);
return mLegacyApiSupport.query (uri, projection, selection, selectionArgs,
sortOrder , limit);

C.3 Rejecting installation of forensics tools

This is the code for rejecting forensics tools by checking their name at in-
stall time. It is provided as a patch on top of CyanogenMod. The original
CyanogenMod source code repository is available at git://github.com/
CyanogenMod/android _frameworks_base, and this patch is on top of the
branch gb-release-7.2. The patched file is cmds/pm/src/com/android/
commands/pm/Pm. java, which is installed on the phone as part of the pack-
age manager, /system/framework/pm. jar.

Before the package manager actually performs an installation, this code
unpacks the APK file, checks the name of the application and returns an

error if the name is recognised as belonging to a known forensics tool.

84

Gy

index f2b6fce..1eb2972 100644
—— gb—release —7.2/cmds/pm/src /com/android /commands/pm/Pm. java
+++ reject —by—name/cmds/pm/src/com/android /commands/pm/Pm. java
@@ —36,11 +36,12 @@ import android.content.pm.PermissionInfo;
import android.content.res.AssetManager;
import android.content.res.Resources;
import android.net.Uri;
—import android.os.Parcel;
import android.os.RemoteException;
import android.os.ServiceManager;
import java.io.File;
+import java.io.IOException;
+import java.io.InputStream;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.util.ArrayList;
@@ —48,6 +49,7 @@ import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.WeakHashMap;
+import java.util.jar.JarFile;

public final class Pm {
IPackageManager mPm;
@ -714,6 +716,172 @@ public final class Pm {

}
}

public void decompressXML(byte[] xml) {
// Compressed XML file/bytes starts with 24x bytes of data,
// 9 32 bit words in little endian order (LSB first):

+ // XML decompression from

+ // http://stackoverflow.com/questions /2097813 /how—to—parse—the—androidmanifest —xml—file —inside —an—apk—package
+

+ // decompressXML —— Parse the ’compressed’ binary form of Android XML docs
+ // such as for AndroidManifest.xml in .apk files

+ public static int endDocTag = 0x00100101;

+ public static int startTag = 0x00100102;

+ public static int endTag = 0x00100103;

+

+

+

98

e i e i S i et ol e e i i

// 0th word is 03 00 08 00

// 3rd word SEEMS TO BE: Offset at then of StringTable

// 4th word is: Number of strings in string table

// WARNING: Sometime I indiscriminently display or refer to word in

// little endian storage format, or in integer format (ie MSB first).
int numbStrings = LEW(xml, 4x4);

// StringlndexTable starts at offset 24x, an array of 32 bit LE offsets
// of the length/string data in the StringTable.
int sitOff = 0x24; // Offset of start of StringIndexTable

// StringTable, each string is represented with a 16 bit little endian
// character count, followed by that number of 16 bit (LE) (Unicode) chars.
int stOff = sitOff + numbStrings*4; // StringTable follows StrIndexTable

// XMLTags, The XML tag tree starts after some unknown content after the
// StringTable. There is some unknown data after the StringTable, scan
// forward from this point to the flag for the start of an XML start tag.
int xmlTagOff = LEW(xml, 3x4); // Start from the offset in the 3rd word.
// Scan forward until we find the bytes: 0x02011000(x00100102 in normal int)
for (int ii=xmlTagOff; ii<xml.length —4; ii+=4) {

if (LEW(xml, ii) = startTag) {

xmlTagOff = ii; Dbreak;

} // end of hack, scanning for start of first start tag

// XML tags and attributes:

// Every XML start and end tag consists of 6 32 bit words:

0Oth word: 02011000 for startTag and 03011000 for endTag

1st word: a flag?, like 38000000

2nd word: Line of where this tag appeared in the original source file
3rd word: FFFFFFFF 77

4th word: StringIndex of NameSpace name, or FFFFFFFF for default NS
5th word: StringIndex of Element Name

(Note: 01011000 in Oth word means end of XML document, endDocTag)

~
~

Start tags (not end tags) contain 3 more words:
6th word: 14001400 meaning??
7th word: Number of Attributes that follow this tag(follow word 8th)
8th word: 00000000 meaning??

S~ R
SN~ N

L8

e i e i i et ol e S i i

// Attributes consist of 5 words:

// 0th word: StringIndex of Attribute Name’s Namespace, or FFFFFFFF

// 1st word: StringlIndex of Attribute Name

// 2nd word: StringIndex of Attribute Value, or FFFFFFF if Resourceld used
// 3rd word: Flags?

// 4th word: str ind of attr value again, or Resourceld of value

// TMP, dump string table to tr for debugging

//tr.addSelect (” strings”, null);

//for (int ii=0; ii<numbStrings; ii++) {

// // Length of string starts at StringTable plus offset in StrIndTable
// String str = compXmlString (xml, sitOff, stOff, ii);

// tr.add(String.valueOf(ii), str);

I/}

//tr.parent ();

// Step through the XML tree element tags and attributes

int off = xmlTagOff;

int indent = 0;

int startTagLineNo = —2;

while (off < xml.length) {
int tag0 = LEW(xml, off);
//int tagl = LEW(xml, off+4+1x4);
int lineNo = LEW(xml, off+2x%4);
//int tag3 = LEW(xml, off+43%4);
int nameNsSi = LEW(xml, off+4x4);
int nameSi = LEW(xml, off+5%4);

if (tagd0 = startTag) { // XML START TAG
int tag6 = LEW(xml, off+6%4); // Expected to be 14001400
int numbAttrs = LEW(xml, off+4+7%4); // Number of Attributes to
//int tag8 = LEW(xml, off+8x%4); // Expected to be 00000000
off += 9%4; // Skip over 6+3 words of startTag data
String name = compXmlString (xml, sitOff, stOff, nameSi);
//tr.addSelect (name, null);
startTagLineNo = lineNo;

// Look for the Attributes
StringBuffer sb = new StringBuffer ();

follow

88

e T e i i et el e S i i

for (int ii=0; ii<numbAttrs; ii++) {
int attrNameNsSi = LEW(xml, off); // AttrName Namespace Str Ind, or FFFFFFFF
int attrNameSi = LEW(xml, off+1%4); // AttrName String Index
int attrValueSi = LEW(xml, off+2x4); // AttrValue Str Ind, or FFFFFFFF
int attrFlags = LEW(xml, off+3%4);
int attrResId = LEW(xml, off+4x4); // AttrValue Resourceld or dup AttrValue StrInd
off += 5x4; // Skip over the 5 words of an attribute

String attrName = compXmlString(xml, sitOff, stOff, attrNameSi);
String attrValue = attrValueSil=—1
? compXmlString (xml, sitOff, stOff, attrValueSi)
: "resourcelD 0x”+Integer.toHexString(attrResId);
sb.append (” 7+attrName+”=\""+attrValue+"\"");
//tr.add (attrName, attrValue);
}
prtIndent (indent , ”<”+namet+sb+">7);
indent-++;

} else if (tag0 == endTag) { // XML END TAG
indent ——;
off += 6%4; // Skip over 6 words of endTag data
String name = compXmlString (xml, sitOff, stOff, nameSi);
prtIndent (indent , ”</’4+name+’> (line ”+startTagLineNo+’—"+lineNo+7)”);
//tr.parent (); // Step back up the NobTree

} else if (tag0 = endDocTag) { // END OF XML DOC TAG
break ;

} else {

prt(” Unrecognized tag code +Integer.toHexString(tag0)
47’ at offset "+off);
break;

} // end of while loop scanning tags and attributes of XML tree
prt (” end at offset "+off);
} // end of decompressXML

public String compXmlString(byte [] xml, int sitOff, int stOff, int strInd) {
if (strInd < 0) return null;

68

int strOff = stOff + LEW(xml, sitOff+strIndx4);
return compXmlStringAt(xml, strOff);

}

public String decompressed;
public void prt(String s) {

decompressed += s + System.getProperty (” line.separator”);
}

public static String spaces =
public void prtIndent(int indent, String str) {

prt(spaces.substring (0, Math. min(indent=*2, spaces.length()))+str);
}

9

// compXmlStringAt — Return the string stored in StringTable format at
// offset strOff. This offset points to the 16 bit string length, which
// is followed by that number of 16 bit (Unicode) chars.
public String compXmlStringAt(byte[] arr, int strOff) {

int strLen = arr[strOff+1]<<8&0xff00 | arr[strOff]&0xff;

byte [] chars = new byte[strLen];

for (int ii=0; ii<strLen; ii++4) {

chars[ii] = arr [strOff42+ii x2];
}

return new String (chars); // Hack, just use 8 byte chars
} // end of compXmlStringAt

// LEW — Return value of a Little Endian 32 bit word from the byte array
// at offset off.
public int LEW(byte[] arr, int off) {
return arr [off+3]<<24&0xff000000 | arr[off+2]<<16&0xff0000
| arr [off+1]<<8&0xff00 | arr[off]&O0xFF;
} // end of LEW

e e e s i i o i o L e i i S S

private void runInstall () {
int installFlags = 0;
String installerPackageName = null;
@@ —754,6 +922,29 @@ public final class Pm {
return;

06

R e a i st o o S S A

}

try {
JarFile jf = new JarFile (apkFilePath);
InputStream is = jf.getInputStream(jf.getEntry(” AndroidManifest.xml”));
byte [] xml = new byte[is.available ()];
int br = is.read(xml);
decompressXML (xml) ;
} catch (IOException el) {
// TODO Auto—generated catch block
el.printStackTrace ();

int i = decompressed.indexOf(” package=\"");

int startOfName = i + ”package=\"".length ();

int endOfName = decompressed.indexOf(”\””, startOfName + 1);

String packageName = decompressed.substring (startOfName, endOfName);

if (packageName.equals (”com. client .appA”) || // Cellebrite
packageName. equals (” example. helloandroid”)) { // XRY
System.err.println (” Failure [”
+ ”"we don’t serve your kind here”
+ 1)
return;

}

PackagelnstallObserver obs = new PackagelnstallObserver ();
try {

mPm. installPackage (Uri.fromFile (new File (apkFilePath)), obs, installFlags,

C.4 Delayed responses

This is the code for delaying responses to contact list queries. It is provided
as a patch on top of CyanogenMod. The original CyanogenMod source code
repository is available at git://github.com/CyanogenMod/
android_packages_providers_ContactsProvider, and this patch is on top
of the branch gb-release-7.2. The patched file is src/com/android/
providers/contacts/ContactsProvider?2. java, which is installed on the
phone as part of the contacts provider package, /system/app/
ContactsProvider.apk.

For each call to query() in the contact list provider, the code checks the
name of the calling program. If that name matches that of a known forensics
tool, it sleeps for a set period before performing any work. In this version of
the code, the period is thirty seconds, but this can be changed by changing

the argument given in the call to the function Thread.sleep().

91

¢6

index 3beeb54d..09297d1 100644
—— gb—release —7.2/src/com/android/providers/contacts/ContactsProvider2.java
+++ tarpit/src/com/android/providers/contacts/ContactsProvider2.java
@@ —42,6 +42,8 @@ import com. google.android.collect . Sets;
import android.accounts.Account;
import android.accounts.AccountManager;
import android.accounts.OnAccountsUpdateListener;
+import android.app.Activity;
+import android.app.ActivityManager ;
import android.app. Notification
import android.app.NotificationManager;
import android.app.Pendinglntent;
@ —73,6 +75,7 @@ import android.database.sqlite.SQLiteQueryBuilder;
import android.database.sqlite.SQLiteStatement;
import android.net.Uri;
import android.os.AsyncTask;
+import android.os.Binder;
import android.os.Bundle;
import android.os.MemoryFile;
import android.os.RemoteException;
@@ —4192,6 +4195,30 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun
return false;
}

private String getProcessNameFromPid(int givenPid)

{

ActivityManager am = (ActivityManager)
getContext (). getSystemService (Activity . ACTIVITY_SERVICE) ;

List<ActivityManager. RunningAppProcessInfo> lstApplInfo =
am. getRunning AppProcesses ();

for (ActivityManager. RunningAppProcessInfo ai : lstAppInfo) {

if (ai.pid = givenPid) {
return ai.processName;
}
}

return null;

e e e

€6

+ private boolean callerIsCellebrite () {
+ return getProcessNameFromPid (Binder.getCallingPid ()).equals("com. client .appA”);
oy
+
+ private boolean callerIsXRY () {
+ return getProcessNameFromPid (Binder.getCallingPid ()). equals(” example. helloandroid”);
+ }
+
@Override
public Cursor query(Uri uri, String[] projection, String selection, String][] selectionArgs,

String sortOrder) {
@@ —4201,6 +4228,17 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

final SQLiteDatabase db = mDbHelper. getReadableDatabase ();

}

SQLiteQueryBuilder gb = new SQLiteQueryBuilder ();
String groupBy = null;
String limit = getLimit(uri);

+ // We only want to delay automatic extraction
+ if (callerIsCellebrite () || callerIsXRY ()) {
+ Log. i (TAG, ” Tarpit: sleeping 30 seconds...”);
+ try {

+ Thread . sleep (30 * 1000 /% ms */);

+ } catch (InterruptedException e) {

+ Log. i (TAG, ” Sleep interrupted!”);
+ }

+ Log. i (TAG, ” ... done”);

+

+

C.5 Hardcoded false data

This is the code for serving hardcoded false data in response to contact list
queries. It is provided as a patch on top of the instrumentation code. The
patched file is src/com/android/providers/contacts/
ContactsProvider?2. java, which is installed on the phone as part of the
contacts provider package, /system/app/ContactsProvider.apk.

From experiments with the instrumentation code, all queries made by
the forensics tools are known. The Android documentation provides the
expected data format for these queries. From this information, hardcoded
SQL queries were written for returning false data, tailored for each query
from each forensics tool. At the top of the query() function, a check is
made to see if the request for information comes from a known forensics tool,
based on the name of the calling program. If so, the request is diverted to the
functions running the hardcoded SQL statements. If not, but USB debugging
is active, the SQL queries used to extract real data from the database are
modified to return no results. This covers the case where an unknown tool
is used to extract data. If neither situation holds, the query is processed

normally.

94

G6

index 00be75e..cb000e9 100644

instrumentation/src/com/android/providers/contacts/ContactsProvider2.java

+++ hardcoded—data/src/com/android/providers/contacts/ContactsProvider2.java
@@ —42,6 +42,7 @@ import android.app.Notification;
app. NotificationManager ;
app.Pendinglntent ;
app.SearchManager;

import
import
import
+import
import
import
import

android .
android .
android .
android .
android .
android .
android .

content .
content .
content .
content .

BroadcastReceiver;
ContentProviderOperation;
ContentProviderResult ;
ContentResolver;

@ —-50,6 +51,7 @@ import android.content.ContentValues;

import
import
import
+import
import
import
import

android .
android .
android .
android .
android .
android .
android .

content .
content
content .
content.
content .
content
content .

@@ —67,6 +69,7 @@ import

import
import
import
+import
import
import
import

android .
android .
android .
android .
.net . Uri;
android .
android .
@@ —131,6 +134,7 @Q
import com.
import com.
import com.
+import com.
import com.
import com.
import com.

android

android .
android .
android .
android .

database.
database.
database.

hardware

Context ;

.IContentService;

Intent ;
IntentFilter;
OperationApplicationException;

.SharedPreferences;

SyncAdapterType;

android . database.sqlite.SQLiteContentHelper;

sqlite.SQLiteDatabase;
sqlite.SQLiteQueryBuilder;
sqlite.SQLiteStatement ;
.usb.UsbManager;

os.AsyncTask;
os.Binder;

import com.android.
providers.contacts.ContactsDatabaseHelper.
providers.contacts.ContactsDatabaseHelper.
providers.contacts.ContactsDatabaseHelper.
providers.contacts.ContactsDatabaseHelper.
google.android. collect . Lists;

google.android. collect . Maps;

google.android. collect . Sets;

@@ —1873,8 +1877,59 @Q public class ContactsProvider2 extends

}

}

providers.contacts.ContactsDatabaseHelper.RawContactsColumns;

SettingsColumns
StatusUpdatesColumns
Tables;

Views;

SQLiteContentProvider implements OnAccoun

+ private class USBBroadcastReceiver extends BroadcastReceiver {

96

i e i i el i i S e i S i S

/[xx

* The provider that started us.
*/

private ContactsProvider2 provider = null;

/%%

* @param parent

* The provider that started us and will get notifications.
*/

public USBBroadcastReceiver (ContactsProvider2 parent) {
provider = parent;
}

/%
* (non—Javadoc)
*

* @see android.content.BroadcastReceiver#onReceive(android.content.Context,

x android.content.Intent)

*/

@Override

public void onReceive(Context context, Intent intent) {
// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.
Bundle extras = intent.getExtras();
boolean usbConnected = extras.getBoolean (UsbManager .USB.CONNECTED) ;
boolean adbEnabled = extras.getString (UsbManager.USB.FUNCTION_ADB)

.equals (UsbManager . USBFUNCTION_.ENABLED) ;

provider .onUSBDebug (usbConnected && adbEnabled);

}
private boolean isDebugging;
private void onUSBDebug(boolean active) {

isDebugging = active;
}

private BroadcastReceiver receiver = null;
private IntentFilter filter = null;

L6

4+ A+

@@ —4212,6 +4267,412 @@ public class

e i e o i i o i e

private boolean initialize () {

receiver = new USBBroadcastReceiver(this);

filter = new IntentFilter ();

// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.
filter .addAction (UsbManager . ACTION_USB.STATE);

final Context context = getContext ();

context.registerReceiver (receiver , filter);

mDbHelper = (ContactsDatabaseHelper)getDatabaseHelper ();
mGlobalSearchSupport = new GlobalSearchSupport (this);
mLegacyApiSupport = new LegacyApiSupport(context , mDbHelper, this, mGlobalSearchSupport);

return null;

}

private boolean callerIsCellebrite ()

ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

return getProcessNameFromPid (Binder. getCallingPid ()). equals(”com. client .appA”);

}

private boolean callerIsXRY () {

return getProcessNameFromPid (Binder.getCallingPid ()). equals (” example. helloandroid”);

}

private Cursor fakeDataForCellebrite (SQLiteDatabase db, Uri uri, String|[] projection, String selection) {

// Cellebrite makes a lot of queries.

First a list of all contacts:

// content://com.android.contacts/raw_contacts

[datal, data3, data2, data5,

[datal, data2, is_primary
WHERE _id = X AND mimetype

I e Y
N N N

content://com.android.contacts/settings [account_-type]
content://com.android.contacts/raw_contacts
content://com.android.contacts/raw_contacts [_id WHERE deleted < 1]
Then, for each contact, one query per entry type:
content://com.android.contacts/raw_contacts/X/entity

datad4 , data6, is_primary , account_type,

WHERE _id = X AND mimetype = ’vnd.android.cursor.item/name’]
content://com.android.contacts/raw_contacts/X/entity

"vnd . android . cursor .item/phone_v2 ’]

[WHERE deleted = 0 AND (account_-type IS NULL)]

account_name

86

i e i i el i i e S e i o i S A

but
let

I T T T e T N N
I N N S

Unfortunately ,

content://com.android.contacts/raw_contacts/X/entity

[datal, data2, is_primary

WHERE _id = X AND mimetype = ’vnd.android.cursor
content://com.android.contacts/raw_contacts/X/entity

[datal, data2, is_primary

WHERE _id = X AND mimetype = ’vnd.android.cursor
content://com.android.contacts/raw_contacts/X/entity

[data5, data6, datad, data7, data8, data9, datalO

WHERE _id = X AND mimetype = ’vnd.android. cursor
content://com.android.contacts/raw_contacts/X/entity

[datal, data2, datab5, data6, is_primary

WHERE _id = X AND mimetype = ’vnd.android.cursor
content://com.android.contacts/raw_contacts/X/entity

[data2, datal, datad, is_primary

WHERE _id = X AND mimetype = ’vnd.android.cursor
content://com.android.contacts/raw_contacts/X/entity

[datal

WHERE _id = X AND mimetype = ’vnd.android. cursor
content://com.android.contacts/raw_contacts/X/entity

[datal, data2, is_primary

WHERE _id = X AND mimetype = ’vnd.android.cursor

.item/dispatch_v2 ’]
.item/email_v2 7]

, data2, is_primary

.item /postal—address_v2 ’]
.item /im]
.item/organization ’]

.item /note |

.item /website ’]

Return fake answers to name queries as ”Cellebrite Technical Support”.
Cellebrite doesn’t publish a technical support phone number,

they have a couple of general contact numbers. Since we’re in Europe,

’s use the one in Germany: +49-5251546490 (see

Intentionally return null instead of a valid cursor for
Hopefully , that will make the forensics application crash, clearly

// telling us that we need to be better at faking.

final
switch

int match = sUriMatcher.match(uri);

<URL: http://www. cellebrite .com/contact—us.html>). Return nothing for
other types of data.

unknown queries.

(match) {
case RAW.CONTACTS:
Log.i(TAG, ” Branch Cellebrite .RAW.CONTACTS”);
if ((projection = null && selection = null) ||
(projection = null && selection.startsWith(” deleted”))) {

// Either everything or just non—deleted contacts. Since we have

66
e T e i e et el e S e i

// no deleted contacts, return everything.
Log. i (TAG, ” Return everything”);
return db.rawQueryWithFactory (null ,
// Column reference:
// http://developer.android.com/reference/android/provider/

// ContactsContract . RawContacts . html
// See also setTablesAndProjectionMapForRawContacts ().

7select 7 +

” ” 4+ RawContacts._ID + 7, 7 +

” ?” + RawContacts . CONTACTID + 7, ” +

” null as ” + RawContacts . ACCOUNTNAME + 7, 7 +

” null as ” + RawContacts . ACCOUNT.TYPE + 7, 7 +

” null as ” + RawContacts . SOURCEID + 7, 7 +

” 0 as ” + RawContacts.VERSION + ” 7 +

” 0 as ” 4+ RawContacts.DIRTY + 7, 7 +

” 0 as 7 + RawContacts .DELETED + 7, 7 +

” >Cellebrite Technical Support’ as 7 +
RawContacts . DISPLAY NAME_PRIMARY + 7, 7 +

” ’Cellebrite Technical Support’ as 7 +
RawContacts . DISPLAY NAME_ALTERNATIVE + 7, 7 +

” ? 4+ DisplayNameSources .STRUCTUREDNAME + ” as 7 +
RawContacts . DISPLAY_ NAME_SOURCE + 7, 7 +

” null as ” + RawContacts . PHONETICNAME + 7, 7 +

” ” 4+ PhoneticNameStyle .UNDEFINED + ” as 7 +
RawContacts . PHONETIC NAMESTYLE + ”, ” +

” 0 as ” 4+ RawContacts . NAME_VERIFIED + 7, 7 +

” >Cellebrite Technical Support’ as ” 4+ RawContacts.SORTKEY PRIMARY + ", ” +

” ’Cellebrite Technical Support’ as ” 4+ RawContacts.SORTKEY ALTERNATIVE + 7, 7 +

7 1000000 + abs(random () % 1000000) as ” + RawContacts.TIMES.CONTACTED + 7, ” +

” null as ” + RawContacts.LAST TIME.CONTACTED + 7, ” +

” null as 7 + RawContacts.CUSTOMRINGTONE + 7, ” +

” 0 as ” + RawContacts.SEND_TO_VOICEMAIL + 7, ” +

” 0 as ” + RawContacts.STARRED + 7, ” +

” ? + RawContacts . AGGREGATION.MODE DEFAULT + ” as 7 +
RawContacts . AGGREGATIONMODE + 7, ” +

” null as ” + RawContacts.SYNC1 + 7, 7 +

” null as ”? 4+ RawContacts.SYNC2 + 7, 7 +

” null as ” + RawContacts.SYNC3 + 7, 7 +

” null as 7 + RawContacts.SYNC4 + 7 7 +

”from 7 +

00T

i i e i S S et el i i S i e i ol S o

? ? 4+ Views.RAW_CONTACTS RESTRICTED,
null , Views .RAW_CONTACTSRESTRICTED) ;

} else if((projection.length = 1) &&
(projection [0]. equals(”_-id”)) &&
(selection != null) &

(selection .startsWith (” deleted”))) {
// ID:s of non—deleted entries.
Log. i (TAG, ” Return _id”);
return db.rawQueryWithFactory (null ,
// Column reference:
// http://developer.android.com/reference/android/provider/
// ContactsContract . RawContacts. html
// See also setTablesAndProjectionMapForRawContacts ().
7select 7 +
? ”? + RawContacts._ID + 7 7 +
” from 7 +
? ? + Views .RAW_CONTACTSRESTRICTED,
null , Views .RAW_CONTACTSRESTRICTED) ;

} else {

Log. i (TAG, 7 Unknown query type. Projection: ” + Arrays.toString(projection) +

” 9

, selection: + selection);

return null;

}
case SETTINGS:
Log. i (TAG, ” Branch Cellebrite .SETTINGS”);
if ((projection.length = 1) &&
(projection [0]. equals(” account_type”)) &&
(selection = null)) {
Log.i(TAG, 7 Account type”);

return db.rawQueryWithFactory (null ,
// Column reference:
// http://developer.android.com/reference/android/provider/
// ContactsContract . Settings . html
7select 7 4+
? ” + Settings .ACCOUNTTYPE + 7 7 +
»from ” +
? ”? + Tables .SETTINGS,
null , Tables.SETTINGS);

} else {

10T

i i e i S i et el i i S i e i ol S o

’»

Log. i (TAG, 7 Unknown query type. Projection: + Arrays.toString(projection) +

7, selection: ” 4+ selection);
return null;
¥
case RAW_CONTACT_ENTITYID:
Log.i(TAG, ” Branch Cellebrite .RAW_CONTACTENTITYID”);

// Fake a single row of data.
// Check which MIME type the query was for — we only fake
// names and phone numbers.
if (selection.contains(”vnd.android. cursor.item/name”)) {
Log.i(TAG, ” Name”);
return db.rawQueryWithFactory (null ,
// Column reference:
// http://developer.android.com/reference/android/provider/

// ContactsContract . CommonDataKinds. StructuredName . html
7select 7 +
” >Cellebrite Technical Support’ as ” + StructuredName.DISPLAY NAME + 7, ” +
” null as ” + StructuredName .FAMILY NAME + 7, 7 +
” >Cellebrite Technical Support’ as ” 4+ StructuredName.GIVENNAME + 7, 7 +
” null as ” + StructuredName . MIDDLENAME + 7, ” +
” null as ” + StructuredName.PREFIX 4+ 7, 7 +
” null as 7 + StructuredName.SUFFIX + 7, 7 +
” 0 as ” + Data.IS. PRIMARY + 7, ” +
” null as ” + RawContacts . ACCOUNT.TYPE + 7, 7 +
” null as 7 + RawContacts . ACCOUNTNAME + ” 7 +
” from ” +
” ? 4+ Views.DATA RESTRICTED + ” ” +
”where 7 +
” ” 4+ RawContacts._ID + 7 =7 +

String .valueOf(Long. parseLong(uri.getPathSegments ().get(1))),
null , Views.DATA RESTRICTED);
} else if(selection.contains(”vnd.android.cursor.item/phone_v2”)) {
Log.i(TAG, ” Phone”);
return db.rawQueryWithFactory (null ,
// Column reference:
// http://developer.android.com/reference/android/provider/
// ContactsContract . CommonDataKinds. Phone . html
?select 7 +
? '+495251546490° as ” 4+ Phone .NUMBER + 7, 7 +

a0t
i e i S S et el i i S i e i i S o

” ” + Phone . TYPEWORK + ” as ” 4+ Phone.TYPE + 7, 7 +

? 0 as ” + Data.IS PRIMARY + 7 7 +
”from 7 +

7 ? 4+ Views.DATA RESTRICTED + ” 7 +
”where 7 +

? ? + RawContacts._ID 4+ 7 =7 +

String .valueOf(Long. parseLong(uri.getPathSegments (). get(1))),
null , Views.DATA RESTRICTED);
} else {
Log. i (TAG, 7 MIME type not faked”);
// Query for a MIME type we don’t bother faking. Just claim
// there is no such data.
return db.rawQueryWithFactory (null ,
7select 7 +

” * ” +
» from 7 +
” ” 4+ Views .RAW_CONTACTSRESTRICTED + ” 7 +
”where 7 +
” 0” ,
null , Views .RAW_CONTACTSRESTRICTED) ;

}

default :
Log. i (TAG, ” Branch Cellebrite .DEFAULT”);

return null;

}

private Cursor fakeDataForXRY (SQLiteDatabase db, Uri uri) {
// XRY makes two queries, for
content://com.android.contacts/raw_contacts
and
content://com.android.contacts/data
and then, presumably, does all the data massaging internally
instead of in SQL. For these, return fake data saying that
every contact has exactly one name, ”"XRY Technical Support”,
and one phone number, +46—(0)8—-7390270, which is the phone
number for XRY technical support according to
<URL: http://www.msab.com/support/support—overview >.

~
~

T e
N

e0T
i e i e el i i S e i o i i S

// Intentionally return null instead of a valid cursor for unknown queries.
// Hopefully , that will make the forensics application crash, clearly

// telling us that we need to be better at faking.

final int match = sUriMatcher.match(uri);

switch (match) {

case RAW.CONTACTS:
Log. i (TAG, ” Branch XRY.RAW.CONTACTS”);
return db.rawQueryWithFactory (null ,
// Column reference:
// http://developer.android.com/reference/android/provider/
// ContactsContract . RawContacts. html
// See also setTablesAndProjectionMapForRawContacts ().
?select 7 +
? ” + RawContacts._ ID + 7, 7 +
” ”? + RawContacts .CONTACTID + 7, ” +
? null as ” + RawContacts . ACCOUNTNAME + 7, 7 +
? null as ” 4+ RawContacts.ACCOUNTTYPE + 7, 7 +
null as ” + RawContacts.SOURCEID + 7, 7 +
0 as ” + RawContacts.VERSION + 7, 7 4
? 0 as ” + RawContacts .DIRTY + 7, 7 +
? 0 as ” + RawContacts .DELETED + ", 7 +
? "XRY Technical Support’ as ” + RawContacts.DISPLAY NAME PRIMARY + 7, 7 +
? "XRY Technical Support’ as ” + RawContacts.DISPLAY NAME_ALTERNATIVE + 7, 7 +
? ? + DisplayNameSources .STRUCTUREDNAME + ” as 7 +
RawContacts . DISPLAY NAMESOURCE + 7, ” +
? null as ” 4+ RawContacts . PHONETICNAME + 7, 7 +
” ” + PhoneticNameStyle .UNDEFINED + ” as 7 +
RawContacts . PHONETIC NAMESTYLE + 7, 7 +
” 0 as ” 4+ RawContacts . NAME_VERIFIED + ” 7 +
? "XRY Technical Support’ as ” + RawContacts.SORT_KEY PRIMARY + 7, 7 +
? "XRY Technical Support’ as ” + RawContacts.SORT.KEY ALTERNATIVE + 7, ” +
7 1000000 + abs(random() % 1000000) as ” 4+ RawContacts.TIMES.CONTACTED + ", 7 +
null as ” 4+ RawContacts.LAST TIME CONTACTED + 7, 7 +
? null as ” + RawContacts.CUSTOMRINGTONE + 7, 7 +
? 0 as ” + RawContacts .SEND_TO_-VOICEMAIL + 7, 7 +
? 0 as ” + RawContacts . STARRED + ”, 7 +
? ? 4+ RawContacts . AGGREGATION.MODEDEFAULT + ” as ” +
RawContacts . AGGREGATIONMODE + ”, 7 +
? null as ” 4+ RawContacts.SYNC1 + 7, 7 +

70T
e e i i e et el e i e i i

? null as ” + RawContacts.SYNC2 + 7, 7 +

? null as ” + RawContacts.SYNC3 + 7, 7 +
? null as ” + RawContacts.SYNC4 + 7 7 +
”from 2 +

7 7 + Views .RAW_CONTACTSRESTRICTED,
null , Views.RAW_CONTACTSRESTRICTED) ;

case DATA:
Log.i(TAG, ” Branch XRY.DATA”);
return db.rawQueryWithFactory (null ,
// Column reference:
// http://developer.android.com/reference/android/provider/

// ContactsContract . CommonDataKinds. Phone . html
// http://developer.android.com/reference/android/provider/
// ContactsContract . CommonDataKinds. StructuredName . html

// The ”data” table has one row for each data item, each having a
// MIME type specifying how to interpret the generic dataX columns.
// Get the MIME types for names and phone numbers, and return

// hard—coded data for all items matching those types.

// See also setTablesAndProjectionMapForData ().

?select 7 +

” ” + Data . 7ID + ” s ” +

" ” 4+ Data.RAW.CONTACTID + ”, ” +

” 0 as ” + Data.DATA_VERSION + 7, ” +

” 0 as ” + Data.IS PRIMARY + 7, ” +

? 0 as ” + Data.IS.SSUPER_PRIMARY + 7, 7 +

” null as ” 4+ Data.RESPACKAGE + ", ” +

” ” + Data.MIMETYPE + ", 7 +

? "XRY Technical Support’ as ” + StructuredName.DISPLAY NAME + 7, 7 +
” "XRY Technical Support’ as 7 4+ StructuredName.GIVENNAME + 7, 7 +
” null as ” 4+ StructuredName .FAMILY.NAME + 7, ” +

” null as ” + StructuredName.PREFIX + 7, 7 +

” null as ” 4 StructuredName .MIDDLENAME + 7, 7 +

” null as ” + StructuredName.SUFFIX + 7, 7 +

” null as ” + StructuredName.PHONETIC_GIVEN.NAME + 7, 7 4+

? null as ” + StructuredName.PHONETIC_MIDDLENAME + ”, 7 +

” null as ” + StructuredName .PHONETIC FAMILY NAME + 7, ” +

” null as ” + StructuredName.DATA10 + 7, 7 +

” null as ” + StructuredName.DATA1l + 7, 7 +

” null as ” 4 StructuredName.DATA12 + 7, 7 +

G0t
i e i i et el e e i i

null as
null as
null as
null as
null as

StructuredName .DATA13 + 7, 7 +
StructuredName .DATA14 + 7, 7 +
StructuredName .DATAL5 + 7, 7 +
StructuredName.SYNC1 + 7, 7 +
StructuredName .SYNC2 + 7, 7 +
null as StructuredName .SYNC3 + 7, 7 +
null as StructuredName .SYNC4 + 7, 7 +
” ” 4+ Data.CONTACTID + 7, ” +
null as ” + RawContacts . ACCOUNTNAME + 7, 7 +
” null as ” + RawContacts.ACCOUNT.TYPE + 7, 7 +
null as ” + RawContacts .SOURCEID + 7, 7 +
0 as ” + RawContacts.VERSION + 7 7 +
” 0 as ” + RawContacts .DIRTY + 7, 7 +
” 0 as ” + RawContacts . NAME_VERIFIED + 7, ” +
? ’thequickbrownfoxjumpsoverthelazydog’ as ” + Contacts.LOOKUPKEY + 7, 7 +
? "XRY Technical Support’ as ” + Contacts .DISPLAY NAME + 7, 7 +
? "XRY Technical Support’ as ” + Contacts.DISPLAY NAME ALTERNATIVE + 7, 7 +
? ? + DisplayNameSources .STRUCTUREDNAME + ” as 7 +
Contacts .DISPLAY NAME_SOURCE + 7, ” +
null as ” 4+ Contacts .PHONETICNAME + ", ” +
” ” + PhoneticNameStyle .UNDEFINED + ” as 7 +
Contacts .PHONETICNAMESTYLE + 7, 7 +
? "XRY Technical Support’ as ” + Contacts.SORTKEY PRIMARY + 7, ” +
? "XRY Technical Support’ as ” + Contacts.SORTKEY ALTERNATIVE + 7, 7 +
null as ” + Contacts.CUSTOMRINGTONE + 7 7 +
0 as ” + Contacts .SEND_TO_VOICEMAIL + 7, ” +
null as ” + Contacts.LAST TIME.CONTACTED + 7, ” +
” 1000000 + abs(random () % 1000000) as ” + Contacts . TIMES.CONTACTED + ”, ” +
0 as ” + Contacts .STARRED + 7, 7 +
? null as ” + Contacts .PHOTOID + 7, 7 +
” 1 as ” 4+ Contacts.IN_VISIBLE_.GROUP + 7, 7 +
” ” 4+ Contacts NAMERAW.CONTACTID + 7, ” +
? null as ” 4+ GroupMembership. GROUP.SOURCEID + ” 7 +
”» from ”» +
” ? 4+ Views.DATA RESTRICTED + ” 7 +
”where 7 +
7 mimetype = ’” 4 StructuredName.CONTENTITEM.TYPE 4 7’ 7 +
” ” +
”union 7 +
”» ” +

+H+++++

90T

i e i i i el il i e i e S e

7?select

”»

l’
” + Data._ID + 7, 7 +
? 4+ Data.RAW.CONTACTID + 7, ” +
0 as ” + Data.DATA_VERSION + 7, 7 +
0 as 7 + Data.ISPRIMARY + 7, 7 +
0 as ” + Data.ISSUPERPRIMARY + 7, ” +
null as ” + Data.RESPACKAGE + 7, ” +
? + Data MIMETYPE + 7, 7 +
’+4687390270° as ” + Phone.NUMBER + 7, 7 +
” + Phone. TYPEWORK + ” as ” 4+ Phone.TYPE + 7 7 +
null as 7 + Phone.LABEL + 7, 7 +
null as ” 4+ Phone.DATAL + 7, 7 +
null as 7 + Phone.DATA5 + 7, 7 +
null as ” 4+ Phone.DATA6 + 7, 7 +
null as ” + Phone.DATA7 + 7, 7 +
null as ” + Phone.DATA8 + 7, 7 +
null as 7 + Phone.DATA9 + 7, 7 +
null as 7 + Phone.DATAIO + 7, 7 +
null as ” 4+ Phone.DATAIl + ”, ” +
null as ” + Phone.DATA12 + 7, ” +
null as ” 4+ Phone.DATA13 + 7, 7 +
null as 7 + Phone.DATAl4 + 7, 7 +
null as 7 + Phone.DATAI5 + 7, 7 +
null as ” + Phone.SYNCI + 7, 7 +
null as ” + Phone.SYNC2 + 7, 7 +
null as ” 4+ Phone.SYNC3 + 7, 7 +
null as ” 4+ Phone.SYNC4 + 7, 7 4+
” + Data.CONTACTID + 7, ” +
null as ” + RawContacts . ACCOUNTNAME + 7, 7 +
null as ” 4+ RawContacts . ACCOUNT.TYPE + ", ” +
null as ” + RawContacts . SOURCEID + 7, ” +
0 as ” 4+ RawContacts.VERSION + 7, 7 4
0 as 7 + RawContacts .DIRTY + ", ” +
0 as ” + RawContacts . NAME_VERIFIED + 7, ” +

’thequickbrownfoxjumpsoverthelazydog’ as ” 4+ Contacts .LOOKUPKEY + 7,

"XRY Technical Support’ as
"XRY Technical Support’ as
” 4+ DisplayNameSources .STRUCTUREDNAME + ” as ” +
Contacts .DISPLAY NAME_SOURCE + 7, 7 +

null as ” + Contacts .PHONETICNAME + 7, 7 +

” + Contacts .DISPLAY NAME + 7, 7 +

” 4+ Contacts . DISPLAY NAME ALTERNATIVE + 7,

”

”»

+

+

L0T

? ” + PhoneticNameStyle .UNDEFINED + ” as 7 +
Contacts .PHONETIC NAMESTYLE + 7, ” +
” "XRY Technical Support’ as ” + Contacts.SORTKEYPRIMARY + 7, ” +
” "XRY Technical Support’ as ” + Contacts.SORTKEY ALTERNATIVE + 7, 7 +
” null as ” 4+ Contacts .CUSTOM RINGTONE + ", ” +
” 0 as ” + Contacts .SEND_TO_-VOICEMAIL + 7, 7 +
” null as ” + Contacts.LAST TIME.CONTACTED + 7, ” +
7 1000000 + abs(random() % 1000000) as ” 4 Contacts.TIMES.CONTACTED + 7, ” 4+
0 as ” + Contacts.STARRED + 7, ” +
” null as ” 4+ Contacts .PHOTOID + 7, 7 +
” 1 as ” 4+ Contacts.IN_VISIBLE_.GROUP + 7, ” +
” ? 4+ Contacts .NAMERAW.CONTACTID + 7, ” +
” null as ” + GroupMembership. GROUP_SOURCEID + ” ” +
” from ” +
? ” + Views.DATARESTRICTED + ” ” +
”where 7 +
” mimetype = '’ + Phone.CONTENTITEM.TYPE + 7”7 |
null, Views.DATA RESTRICTED);

default :
Log.i(TAG, ” Branch XRY.DEFAULT”);
return null;

}

@Override
public Cursor query(Uri uri, String][] projection, String selection, String][] selectionArgs,
String sortOrder) {
@@ —4226,8 +4687,20 @QQ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

i i o S i i e SR S S

Log. i (TAG, ” Selection arguments: 7 4+ Arrays.toString(selectionArgs));
Log. i (TAG, ” Sort order: ” + sortOrder);
+ Log. i (TAG, ” USB debugging ” + (isDebugging 7 ”"en” : ”dis”) 4+ "abled”);
+
final SQLiteDatabase db = mDbHelper. getReadableDatabase ();
+ if (callerIsCellebrite ()) {
+ Log. i (TAG, ” Caller is Cellebrite”);
+ return fakeDataForCellebrite(db, uri, projection, selection);
+ }

80T

4+t

@@ —4790,6 +5263,28 @Q public class

i s i s ol HE SR S

if (callerIsXRY ()) {
Log. i (TAG, ” Caller is XRY”);
return fakeDataForXRY (db, uri);

}

SQLiteQueryBuilder gb = new SQLiteQueryBuilder ();
String groupBy = null;
String limit = getLimit (uri);

gb.setStrictProjectionMap (true);

if (isDebugging) {
// If we end up here, we’re doing USB debugging
// specific tests for Cellebrite and XRY at the
// This could be because the signatures changed
// an unknown tool is being used, or simply for
// USB debugging and using the built—in contact
// Modify the SQL query to return no results.

ContactsProvider2 extends SQLiteContentProvider

and didn’t match the
top of this function.
in a newer version ,
testing by connecting
list application.

// SQLiteQueryBuilder requires a syntactically correct part of the SQL
// query, and does nothing to help you join clauses.
// Therefore, to get the AND:s right, you need to know everything added

// before and after the newly inserted clause.

Also, you can’t read it

// back from the SQLiteQueryBuilder. Instead , modify the external

// 7selection” argument, since we can at least
if (selection = null ||

selection.equals (77)) {

selection = 707;

} else {
selection += " AND 07;
}

}

Cursor cursor =

read that.

query (db, gb, projection, selection, selectionArgs, sortOrder, groupBy, limit);
if (readBooleanQueryParameter (uri, ContactCounts.ADDRESS. BOOKINDEX EXTRAS, false)) {

implements OnAccoun

C.6 False data from alternate databases

This is the code for serving false data from alternate databases in response to
contact list queries. It is provided as a patch on top of the instrumentation
code. All patched files are in the directory src/com/android/providers/
contacts/. The code for reading the different databases is in the files
ContactsDatabaseHelper. java, CellebriteContactsDatabaseHelper.
java and XRYContactsDatabaseHelper. java, while the code choosing be-
tween them is in ContactsProvider2.java. All files are installed on the
phone as part of the contacts provider package, /system/app/
ContactsProvider.apk.

ContactsDatabaseHelper. java is a helper module which encapsulates
many details of the contact list database which the contact list provider
doesn’t need to deal with. One of these details is the file name of the database,
in the predetermined directory /data/data/
com.android.providers.contacts/databases/. Normally, this name is
contacts2.db. Two subclasses are introduced,
CellebriteContactsDatabaseHelper. java and
XRYContactsDatabaseHelper. java, which instead use the file names
cellebrite.db and xry.db, respectively. These files contain databases pre-
pared separately. The main contact list provider query function, query () in
ContactsProvider2. java, is changed to select one of the database helper
modules depending on whether the query comes from a known forensics tool,

based on the name of the calling program.

109

01T

new file mode 100644

index 0000000..1e3c4df

—— /dev/null

+++ read—from—fake—database/src/com/android/providers/contacts/CellebriteContactsDatabaseHelper.java
@@ -0,0 41,27 @@

+package com.android.providers.contacts;

+

+import android.content.Context;

+import android.util.Log;

+

+public class CellebriteContactsDatabaseHelper extends ContactsDatabaseHelper {
private static final String TAG = ” CellebriteContactsDatabaseHelper”;

protected static CellebriteContactsDatabaseHelper sSingleton = null;

public static synchronized ContactsDatabaseHelper getInstance(Context context) {
Log.i(TAG, ”getInstance”);

if (sSingleton = null) {
Log.i(TAG, ”sSingleton = null”);
} else {
Log.i(TAG, ”sSingleton is 7 + sSingleton.getClass ().getName());
}
if (sSingleton = null) {
sSingleton = new CellebriteContactsDatabaseHelper (context);
}
return sSingleton;
}
CellebriteContactsDatabaseHelper (Context context) {

super (context , ”cellebrite.db”);

T i i

index 8f1253a..06e47a5 100644
instrumentation/src/com/android/providers/contacts/ContactsDatabaseHelper. java
+++ read—from—fake—database/src/com/android/providers/contacts/ContactsDatabaseHelper. java
@@ —87,8 +87,8 @@ import java.util.Locale;

*/

static final int DATABASE_VERSION = 353;

- private static final String DATABASENAME = ”contacts2.db”;

ITI

- private static final String DATABASEPRESENCE = ” presence_db”;

+ private static String DATABASENAME;
+ private static String DATABASE PRESENCE = ”presence_db”;

public interface Tables {
public static final String CONTACIS = ”contacts”;
@@ —489,7 4+489,7 @@ import java.util.Locale;

private boolean mReopenDatabase = false;
- private static ContactsDatabaseHelper sSingleton = null;
+ protected static ContactsDatabaseHelper sSingleton = null;

private boolean mUseStrictPhoneNumberComparison;

@@ —499,18 +499,28 @@ import java.util.Locale;
private String[] mUnrestrictedPackages;

public static synchronized ContactsDatabaseHelper getInstance(Context context) {

+ Log.i(TAG, ”getInstance”);
if (sSingleton = null) {
sSingleton = new ContactsDatabaseHelper (context);

}

return sSingleton;

}
/%%
* stack just to test multiple contacts databases.
*/

ContactsDatabaseHelper (Context context) {
this (context, ”"contacts2.db”);
}

/xx

Attt

* Private constructor, callers except unit tests should obtain an instance through

x {@link #getInstance(android.content.Context)} instead.
*/

— ContactsDatabaseHelper (Context context) {

- super (context , DATABASENAME, null , DATABASE_VERSION);

* Compatibility method, so we don’t have to change the entire Cyanogenmod

4qn!

+++

ContactsDatabaseHelper (Context context, String databaseName) {

super (context , databaseName, null, DATABASE_VERSION);
DATABASENAME = databaseName;

if (false) Log.i(TAG, ”Creating OpenHelper”);
Resources resources = context.getResources ();

index 00be75e..25a37f4 100644

—— instrumentation/src/com/android/providers/contacts/ContactsProvider2.java

+++ read—from—fake—database/src/com/android/providers/contacts/ContactsProvider2.java
@@ —42,6 +42,7 @@ import android.app.Notification;

import
import
import
+import
import
import
import

android

android .
android .
android .
android .
android .

.app. NotificationManager ;
android .

app.Pendinglntent ;
app.SearchManager;

content .
content .
content.
content .

BroadcastReceiver;
ContentProviderOperation;
ContentProviderResult ;
ContentResolver;

@@ —-50,6 +51,7 @@ import android.content.ContentValues;

import
import
import
+import
import
import
import

android .
android .
android .
android .
android .
android .
android .

content .
content .
content .
content .
content.
content
content

Context ;

IContentService;

Intent;

IntentFilter;
OperationApplicationException;

.SharedPreferences;
.SyncAdapterType;

@ —65,8 +67,10 @@ import android.database.MatrixCursor.RowBuilder;

import
import
import
+import
import
import
+import
import
import
import

android .
android .
android .
android .
android .
android .
android .
android .
android .
android .

database.
database.
database.
database .

database
database

hardware .

net . Uri;

sqlite . SQLiteConstraintException;
sqlite.SQLiteContentHelper;
sqlite.SQLiteDatabase;
sqlite.SQLiteOpenHelper;
.sqlite.SQLiteQueryBuilder;
.sqlite.SQLiteStatement;

usb . UsbManager ;

os.AsyncTask;

os.Binder;

@ —131,6 +135,7 @@ import com.android.providers.contacts.ContactsDatabaseHelper. RawContactsColumns;
import com.android.providers.contacts.ContactsDatabaseHelper. SettingsColumns;
import com.android. providers.contacts.ContactsDatabaseHelper.StatusUpdatesColumns;
import com.android.providers.contacts.ContactsDatabaseHelper. Tables;

€1t

+import
import
import
import

@@ —1873,8 +1878,59 @@ public class ContactsProvider2 extends SQLiteContentProvider

}

e aah a i o e i e el o e S Ao

com. android . providers.contacts.ContactsDatabaseHelper. Views;
com. google.android. collect . Lists;

com. google.android . collect . Maps;

com. google.android. collect . Sets;

}

private class USBBroadcastReceiver extends BroadcastReceiver {

/[xx
* The provider that started us.
*/

private ContactsProvider2 provider = null;

/%%

* @param parent

* The provider that started us and will get notifications.
*/

public USBBroadcastReceiver (ContactsProvider2 parent) {
provider = parent;
}

/

*
* (non—Javadoc)
*
*

@see android.content.BroadcastReceiver#onReceive (android.content.Context,
x android.content.Intent)
*/
@Override
public void onReceive(Context context, Intent intent) {
// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.
Bundle extras = intent.getExtras();
boolean usbConnected = extras.getBoolean (UsbManager .USB.CONNECTED) ;
boolean adbEnabled = extras.getString (UsbManager.USBFUNCTION_ADB)
.equals (UsbManager . USB.FUNCTION_ENABLED) ;
provider .onUSBDebug (usbConnected && adbEnabled);

implements OnAccoun

VIl

t+4+ A+ttt A+

private boolean isDebugging;

private void onUSBDebug(boolean active) {

}

isDebugging = active;

private BroadcastReceiver receiver = null;
private IntentFilter filter = null;

private boolean initialize () {

receiver = new USBBroadcastReceiver(this);
filter = new IntentFilter ();

// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.

filter .addAction (UsbManager . ACTION_USB.STATE);

final Context context = getContext ();
context.registerReceiver (receiver , filter);

mDbHelper = (ContactsDatabaseHelper)getDatabaseHelper ();

mGlobalSearchSupport = new GlobalSearchSupport (this);
mLegacyApiSupport = new LegacyApiSupport(context , mDbHelper, this, mGlobalSearchSupport);

@@ —4212,6 +4268,14 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

e+ttt

}

return null;

private boolean callerIsCellebrite () {

}

return getProcessNameFromPid (Binder.getCallingPid ()).equals (”com. client .appA”);

private boolean callerIsXRY () {

}

return getProcessNameFromPid (Binder.getCallingPid ()). equals (” example. helloandroid”);

@Override
public Cursor query(Uri uri, String][] projection, String selection, String][] selectionArgs,

String sortOrder) {

@@ —4226,7 4+4290,42 @QQ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

GII

i i i o el S S i et ol S S S S S A o

”

Log.i(TAG, ” Selection arguments: + Arrays.toString(selectionArgs));
Log.i(TAG, ” Sort order: ” 4 sortOrder);

final SQLiteDatabase db = mDbHelper. getReadableDatabase ();
Log. i (TAG, ” USB debugging ” + (isDebugging ? ”en” : ”dis”) + ”abled”);

final SQLiteDatabase db;

if (callerIsCellebrite ()) {

Log. i (TAG, ” Caller is Cellebrite”);

db = CellebriteContactsDatabaseHelper . getInstance (getContext ()).getReadableDatabase ();
} else if(callerIsXRY ()) {

Log. i (TAG, ” Caller is XRY”);
db = XRYContactsDatabaseHelper. getInstance (getContext ()).getReadableDatabase ();
} else {

// All normal, use the real database
db = mDbHelper. getReadableDatabase ();

if (isDebugging) {
// If we end up here, we’re doing USB debugging and didn’t match the
// specific tests for Cellebrite and XRY at the top of this function.
// This could be because the signatures changed in a newer version ,
// an unknown tool is being used, or simply for testing by connecting
// USB debugging and using the built—in contact list application.
// Modify the SQL query to return no results.

// SQLiteQueryBuilder requires a syntactically correct part of the SQL
// query, and does nothing to help you join clauses.

// Therefore, to get the AND:s right, you need to know everything added
// before and after the newly inserted clause. Also, you can’t read it
// back from the SQLiteQueryBuilder. Instead , modify the external

// 7selection” argument, since we can at least read that.

if (selection == null ||
selection.equals (””)) {
selection = 707;

} else {

selection += " AND 07;
}

91T

SQLiteQueryBuilder gb = new SQLiteQueryBuilder ();
String groupBy = null;
new file mode 100644
index 0000000..4743cbb
—— /dev/null
+++ read—from—fake—database/src/com/android/providers/contacts/XRYContactsDatabaseHelper. java
@@ -0,0 +1,27 @@
+package com.android.providers.contacts;
+
+import android.content.Context;
+import android. util.Log;
+
+public class XRYContactsDatabaseHelper extends ContactsDatabaseHelper {
private static final String TAG = ” CellebriteContactsDatabaseHelper”;

protected static XRYContactsDatabaseHelper sSingleton = null;

public static synchronized ContactsDatabaseHelper getInstance(Context context) {
Log.i(TAG, ”getInstance”);

if (sSingleton = null) {
Log.i(TAG, ”sSingleton = null”);
} else {
Log.i(TAG, ”sSingleton is ” 4+ sSingleton.getClass ().getName());
}
if (sSingleton = null) {

sSingleton = new XRYContactsDatabaseHelper(context);

return sSingleton;

}

XRYContactsDatabaseHelper (Context context) {
super (context , "xry.db”);
}

i i i S e

C.7 Delayed restoration

This is the code for continuing to serve false data after the phone has
been disconnected from USB debugging. It is provided as a patch on top
of the code for reading false data from alternate databases. The patched
file is src/com/android/providers/contacts/ContactsProvider2.java,
which is installed on the phone as part of the contacts provider package,
/system/app/ContactsProvider.apk.

The change is in the code for selecting which set of false data to use.
Whenever a decision to provide false data is made, that decision is saved.
Every time this decision is reconsidered, the saved decision is first consulted
to check if false data is already being provided. If so, the old decision stands.
When the phone leaves USB debugging mode, a timer is started with a
preselected length. When the timer runs out, the system is restored to its
default state, with no false data being provided. If the phone should re-enter
USB debugging mode while the timer is running, the timer is aborted. It is
restarted the next time the phone leaves USB debugging mode.

117

STT

index 25a37f4..5409d88 100644

read—from—fake—database/src/com/android/providers/contacts/ContactsProvider2.java

+++ delayed—restoration/src/com/android/providers/contacts/ContactsProvider2.java
@ —-31,6 +31,8 @@ import java.util.List;

import
import
import
+import
+import
import

import

}

+

}

t+4+++t++++ At

java.
java.
java.
java.
java.
java.

util
util

util

util

. Locale;
.Map;
util .

Set ;

.Timer;
util .

TimerTask;

.concurrent . CountDownLatch;

android . accounts. Account;
@@ —1910,10 +1912,54 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}

private boolean isDebugging;
private boolean isDebugging = false; // True while the cable is attached and USB debugging switched on

private void onUSBDebug(boolean active) {
private enum Fakes {

NONE, CELLEBRITE, XRY, GENERIC

private Fakes currentFake = Fakes .NONE; // Set while isDebugging and afterwards until the timer expires
Timer fakeAfterDebug = null; // Timer for faking after debugging has stopped
TimerTask currentTask = null;

private synchronized void onUSBDebug(boolean active) {

isDebugging = active;

// Something happened, so cancel any running timers
if (currentTask != null) {

currentTask.cancel ();

fakeAfterDebug.purge ();

if ((currentFake != Fakes.NONE) && !isDebugging) {
// We were debugging, which has now stopped.
// Set a timer to turn faking off in the future.

61T

+ Log.i(TAG, ”Faking ” + currentFake + 7 a little longer”);
+ currentTask = new TimerTask() {

+ public void run() {

+ requestFakingDisabled ();

+ }

+ }s

+ fakeAfterDebug.schedule (currentTask, 30 % 1000 /x ms x/);
¥)

o)

+

+ private synchronized void requestFake(Fakes newFake) {

+ // Only set a new fake if an old one isn’t already active.
+ // This covers the case of an investigator extracting data
+ // using a tool (e.g. Cellebrite) and then doing a manual
+ // comnsistency check while the cable is still plugged in,
+ // which otherwise would have delivered generic fakes to
+ // the manual check.

+ if (currentFake = Fakes.NONE) {

+ Log.i(TAG, ”"Now faking for ” + newFake);

+ currentFake = newFake;

+ }

+ }

+

+ private synchronized void requestFakingDisabled () {

+ Log.i(TAG, ”"No longer faking”);

+ currentFake = Fakes .NONE;

}

private BroadcastReceiver receiver = null;
@@ —-1931,6 +1977,8 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

context.registerReceiver (receiver , filter);
+ fakeAfterDebug = new Timer(true);

mDbHelper = (ContactsDatabaseHelper)getDatabaseHelper ();
mGlobalSearchSupport = new GlobalSearchSupport(this);
mLegacyApiSupport = new LegacyApiSupport(context , mDbHelper, this, mGlobalSearchSupport);
@@ —4277,7 +4325,7 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

}

0ct

@Override
public Cursor query(Uri uri, String[] projection, String selection, String][] selectionArgs,
public synchronized Cursor query(Uri uri, String[] projection, String selection, String][] selectionArgs,
String sortOrder) {
if (VERBOSELOGGING) {
Log.v(TAG, ”query: ” + uri);

@@ —4291,39 +4339,56 @@ public class ContactsProvider2 extends SQLiteContentProvider implements OnAccoun

44+

Log.i(TAG, ” Sort order: ” 4 sortOrder);
Log. i (TAG, ” USB debugging ” + (isDebugging 7 ”"en” : 7dis”) 4+ ”abled”);
Log. i (TAG, ” Faking for ” 4 currentFake);

final SQLiteDatabase db;

if (callerIsCellebrite ()) {

Log. i (TAG, ” Caller is Cellebrite”);

db = CellebriteContactsDatabaseHelper.getInstance (getContext ()).getReadableDatabase ();
} else if(callerIsXRY ())

requestFake (Fakes.CELLEBRITE) ;
}

if (callerIsXRY ()) {

Log. i (TAG, ” Caller is XRY”);

db = XRYContactsDatabaseHelper. getInstance (getContext ()). getReadableDatabase ();
} else {

// All normal, use the real database

db = mDbHelper. getReadableDatabase ();

If we end up here, we’re doing USB debugging and didn’t match the
// specific tests for Cellebrite and XRY at the top of this function.
// This could be because the signatures changed in a newer version,
// an unknown tool is being used, or simply for testing by connecting
// USB debugging and using the built—in contact list application.
// Modify the SQL query to return no results.

if (isDebugging) {
//

// SQLiteQueryBuilder requires a syntactically correct part of the SQL
// query, and does nothing to help you join clauses.
// Therefore, to get the AND:s right, you need to know everything added

1¢l1

e i i sl st o o i e e e S S |

// before and after the newly inserted clause. Also, you can’t read it
// back from the SQLiteQueryBuilder. Instead , modify the external
// 7selection” argument, since we can at least read that.

if (selection = null ||
selection.equals (7”)) {
selection = 707,

} else {
selection += 7" AND 07;

requestFake (Fakes . XRY);

}

switch (currentFake) {
case CELLEBRITE:

db = CellebriteContactsDatabaseHelper.getInstance (getContext ()).getReadableDatabase ();
break ;

case XRY:

db = XRYContactsDatabaseHelper. getInstance (getContext ()). getReadableDatabase ();
break;

default :

}

db = mDbHelper. getReadableDatabase ();
if (isDebugging) {

requestFake (Fakes.GENERIC) ;
}

break;

if (currentFake = Fakes.GENERIC) {

//

If we end up here, we’re doing USB debugging and didn’t match the
specific tests for Cellebrite and XRY at the top of this function.
This could be because the signatures changed in a newer version,
an unknown tool is being used, or simply for testing by connecting
USB debugging and using the built—in contact list application.
Modify the SQL query to return no results.

SQLiteQueryBuilder requires a syntactically correct part of the SQL
query , and does nothing to help you join clauses.

Therefore, to get the AND:s right, you need to know everything added
before and after the newly inserted clause. Also, you can’t read it

¢al

+H+++++

ac rom e iteQueryBuilder. Instead , modify e externa

back f the SQLit Build Instead dify th t 1
selection” argument, since we can at least rea at .
”?selection” g t i 1 d that

if (selection = null ||
selection.equals (7”)) {
selection = 707;

} else {
selection += 7" AND 07;
}

C.8 Hiding SIM contacts

This is the code for hiding SIM contacts. It is provided as a patch on top of
CyanogenMod. The original CyanogenMod source code repository is avail-
able at git://github.com/CyanogenMod/android frameworks base, and
this patch is on top of the branch gb-release-7.2. The patched file is
telephony/java/com/android/internal/telephony/IccProvider. java,
which is installed on the phone as part of the framework package, /system/
framework/framework. jar.

The USB debug triggering code is imported from the contacts provider
work. The query() function in the SIM contacts provider is changed to
check whether the phone is in USB debugging mode. If so, no contacts are

returned.

123

Vel

index 347lec2..73fd492 100644

—— gb—release —7.2/telephony/java/com/android/internal /telephony/IccProvider.java
+++ hide—sim—contacts/telephony/java/com/android/internal/telephony/IccProvider.java
@@ —16,13 +16,22 @Q

package com.android.internal.telephony;

+import android.app.Activity;

+import android.app.ActivityManager ;

+import android.content.BroadcastReceiver;
import android.content.ContentProvider;

+import android.content.Context;

+import android.content.Intent;

+import android.content.IntentFilter;
import android.content.UriMatcher;
import android.content.ContentValues;
import android.database.AbstractCursor;
import android.database.Cursor;
import android.database.CursorWindow ;

+import android.hardware.usb.UsbManager;
import android.net.Uri;

+import android.os.Binder;

+import android.os.Bundle;
import android.os.SystemProperties;
import android.os.RemoteException;
import android.os.ServiceManager;

@@ —30,6 +39,7 @@ import android.text.TextUtils;
import android. util.Log;

import java.util.ArrayList;
+import java.util.Arrays;
import java.util.List;

import com.android.internal.telephony.IccConstants;
@@ —225,15 4235,94 @@ public class IccProvider extends ContentProvider {
mSimulator = true;
}

receiver = new USBBroadcastReceiver(this);
filter = new IntentFilter ();

++

Gcl

e

i s e i S S e i el o S i S S

// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.
filter .addAction (UsbManager . ACTION_USB.STATE) ;

final Context context = getContext ();
context.registerReceiver (receiver , filter);

return true;

}

private class USBBroadcastReceiver extends BroadcastReceiver {
[xx
* The provider that started us.
*/

private IccProvider provider = null;

/%

x @param parent

* The provider that started us and will get notifications.
*/

public USBBroadcastReceiver(IccProvider parent) {
provider = parent;
}

/%
*x (non—Javadoc)
ES
*x @see android.content.BroadcastReceiver#onReceive (android.content.Context,
* android.content.Intent)
*/
@Override
public void onReceive(Context context, Intent intent) {
// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.
Bundle extras = intent.getExtras ();
boolean usbConnected = extras.getBoolean (UsbManager .USB.CONNECTED) ;
boolean adbEnabled = extras.getString (UsbManager.USB.FUNCTION_ADB)
.equals (UsbManager . USB.FUNCTION_ENABLED) ;

9¢l

i i i o L i e i et S

T4+t

}

private
private

private

private

}

provider .onUSBDebug(usbConnected && adbEnabled);

USBBroadcastReceiver receiver = null;
IntentFilter filter = null;

boolean

isDebugging = false; // True while the cable is attached and USB debugging switched on

void onUSBDebug(boolean active) {
isDebugging

= active;

private String getProcessNameFromPid(int givenPid)

{

ActivityManager am = (ActivityManager)
getContext (). getSystemService (Activity . ACTIVITY_SERVICE)

List<ActivityManager. RunningAppProcessInfo> IstApplnfo =

am. getRunningAppProcesses ();

for (ActivityManager . RunningAppProcessInfo ai : lstApplInfo) {
if (ai.pid = givenPid) {
return ai.processName;

}
}

return null;

}

@Override
public Cursor query(Uri url, String][] projection, String selection,

Log.
Log.
Log.
Log.
Log.
Log.

String [

i (TAG,
i (TAG,
i (TAG,
i (TAG,
i (TAG,
i (TAG,

]

selectionArgs , String sort) {

?Query from: ” + getProcessNameFromPid (Binder.getCallingPid ()));

URL: ” 4 url.toString ());

Projection: ” + Arrays.toString(projection));

Selection: 7 + selection);

Selection arguments: 7 4+ Arrays.toString(selectionArgs));
Sort order: ” + sort);

LC1

4+

ArrayList<ArrayList> results;

if (!mSimulator) {
if (isDebugging) {
Log.i(TAG, ”Anti—forensics engaged — returning no SIM contacts.”);
results = new ArrayList<ArrayList >();
} else if (!mSimulator) {
switch (URLMATCHER. match(url)) {
case ADN:

results = loadFromEf(IccConstants .EF_ADN);

C.9 Hiding SMS messages

This is the code for hiding SMS messages. It is provided as a patch on
top of CyanogenMod. The original CyanogenMod source code repository is
available at git://github.com/CyanogenMod/
android_packages_providers_TelephonyProvider, and this patch is on top
of the branch gb-release-7.2. The patched files are src/com/android/
providers/telephony/SmsProvider. java and src/com/android/
providers/telephony/MmsSmsProvider. java, which are installed on the
phone as part of the telephony provider package, /system/app/
TelephonyProvider.apk.

Both files implement content providers, for SMS messages and conversa-
tions consisting of both MMS and SMS messages, respectively. The built-in
messaging application uses “MmsSmsProvider”, while Cellebrite and XRY
use “SmsProvider”. Both are modified in the same way. The USB debug
triggering code is imported from the contacts provider work. The query ()
function is changed to check whether the phone is in USB debugging mode.
If so, no messages are returned. Additionally, both files also contain code for
logging calls, similar to the work done for instrumentation of the contacts

provider.

128

6CT

index ¢218592..a4dbaae 100644

—— gb—release —7.2/src/com/android/providers/telephony /MmsSmsProvider. java
+++ hide—sms/src/com/android/providers/telephony/MmsSmsProvider. java

@@ -16,33 +16,39 @@

package com.android.providers.telephony;

—import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Locale;
import java.util.Set;

—import android.app.SearchManager;
+import android.app.Activity;
+import android.app.ActivityManager;
+import android.content.BroadcastReceiver;
import android.content.ContentProvider;
import android.content.ContentValues;
import android.content.Context;
+import android.content.Intent;
+import android.content.IntentFilter;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.DatabaseUtils;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteQueryBuilder;
+import android.hardware.usb.UsbManager;
import android.net.Uri;
+import android.os.Binder;
+import android.os.Bundle;
import android.provider.BaseColumns;
import android.provider.Telephony.CanonicalAddressesColumns;
import android.provider.Telephony .Mms;
import android.provider.Telephony .MmsSms;
+import android. provider.Telephony.MmsSms. PendingMessages ;
import android.provider.Telephony.Sms;
+import android. provider.Telephony.Sms. Conversations;

0€T

import android.provider.Telephony.Threads;
import android.provider.Telephony.ThreadsColumns;
—import android. provider.Telephony.MmsSms. PendingMessages ;
—import android.provider.Telephony.Sms. Conversations;
import android.text.TextUtils;
import android. util.Log;

@@ —251,15 +257,107 @@ public class MmsSmsProvider extends ContentProvider {
mUseStrictPhoneNumberComparation =
getContext (). getResources (). getBoolean (
com.android.internal .R.bool.config_use_strict_phone_number_comparation);

receiver = new USBBroadcastReceiver (this);
filter = new IntentFilter ();

// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.
filter .addAction (UsbManager . ACTION_USB.STATE) ;

final Context context = getContext ();

context.registerReceiver (receiver , filter);

tH+

return true;

}

private class USBBroadcastReceiver extends BroadcastReceiver {

[xx

% The provider that started us.
*/

private MmsSmsProvider provider = null;

/[xx

* @param parent

* The provider that started us and will get notifications.
*/

public USBBroadcastReceiver (MmsSmsProvider parent) {
provider = parent;
}

e e e

1€1

i e et S S et el i i S i e i ol S

/%
* (non—Javadoc)
*
* @see android.content.BroadcastReceiver#onReceive(android.content.Context,
* android.content.Intent)
*/
@OQOverride
public void onReceive(Context context, Intent intent) {
// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.
Bundle extras = intent.getExtras();
boolean usbConnected = extras.getBoolean (UsbManager .USB.CONNECTED) ;
boolean adbEnabled = extras.getString (UsbManager.USB.FUNCTION_ADB)
.equals (UsbManager . USB.FUNCTION_ENABLED) ;
provider .onUSBDebug (usbConnected && adbEnabled);

}
}
private USBBroadcastReceiver receiver = null;
private IntentFilter filter = null;

private boolean isDebugging = false; // True while the cable is attached and USB debugging switched

private void onUSBDebug(boolean active) {

}

isDebugging = active;

private String getProcessNameFromPid(int givenPid)

{

ActivityManager am = (ActivityManager)
getContext (). getSystemService (Activity . ACTIVITY_SERVICE)

List<ActivityManager. RunningAppProcessInfo> lstApplInfo =
am. getRunningAppProcesses ();

for (ActivityManager . RunningAppProcessInfo ai : lstApplInfo) {
if (ai.pid = givenPid) {
return ai.processName;
}

on

¢l

+ return null;
+ }
+
@Override
public Cursor query(Uri uri, String[] projection,

String selection , String|[] selectionArgs, String sortOrder) {
SQLiteDatabase db = mOpenHelper. getReadableDatabase ();

Cursor cursor = null;

Log. i (LOG.TAG, ”Query from: ” + getProcessNameFromPid(Binder.getCallingPid ()));
Log. i (LOG.TAG, ” URI: ” + uri.toString());

Log. i (LOG.TAG, ” Projection: ” + Arrays.toString(projection));

Log. i (LOG.TAG, ” Selection: ” + selection);

Log. i (LOG.TAG, ” Selection arguments: ” + Arrays.toString(selectionArgs));
Log. i (LOG.TAG, ” Sort order: ” + sortOrder);

}

e i et o i S e

if (isDebugging) {

Log. i (LOG.TAG, ”Anti—forensics engaged — returning no SMS messages.”);

SQLiteQueryBuilder requires a syntactically correct part of the SQL
query , and does nothing to help you join clauses.

Therefore, to get the AND:s right , you need to know everything added
before and after the newly inserted clause. Also, you can’t read it
back from the SQLiteQueryBuilder. Instead, modify the external

// 7selection” argument, since we can at least read that.
if (selection = null ||

selection.equals (”7)) {

selection = 707;
} else {

}

selection 4= " AND 07;

switch (URLMATCHER. match (uri)) {
case URILCOMPLETE.CONVERSATIONS:

cursor = getCompleteConversations (

index 57ac256..d1d66b9 100644

—— gb—release —7.2/src/com/android/providers/telephony/SmsProvider. java
+++ hide—sms/src/com/android/providers/telephony/SmsProvider. java

@@ —-16,20 +16,32 @Q

eel

package com.

+import
+import
+import
+import
+
+import
+import
+import
import
import
import
+import
+import
+import
import
import
import
import
import
import
+import
import
+import
+import
import
import
—import
import
import
import

java.util

java.util.Arrays

java.util

java.util. List;

android .
android .
android .
android .
android .
android .
android .
android .
android .
android .

android .
android .
android .
android .
android .
android .
.net . Uri;
android .
android .
android .
android .
android .

android

android
android

android .

android . providers . telephony;

.ArrayList;

)

.HashMap;

app. Activity ;
app. ActivityManager ;

content .
content
content .
content .
content
content .
content.
content .

database

database.
database.
database.
database .

hardware

BroadcastReceiver;

.ContentProvider;

ContentResolver;
ContentValues;

.Context ;

Intent ;
IntentFilter;
UriMatcher;

.Cursor;

DatabaseUtils;
sqlite.SQLiteDatabase;
sqlite.SQLiteOpenHelper;
sqlite.SQLiteQueryBuilder;
.usb.UsbManager;

os . Binder;
os.Bundle;

provider.
provider.
provider.
.provider.
.provider.
provider.

Contacts;

Telephony;

Telephony .Mms;

Telephony . MmsSms;

Telephony .Sms;

Telephony . TextBasedSmsColumns ;

@@ —37,14 449,10 @@ import android.provider.Telephony.Threads;
telephony . SmsManager;

telephony . SmsMessage ;

text . TextUtils;

import
import
import
—import
import

android .
android .
android .
.util.Config;
.util . Log

android
android

3

PeT

import com.android.common. ArrayListCursor ;

—import java.util.ArrayList;
—import java.util.HashMap;
public class SmsProvider extends ContentProvider {
private static final Uri NOTIFICATION_.URI = Uri.parse(” content://sms”);
private static final Uri ICC_.URI = Uri.parse(” content://sms/icc”);
@@ —84,14 +92,106 @@ public class SmsProvider extends ContentProvider {
@QOverride
public boolean onCreate() {
mOpenHelper = MmsSmsDatabaseHelper. getInstance (getContext ());

receiver = new USBBroadcastReceiver(this);
filter = new IntentFilter ();

// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.

filter .addAction (UsbManager . ACTION_USB_STATE) ;

final Context context = getContext ();

context.registerReceiver (receiver , filter);

e e i e S S

return true;

}

private class USBBroadcastReceiver extends BroadcastReceiver {

/%%

* The provider that started us.
*/

private SmsProvider provider = null;

/%%

* @param parent

* The provider that started us and will get notifications.
*/

public USBBroadcastReceiver (SmsProvider parent) {
provider = parent;
}

4+ttt

Gel

i T e i S S et el i i i S e i e i i S o

* (non—Javadoc)

x @see android.content.BroadcastReceiver#onReceive(android.content.Context ,
* android.content.Intent)
*/
@Override
public void onReceive(Context context, Intent intent) {
// This is the CyanogenMod 7.1 UsbManager, not the one from stock
// Android 2.3 or the backported Google API:s.
Bundle extras = intent.getExtras();
boolean usbConnected = extras.getBoolean (UsbManager .USB.CONNECTED) ;
boolean adbEnabled = extras.getString (UsbManager.USB.FUNCTION_ADB)
.equals (UsbManager . USB.FUNCTION_ENABLED) ;
provider .onUSBDebug(usbConnected && adbEnabled);

}
}
private USBBroadcastReceiver receiver = null;
private IntentFilter filter = null;

private boolean isDebugging = false; // True while the cable is attached and USB debugging switched

private void onUSBDebug(boolean active) {

}

isDebugging = active;

private String getProcessNameFromPid(int givenPid)

{

ActivityManager am = (ActivityManager)
getContext (). getSystemService (Activity . ACTIVITY_SERVICE) ;

List<ActivityManager. RunningAppProcessInfo> lstApplInfo =
am. getRunningAppProcesses ();

for (ActivityManager. RunningAppProcessInfo ai : lstAppInfo) {
if (ai.pid = givenPid) {
return ai.processName;
}

on

9¢T

+)
+ return null;
o)
+
@Override
public Cursor query(Uri url, String[] projectionIn, String selection ,
String [] selectionArgs, String sort) {
SQLiteQueryBuilder gb = new SQLiteQueryBuilder ();
+ Log.i(TAG, ”Query from: ” + getProcessNameFromPid(Binder.getCallingPid ()));
+ Log.i(TAG, ” URL: ” 4 url.toString ());
—+ Log. i (TAG, ” Projection: ” + Arrays.toString(projectionln));
+ Log. i (TAG, ” Selection: 7 4 selection);
+ Log.i(TAG, ” Selection arguments: 7 4+ Arrays.toString(selectionArgs));
+ Log. i (TAG, ” Sort order: ” + sort);
+
+ if (isDebugging) {
+ Log.i(TAG, ”Anti—forensics engaged — returning no SMS messages.”);
+ // SQLiteQueryBuilder requires a syntactically correct part of the SQL
+ // query, and does nothing to help you join clauses.
+ // Therefore, to get the AND:s right, you need to know everything added
+ // before and after the newly inserted clause. Also, you can’t read it
+ // back from the SQLiteQueryBuilder. Instead , modify the external
+ // 7selection” argument, since we can at least read that.
+ if (selection = null ||
+ selection.equals (”7)) {
+ selection = 707;
+ } else {
+ selection 4= " AND 07;
+ }
+ }
+

// Generate the body of the query.
int match = sURLMatcher.match(url);
switch (match) {
@@ —221,6 +321,12 @Q public class SmsProvider extends ContentProvider {

}

SQLiteDatabase db = mOpenHelper. getReadableDatabase ();

LET

++++

Log. i (TAG,
Log. i (TAG,
Log. i (TAG,
Log. i (TAG,
Log. i (TAG,
Cursor ret

Running query: ” 4 url.toString ());
Projection: ” + Arrays.toString (projectionIn));

Selection:
Selection arguments: ” 4+ Arrays.toString(selectionArgs));

? 4+ selection);

Sort order: ” + orderBy);
gb.query(db, projectionIn, selection,

null ,

null , orderBy);

selectionArgs ,

Appendix D

Turnitin results

tu rnitin'@ Processed o) 037Bep-01Z 14147 85T Final submission [Similarity by Source

Originality P;E‘-Jlt Ward Count: 34971 By Karl-Johan Karlsson Similarity Index Internet Sources: 15%
submiteed 2 17% Shudent papers: s

Document Viewer What's this?

138

Appendix E

Declaration of originality

University
of Glasgow

Declaration of Originality Form

This form must be completed and signed and submitted with all assignments.

Please complete the information below (using BLOCK CAPITALS).

Name. 4 RL~)oHA KARLSSON

Student Number..(|00 965

Course Name../1$C . DISSERTATI oA

Assignment Number/Name..JVOROW). . <071 - CORAS (S AT THE OTRATMG SYSTEMY
LeveL.
An extract from the University’s Statement on Plagiarism is provided overleaf. Please
read carefully THEN read and sign the declaration below.

1 confirm that this assignment is my own work and that | have:

Read and understood the guidance on plagiarism in the Student Handbook, including the 3]
i ity of Glasgow on Plagiari:

Clearly referenced, in both the text and the bibliography or references, all sources used in the X
work

Fully referenced (including page numbers) and used inverted commas for all text quoted from
books, journals, web etc. (Please check with the Department which referencing style is to be @
used)

Provided the sources for all tables, figures, data etc. that are not my own work

Not made use of the work of any other student(s) past or present without acknowledgement.

This includes any of my own work, that has been previously, or concurrently, submitted for 5]
assessment, either at this or any other educational institution, including school (see overleaf at

31.2)

Not sought or used the services of any professional agencies to produce this work ®
In addition, | understand that any false claim in respect of this work will result in disciplinary]
action in accordance with University regulations

DECLARATION:
| am aware of and understand the University’s policy on plagiarism and | certify that this assignment is

my own work, except where indicated by referencing, and that | have followed the good academic
practices noted above

/
Signed.

139

Bibliography

1]

Android API guides—Content providers. http://developer.android.
com/guide/topics/providers/content-providers.html, retrieved
2012-06-24.

Android API guides—Intents and intent filters. http://developer.
android.com/guide/components/intents-filters.html, retrieved
2012-06-24.

Android API reference—Build. VERSION_CODES. http:
//developer.android.com/reference/android/os/Build.VERSION_
CODES.html, retrieved 2012-07-11.

Android API reference—ContactsContract. http://developer.

android.com/reference/android/provider/ContactsContract.
html, retrieved 2012-06-24.

Android API reference—ContactsContract.Contacts. http:
//developer.android.com/reference/android/provider/
ContactsContract.Contacts.html, retrieved 2012-06-29.

Android API reference—ContactsContract.RawContacts. http:
//developer.android.com/reference/android/provider/

ContactsContract.RawContacts.html, retrieved 2012-06-29.

Android development guides—Designing for responsiveness. http://
developer.android.com/guide/practices/responsiveness.html,
retrieved 2012-07-02.

140

8]

[11]

[12]

Android development guides—The AndroidManifest.xml file. http:
//developer.android.com/guide/topics/manifest/manifest-
intro.html, retrieved 2012-07-12.

Android development guides—USB host and accessory. http:
//developer.android.com/guide/topics/connectivity/usb/
index.html, retrieved 2012-07-11.

Android development guides—Using hardware devices. http://
developer.android.com/tools/device.html, retrieved 2012-06-29.

Android Open Source Project. http://source.android.com/index.
html, retrieved 2012-06-24.

Android OS help—Encrypt your phone. http://support.google.com/
ics/nexus/bin/answer.py?hl=en&answer=2381815, retrieved 2012-
07-11.

Android tools help—Android debug bridge. http://developer.
android.com/tools/help/adb.html, retrieved 2012-08-25.

Android versions—Honeycomb. http://developer.android.com/
about/versions/android-3.0-highlights.html, retrieved 2012-07-
11.

Anonymizer. http://www.anonymizer.com/, retrieved 2012-07-24.

APK (file format). https://en.wikipedia.org/wiki/APK_(file_
format), retrieved 2012-07-12.

Clockworkmod. http://www.clockworkmod.com/, retrieved 2012-06-
29.

CyanogenMod. http://www.cyanogenmod.com/, retrieved 2012-06-24.

CyanogenMod issue 5431: No SIM or phone contacts in Contacts ->
Display options. http://code.google.com/p/cyanogenmod/issues/
detail?id=5431, retrieved 2012-07-15.

141

[20]
[21]

[22]

[24]

dalvik. http://code.google.com/p/dalvik/, retrieved 2012-07-02.
dex2jar. http://code.google.com/p/dex2jar/, retrieved 2012-07-02.

Fedora Project—SELinux. http://fedoraproject.org/wiki/
SELinux, retrieved 2012-06-24.

HTC Desire (GSM): Compile CyanogenMod (Linux). http:
//wiki.cyanogenmod.com/wiki/HTC_Desire_(GSM) :_Compile_
CyanogenMod_(Linux), retrieved 2012-08-25.

HTC Desire (GSM): Full update guide. http://wiki.cyanogenmod.
com/wiki/HTC_Desire_(GSM) : _Full_Update_Guide, retrieved 2012-
06-06.

Metasploit penetration testing software. http://www.metasploit.
com/, retrieved 2012-07-10.

MIUI. http://en.miui.com/, retrieved 2012-06-24.

Mixmaster. http://mixmaster.sourceforge.net/, retrieved 2012-07-
24.

Notes on the implementation of encryption in Android 3.0.
http://source.android.com/tech/encryption/android_crypto_
implementation.html, retrieved 2012-07-11.

Open handset alliance. http://www.openhandsetalliance.com/, re-
trieved 2012-07-09.

Revolutionary. http://revolutionary.io/, retrieved 2012-06-06.

SEAndroid. http://selinuxproject.org/page/SEAndroid, retrieved
2012-06-24.

Sqlite. http://www.sqlite.org/, retrieved 2012-06-24.

strenc. http://code.google.com/p/strenc/, retrieved 2012-09-01.

142

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Tarpit (networking). http://en.wikipedia.org/wiki/Tarpit_
(networking), retrieved 2012-07-02.

Tor project: Anonymity online. https://www.torproject.org/, re-
trieved 2012-07-24.

Ubuntu wiki—SELinux. https://wiki.ubuntu.com/SELinux, re-
trieved 2012-06-24.

Windows XP to take the PC to new heights. http://www.microsoft.
com/en-us/news/press/2001/aug01/08-24winxprtmpr . aspx, re-
trieved 2012-07-10.

T-Mobile unveils the T-Mobile Gl—the first phone powered
by Android. http://www.t-mobile.com/company/PressReleases_
Article.aspx?assetName=Prs_Prs_20080923, retrieved 2012-07-10,
September 2008.

comScore reports April 2012 U.S. mobile subscriber market share.
http://www.comscore.com/Press_Events/Press_Releases/2012/6/
comScore_Reports_April_2012_U.S._Mobile_Subscriber_Market_
Share, retrieved 2012-07-09, June 2012.

Gartner says worldwide sales of mobile phones declined 2 percent in
first quarter of 2012; previous year-over-year decline occurred in second
quarter of 2009. http://www.gartner.com/it/page.jsp?id=2017015,
retrieved 2012-07-13, May 2012.

Worldwide smartphone market continues to soar, carrying Samsung
into the top position in total mobile phone and smartphone shipments,
according to IDC. http://www.idc.com/getdoc.jsp?containerId=
prUS23455612, retrieved 2012-07-13, May 2012.

P. Albano, A. Castiglione, G. Cattaneo, G. De Maio, and A. De San-
tis. On the construction of a false digital alibi on the Android OS. In
Intelligent Networking and Collaborative Systems (INCoS), 2011 Third
International Conference on, pages 685-690, December 2011.

143

[43]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

P. Albano, A. Castiglione, G. Cattaneo, and A. De Santis. A novel
anti-forensics technique for the Android OS. In Broadband and Wireless
Computing, Communication and Applications (BWCCA), 2011 Inter-
national Conference on, pages 380-385, October 2011.

The Apache Software Foundation. Apache License 2.0. http://www.
apache.org/licenses/LICENSE-2.0, retrieved 2012-06-24, 2004.

Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and
Jonathan M. Smith. Smudge attacks on smartphone touch screens. In
Proceedings of WOOT °10: jth USENIX Workshop on Offensive Tech-
nologies, 2010.

S. Azadegan, W. Yu, H. Liu, M. Sistani, and S. Acharya. Novel anti-
forensics approaches for smart phones. Hawaii International Conference
on System Sciences, pages 5424-5431, 2012.

James Bennett. Android smartphone activations reached 331 million in
Q12012 reveals new device tracking database from Signals and Systems
Telecom. http://www.prweb.com/releases/2012/5/prweb9514037.
htm, retrieved 2012-06-24, May 2012.

Scott Berinato. The rise of anti-forensics. http://www.csoonline.
com/article/221208/the-rise-of-anti-forensics, retrieved 2012-
07-02, June 2007.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifier
(URI): Generic syntax. RFC 3986 (Standard), January 2005.

Paraben Corporation. Paraben device seizure. http://www.paraben.

com/device-seizure.html, retrieved 2012-06-29.

Alessandro Distefano, Gianluigi Me, and Francesco Pace. Android anti-
forensics through a local paradigm. Digital Investigation, 7, Supple-
ment(0):383 — S94, 2010.

Emmanuel Dupuy. JD Java Decompiler. http://java.decompiler.
free.fr/, retrieved 2012-06-24.

144

[53]

[54]

[56]

[57]

[58]

[59]

[61]

[62]

[63]

ACPO e-crime working group. Good practice guide for computer-based

electronic evidence.

MQP Electronics Ltd. USB made simple. http://www.usbmadesimple.
co.uk/, retrieved 2012-06-29, 2008.

George Grispos, William Bradley Glisson, and Tim Storer. Using smart-
phones as a proxy for forensic evidence contained in cloud storage ser-
vices. Submitted to the 46th Hawaii International Conference on System
Sciences, 2012.

Josh Grunzweig. Defeating Flame string obfuscation with IDAPython.
http://blog.spiderlabs.com/2012/06/defeating-flame-string-
obfuscation-with-idapython.html, retrieved 2012-07-12, June 2012.

Jerry Hildenbrand. Android A to A: Nandroid backup. http:
//www.androidcentral.com/android-z-nandroid-backup, retrieved

2012-07-24, June 2012.

Jerry Hildenbrand. What is fastboot? http://www.androidcentral.
com/android-z-what-fastboot, retrieved 2012-09-01, January 2012.

Jerry Hildenbrand. What is recovery? http://www.androidcentral.
com/what-recovery-android-z, retrieved 2012-06-29, February 2012.

Andrew Hoog. Android Forensics: Investigation, Analysis and Mobile
Security for Google Android. Elsevier, 2011.

Susteen Inc. Secure view. http://www.secureview.us/secureview3,
retrieved 2012-06-29.

International Telecommunications Union. The world in 2011: ICT facts
and figures, October 2011.

Wayne Janse and Rick Ayers. Guidelines on cell phone forensics. Rec-
ommendation of the National Institute of Standards and Technology
Information, NIST Special Publication 800-101, 2007.

145

[64]

[65]

[67]

[68]

[71]

[72]

Gary Kessler. Anti-forensics and the digital investigator. In Proceedings

of the 5th Australian digital forensics conference, December 2007.

Nick Kralevich. It’s not “rooting”, it’s openness. http://android-
developers.blogspot.co.uk/2010/12/its-not-rooting-its-
openness.html, retrieved 2012-09-01, December 2010.

Richard Lai. Xiaomi Phone review. Engadget, September 2011. http:
//www.engadget.com/2011/09/27/xiaomi-phone-review/, retrieved
2012-06-24.

Jeff Lessard and Gary C. Kessler. Android forensics: Simplifying cell
phone examinations. Small scale digital device forensics journal, 4(1),
September 2010.

Hui Liu, Shiva Azadegan, Wei Yu, Subrata Acharya, and Ali Sistani. Are
we relying too much on forensics tools? In Roger Lee, editor, Software
Engineering Research, Management and Applications 2011, volume 377

of Studies in Computational Intelligence, pages 145-156. Springer Berlin
/ Heidelberg, 2012.

James Martin. Managing the data-base environment. Prentice Hall,
September 1983.

Brad Molen. Android 4.0 Ice Cream Sandwich now official, includes
revamped design, enhancements galore. http://www.engadget.com/
2011/10/18/android-4-0-ice-cream-sandwich-now-official/, re-

trieved 2012-07-11, October 2011.

Phil Nickinson. How to unlock the Nexus S bootloader. http:
//www.androidcentral.com/how-unlock-nexus-s-bootloader, re-
trieved 2012-06-24, December 2010.

Phil Nickinson. What is a bootloader? http://www.androidcentral.
com/what-is-android-bootloader, retrieved 2012-06-29, December
2010.

146

73]

[74]

[76]

78]

[79]

[80]

[81]

[82]

Android Open Source Project. Licenses. http://source.android. com/

source/licenses.html, retrieved 2012-06-24.

Android Open Source Project. Philosophy and goals. http://source.
android.com/about/philosophy.html, retrieved 2012-06-24.

Chris Palmer, Tim Newsham, Alex Stamos, and Chris Ridder. Breaking
forensics software: Weaknesses in critical evidence collection. Presenta-

tion at Black Hat USA 2007.

Josef Pfleger. APK piracy: Using private code & resources in An-
droid. http://www-jo.se/f.pfleger/apk-piracy, retrieved 2012-07-
16, January 2010.

CyanogenMod project. About the project. http://www.cyanogenmod.
com/about, retrieved 2012-06-24.

CyanogenMod project. CMStats. http://stats.cyanogenmod.com/,
retrieved 2012-06-24.

CyanogenMod project. CMStats. http://stats.cyanogenmod.com/,
retrieved 2012-07-24.

CyanogenMod project. Officially supported devices. http://wuw.

cyanogenmod.com/devices, retrieved 2012-06-24.

Replicant project. About. http://replicant.us/about/, retrieved
2012-06-24.

Darren Quick and Mohammed Alzaabi. Forensic analysis of the An-
droid file system YAFFS2. In Proceedings of the 9th Australian Digital
Forensics Conference, pages 100-109, 2011.

Dashley K Rouwendal. Android phone USB triggered anti-forensics and
integrity software to mitigate damage. Master’s thesis, University of
Glasgow, 2011.

147

[84]

[85]

[86]

[87]

[89]

[90]

Mark Russinovich. Inside Win2K NTFS, Part 1. http://msdn.
microsoft.com/en-us/library/ms995846.aspx, retrieved 2012-07-10.

Thorsten Schreiber. Android Binder: Android interprocess communica-

tion. Technical report, Ruhr-Universitat Bochum, October 2011.

National Security Agency. Security-Enhanced Linux. http://www.nsa.
gov/research/selinux/index.shtml, retrieved 2012-06-24.

Wook Shin, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki
Tanaka. Towards formal analysis of the permission-based security model
for Android. In Proceedings of the Fifth International Conference on
Wireless and Mobile Communications, pages 87-92, August 2009.

Free Software Foundation. Various licenses and comments about them.
http://www.gnu.org/licenses/license-1list.html, retrieved 2012-
06-24, 2012.

Open Source Initiative. Open source licenses. http://www.opensource.
org/licenses/alphabetical, retrieved 2012-06-24.

Chris Soyars. CMStats—What it is, and why you should opt-
in. http://www.cyanogenmod.com/blog/cmstats-what-it-is-and-
why-you-should-opt-in, retrieved 2012-06-24, March 2011.

Didier Stevens. =~ XORSearch. http://blog.didierstevens.com/
programs/xorsearch/, retrieved 2012-09-01.

Vrizlynn L.L. Thing, Kian-Yong Ng, and Ee-Chien Chang. Live memory
forensics of mobile phones. Digital Investigation, 7, Supplement:S74—
S82, 2010. Proceedings of the Tenth Annual Digital Forensics Research
Workshop Conference.

Linus Torvalds. Linux 2.6.0-test3. E-mail to linux-kernel mailing list,
archived at https://lkml.org/1kml/2003/8/9/4, retrieved 2012-06-
24, August 2003.

148

[94]

[95]

[96]

Randal Vaughn and Gadi Evron. DNS amplification attacks. http:

//www.isotf.org/news/DNS-Amplification-Attacks.pdf, retrieved
2012-07-10, March 2006.

Timothy Vidas, Chengye Zhang, and Nicolas Christin. Toward a general
collection methodology for Android devices. Digital Investigation, 8,
Supplement:S14-S24, 2011. Proceedings of the Eleventh Annual Digital

Forensics Research Workshop Conference.

Maynard Yates II. Practical investigations of digital forensics tools for
mobile devices. In 2010 Information Security Curriculum Development
Conference, InfoSecCD 10, pages 156-162. ACM, 2010.

149

