
Forensic Discovery

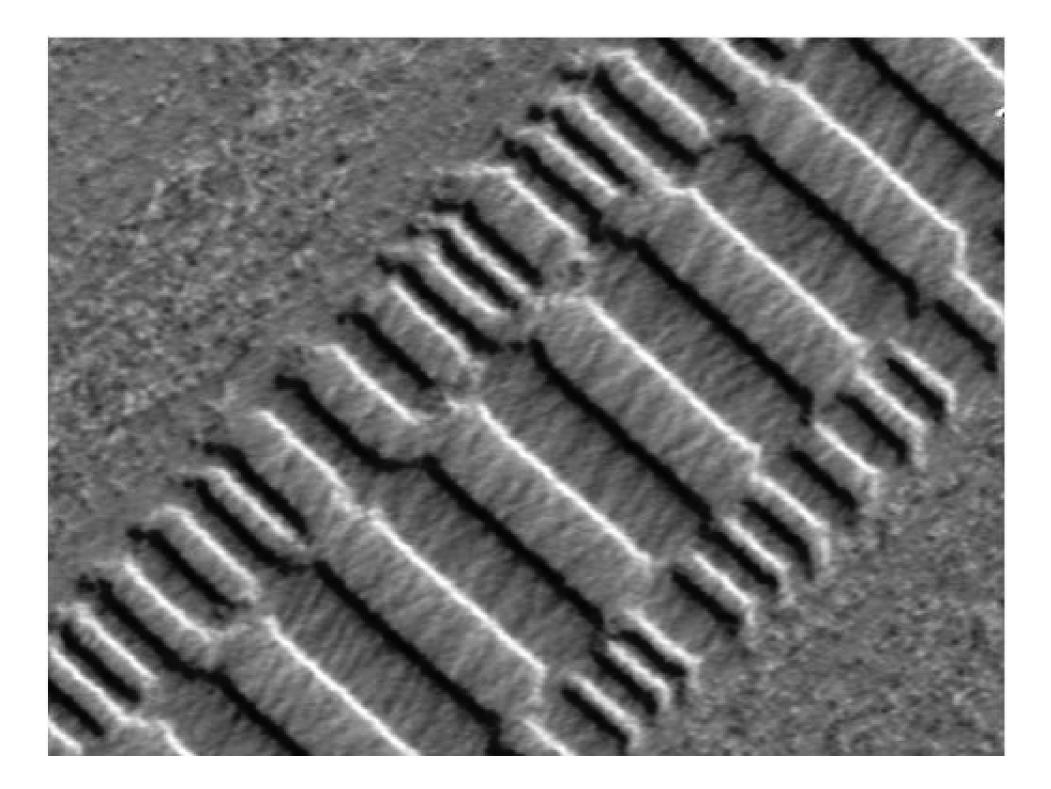
Wietse Venema wietse@porcupine.org IBM T.J.Watson Research, USA

Global hard disk market (Millions of units, source: Dataquest)

Informal survey of retired disks (Garfinkel & Shelat)

- Experiment: buy used drives, mainly via Ebay.
- Time frame: November 2000 August 2002.
- 158 Drives purchased.
- 129 Drives still worked.
- 51 Drives "formatted", leaving most data intact.
- 12 Drives overwritten with fill pattern.
- 75GB of file content was found or recovered.

IEEE Privacy & Security January/February 2003, http://www.computer.org/security/garfinkel.hmtl


What information can be found on a retired disk

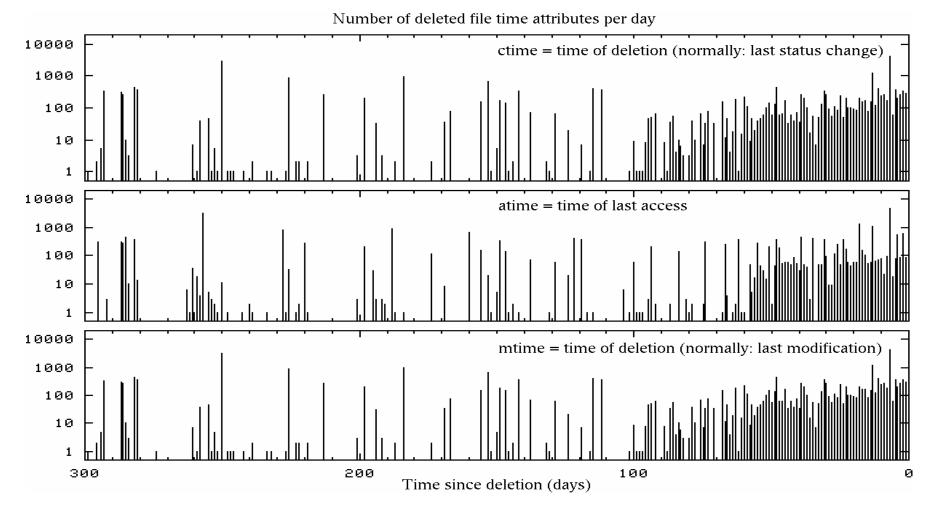
- One drive with 2868 account numbers, access dates, balances, ATM software, but no DES key.
- One drive with 3722 credit card numbers.
- Corporate memoranda about personnel issues.
- Doctor's letter to cancer patient's parent.
- Email (17 drives with more than 100 messages).
- 675 MS Word documents.
- 566 MS Powerpoint presentations.
- 274 MS Excel spreadsheets.

WSJ reporter buys two computers after Taliban fall November 2001

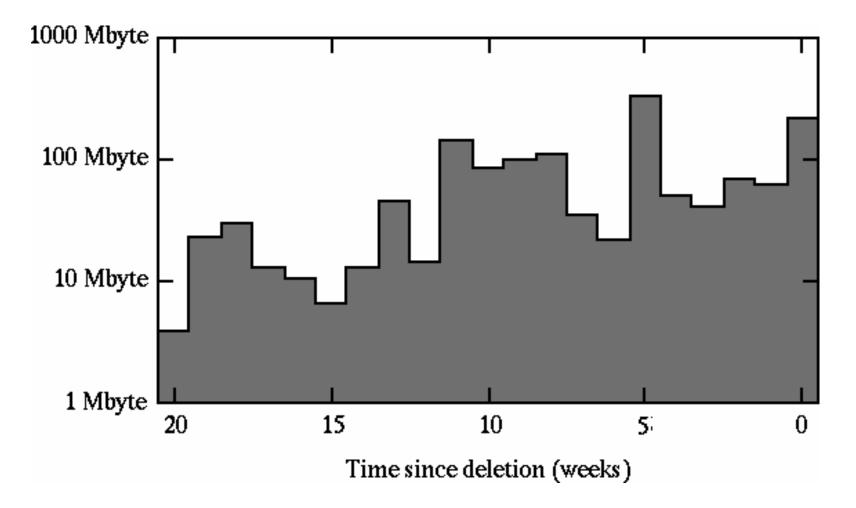
- Windows 2000.
- 1750 text and video files.
- Some files protected by "export strength" encryption (40 bit).
- Five-day effort to decrypt one file by brute force.
- Report of scouting trip for terrorist targets (shoe bomber Richard Reid?).

http://cryptome.org/nyt-wsj-dod.htm WSJ=Wall Street Journal

Digital media aren't


- Information is digital, but storage is analog.
- Information on magnetic disks survives multiple overwrite operations (reportedly, recovery is still possible with 80GB disk drives!).
- Information in semiconductor memory survives "power off" (but you have little time).

Disk track images: nanotheatre at http://www.di.com/ Peter Gutmann's papers: http://www.cryptoapps.com/~peter/usenix01.pdf and http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html


What happens when a file is deleted?

- Structure is lost, information survives.
- <u>Preserved</u>: file names/attributes/content.
- <u>Destroyed</u>: connections between file names/ attributes/content.
- On UNIX/Linux file systems, the result can be a puzzle with many loose pieces.
- On DOS/Windows file systems, many of the connections remain intact.

Persistence of deleted file time attributes - dedicated UNIX server

Persistence of deleted file content - same dedicated UNIX server

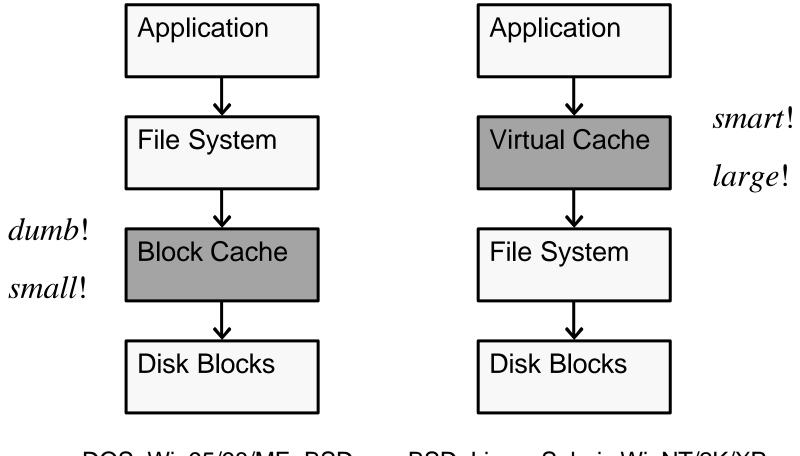
Summary: persistence of deleted file content

Machine	File system	Half-life
spike.porcupine.org ¹	entire disk	35 days
flying.fish.com ²	/	17 days
flying.fish.com ²	/usr	19 days
www.porcupine.org ¹	entire disk	12 days

¹FreeBSD ²Linux

Will file encryption solve the problem?

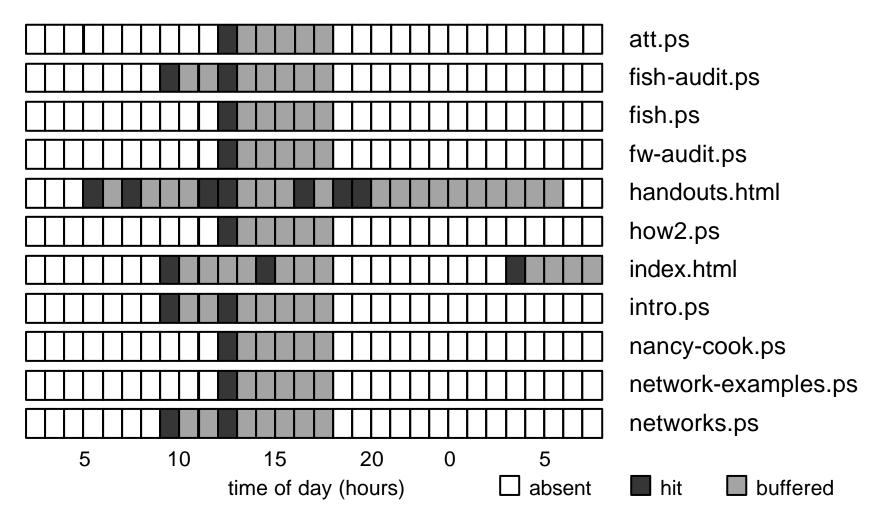
- Plenty opportunity for information leakage:
 - Swap files (fixed in, e.g., OpenBSD).
 - Unencrypted application temporary files.
 - Main memory (see next section).
- Some files/directories/attributes must not be encrypted (for booting and file system checks).
- Implementors sometimes make bad mistakes.
- Concerns about data recovery after crash.

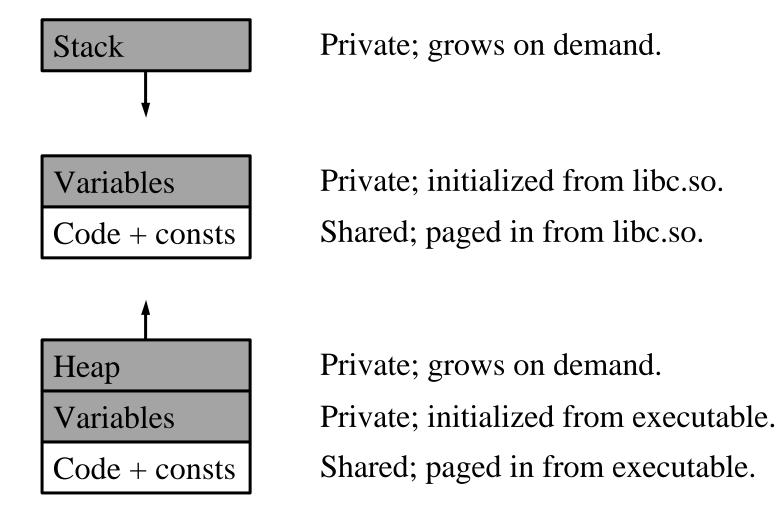

Persistence of information in main memory

Information that may be found in main memory:

- Running processes¹.
- Terminated processes¹.
- Operating system.
- Cached (buffered) copies of recently accessed or executed files and directories.

¹Some information may be found in swap files.


Block cache versus virtual cache (owned by system, not by applications)


DOS, Win95/98/ME, BSD

BSD, Linux, Solaris, WinNT/2K/XP

File caching in main memory (low-traffic web pages, FreeBSD)

Private process memory - UNIX (the bits that must be saved when swapping)

Persistence of private memory

Average decay of 1Mbyte private memory after process termination Surviving memory (kbytes) RedHat 6.2 Linux, 384MB FreeBSD 4.1, 256MB ø Time since process termination (seconds)

Summary: persistence of main memory (Linux, FreeBSD)

- <u>Hours-days</u>: cached (buffered) file data. Modern systems have lots of available main memory.
- <u>Minutes</u>: private data after process termination, even on lightly loaded systems.
- <u>Minutes</u>: cached data from deleted files, just like private memory from terminated processes.
- The information of most interest is the first to be destroyed. **Bad luck** :-(

Recovering Windows/2K/XP encrypted files without key

- EFS¹ provides encryption by file or by directory. Encryption is enabled via Explorer property dialog box or via the equivalent system calls.
- With encryption by directory, files are encrypted before being written to disk.
- Is unencrypted content of EFS files cached in main memory?
- If yes, for how long?

¹EFS=encrypting file system

Experiment: create encrypted file

- Create "encrypted" directory c:\temp\encrypted.
- Download 350kB text file via FTP, with content: 00001 this is the plain text 00002 this is the plain text

```
11935 this is the plain text
11936 this is the plain text
```

- - -

• Scanning the disk from outside (VMware rocks!) confirms that no plaintext is written to disk.

Experiment: search memory dump

- Log off from the Windows/XP console and press Ctrl/ScrollLock twice for memory dump¹.
- Analyze result with standard UNIX tools: %strings memory.dmp | grep `this is the plain text'
 03824 this is the plain text
 03825 this is the plain text
 ...etcetera...
- 99.6% of the plain text was found undamaged.

¹Microsoft KB 254649: Windows 2000 memory dump options.

Recovering Windows XP encrypted files without keys

- <u>Good</u>: EFS encryption provides privacy by encrypting file content before it is written to disk.
- <u>Bad</u>: unencrypted content stays cached in main memory even after the user has logged off.
- Similar experiments are needed for other (UNIX) encrypting file systems. Most are expected to have similar plaintext caching behavior.

Conclusion

- Disk "dumpster diving" remains a source of information with great potential.
- Memory dumps reveal clues about recent activity on a computer system, including plaintext of encrypted files.
- Big brother and the arms race between the good and the evil forces.

Pointers

- Simson Garfinkel, Abhi Shelat, Remembrance of Data Passed. IEEE Privacy&Security Jan 2003. http://www.computer.org/security/garfinkel.html
- Dan Farmer, Wietse Venema, series of articles in Dr.Dobb's Journal 2001-2002. http://www.porcupine.org/forensics/column.html
- By the same authors: the Coroner's Toolkit. http://www.porcupine.org/tct/
- TCTutils, TASK, and other tools by Brian Carrier. http://www.atstake.com/research/tools/